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Statistical Analysis for Collision-free 
Boson Sampling
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Shuo Zhang1,2, Xiang Wang1,2 & Wan-Su Bao1,2

Boson sampling is strongly believed to be intractable for classical computers but solvable with 
photons in linear optics, which raises widespread concern as a rapid way to demonstrate the 
quantum supremacy. However, due to its solution is mathematically unverifiable, how to certify the 
experimental results becomes a major difficulty in the boson sampling experiment. Here, we develop 
a statistical analysis scheme to experimentally certify the collision-free boson sampling. Numerical 
simulations are performed to show the feasibility and practicability of our scheme, and the effects 
of realistic experimental conditions are also considered, demonstrating that our proposed scheme 
is experimentally friendly. Moreover, our broad approach is expected to be generally applied to 
investigate multi-particle coherent dynamics beyond the boson sampling.

Quantum computers offer the promise of efficiently solving certain problems, such as factorization1, that are 
intractable for classical computers. To date, much significant progress for various quantum systems has been 
made towards scalable quantum computing2, such as trapped ions3,4, atoms system5,6, linear optics7–11, nuclear 
magnetic resonance12, and superconducting system13–15. We are confident that in the future, the dream of 
large-scale quantum computer will eventually come ture. Recently, considerable interest has been generated con-
cerning the construction of non-universal quantum computers, which demand less physical resources but can 
experimentally demonstrate the quantum supremacy over classical computers in the near term16, which will be a 
milestone for large-scale quantum computer.

In a major breakthrough Aaronson and Arkhipov proposed a problem called boson sampling17, which is 
intractable for classical computers but can be naturally and efficiently solved on a specialized photonic quan-
tum simulator. Unlike full linear optics quantum computing (LOQC)18, the boson sampling device requires only 
single-photon sources, passive linear optics, photodetection, and especially much less resources. Thus, boson 
sampling is considered as a leading candidate to experimentally demonstrate the quantum supremacy of quan-
tum machines in the near future19. So far, a number of elegant boson sampling experiments has been achieved 
with linear optics on a small scale20–30. With the rapid progress of experimental technology, we are optimistic that 
quantum supremacy is no longer far from us.

The core hardness of classically simulating boson sampling lies at calculating the permanent of an arbitrary 
complex matrix, which is a #p-complete computational problem31. Quantum simulation of boson sampling has 
a great advantage that needs not to calculate the permanent. However, after obtaining samples, another major 
problem arises: how to efficiently certify the correctness of the experimental results? A number of verification 
methods have been developed24,25,32–36, but the application scenarios of these methods are limited. For example, 
the row-norm estimator32 is efficiently computable, but can be only used to distinguish between boson sampling 
and uniform sampling. Bayesian probabilistic analysis33 or likelihood ratio test24 promises to exclude any types of 
sampling, but requires calculating classically intractable matrix permanents. Recently, a novel statistical approach 
towards the certification of boson sampling experiments has been proposed by Walschaers et al.37, which pro-
vides an efficient and reliable strategy for distinguishing different particle types, such as bosons, distinguishable 
particles, fermions, or simulated bosons, by analyzing the two mode correlation function of the output state. 
In their approach, all types of the output need to be analyzed, including collision-free events (one photon per 
output-mode) and collision events (multiple photons per output-mode). However, measuring collision events 
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must require photon-number-resolving detectors or the combination of beam splitters and multiple detectors, 
which increases the difficulty for practical experiments, especially for large-scale boson sampling. This shortcom-
ing limits the practicability of the method.

To overcome this obstacle, here we extend the statistical analysis approach to the collision-free boson sam-
pling. Since photon-number-resolving detectors are not necessarily required for the collision-free boson sam-
pling, our scheme is more experimentally friendly than the previous scheme. Furthermore, compared to the 
previous scheme, more types of sampling are simulated and distinguished, which shows the universality of our 
scheme. Finally, to show the practicability and reliability of our scheme, numerical simulations are performed to 
demonstrate our scheme could still work with limited samples, and our scheme could tolerate a moderate amount 
of experimental noise while strong noise will be identified and excluded. All of these excellent features will pro-
vide us an effective and practical way for certifying collision-free boson sampling experimentally.

Theory
Before introducing our proposed scheme, we first briefly describe the boson sampling problem and give some basic 
definitions. In the typical boson sampling model, we often consider an m-mode linear quantum network U with n 
single photons in as the input at distinct modes k1, …, kn. These n photons are evolved via the linear quantum net-
work U, and finally be sampled via coincidence photodetection as the output state at modes j1,…,jn. In fact, the 
output can be divided into two types, one called collision-free event if ≠ ≠ ≠ ≠j j j jn1 2 3 , and the another one 
called collision event if ja = jb for some a, b ∈ [1, …, n], a ≠ b. In this work, we will consider only the collision-free 
boson sampling, which is defined as the boson sampling with post-selecting only the collision-free events.

In general, to certify the collision-free boson sampling, usually we need to construct a suitable discriminator. In 
fact, the sampling problem is directly related to the probability of output, so we can employ the methods and param-
eters in probability statistics to construct the discriminator. In the probability theory, correlation functions play a 
central role, and the full knowledge of correlation functions implies full knowledge of probability distribution. Thus, 
we can use the correlation functions to analyze the collision-free boson sampling. However, it is time-consuming to 
compute all the correlation functions. Here, we consider only the two mode correlation function

= 〈 〉 − 〈 〉〈 〉ˆ ˆ ˆ ˆC n n n n (1)ij i j i j

of output modes i and j38, where =ˆ †n a ai i i is the particle number operator. It has been proved that two mode 
correlation functions can be efficiently computed37. In the experiments, the details of the two mode correlation 
function measurement procedure are shown in Fig. 1. Below, we show that we can extract useful and robust infor-
mation from the two mode correlation functions, and use them to distinguish the sampling results of genuine 
collision-free boson sampling and other types of sampling.

Suppose we consider sufficiently many choices for output modes i, j ∈ {1, …, m}, i < j, and compute the cor-
responding two mode correlation function Cij. Then a set of data C = {Cij|i, j ∈ {1, …, m} and i < j} could be 
obtained, on which we can do some further statistical analysis to construct a proper discriminator, which could 
clearly reveal the different characteristics of collision-free boson sampling and other types of sampling and then 
could be used to certify the genuine collision-free boson sampling. In our proposed scheme, two statistical 
parameters, coefficient of variation (CV) and the skewness (S)39
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Figure 1.  The boson sampling model and framework of two mode correlation function measurement. n single 
photons (colored by blue and n = 4 here) are injected into a m optical modes network U. The output are sampled 
via coincidence photodetection. To certify the results, we measure the two mode correlation in the experiment. 
The blocks with different colors represent the input, interference, output and measurement stages.
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are considered, where E(C) denotes the function of averaging over the set of data C. In statistics. the CV is a stand-
ardized measure of dispersion of a probability distribution or frequency distribution, and the S is a measure of the 
asymmetry of the probability distribution of a real-valued random variable about its mean. In order to find some 
useful regularities, we simulate the collision-free boson sampling and other types of sampling (distinguishable 
particles sampling, fermions sampling, uniform sampling, mean-field sampling34, and thermal state sampling40) 
for 200 different U matrices (we generate and choose the U matrices using method proposed by Francesco41 and 
Maris42). In our simulations, assume the input mode is I = {i1, i2, ..., in}, the collision-free output mode is O = {o1, 
o2, ..., on}, the probabilities of the output mode O for boson sampling PI O
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where UI,O is an n × n sub-matrix of U related to the input I and output O, Per and Det are the permanent and 
determinant of a matrix, respectively. The probabilities of the output mode O for mean-field sampling and ther-
mal state sampling could be calculated according to Tichy et al.34 and Rahimi-Keshari et al.40. According to the 
probability, we then could simulate the each type of sampling using the Monte Carlo method.

For all simulations, we let m = 20, n = 8, the input mode is {1, 2, 3, 4, 5, 6, 7, 8}, and the sample size is chosen 
as Nm = 2 × 106, which is nearly 16 times as large as the number of the collision-free events. By dealing with the 
sampling events, we could get the set of data C using equation (1). Thus, through statistical analysis, for each U 
matrix, we can get the corresponding CV and S of data C using the equation (2) for each sampling procedure. 
Figure 2 shows the outcomes for each sampling procedure, where the x-coordinate represents the CV and the 
y-coordinate indicates the S. In Fig. 2, each point is obtained by the statistical analysis for the sampling proce-
dure with different U matrix, and the points of different colors indicate the results of different types of sampling. 
Similar to the previous work37, points for the same sampling will be gathered into a cloud, and points for different 
types of sampling are all separated from each other, showing clearly that different samplings can be distinguished. 
This phenomenon provides us a strong quantitative tool for the certification of collision-free boson sampling. In 
addition, compared to37, two more typical types of sampling (uniform sampling and thermal state sampling) are 
added as a comparison to show the universality of our scheme.

Figure 2.  Numerical simulation results of the statistical analysis scheme. In the simulations, m = 20, n = 8. We 
simulated 200 different U matrices for each type of sampling. Different color points represent the statistical 
results of different types of sampling, and the black circles represent the mean value of each point cloud 
generated by each type of sampling. It is clear to see that the same sampling will be gathered into a cloud, and 
points for different types of sampling are all separated from each other, showing clearly that different samplings 
can be distinguished.
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Performance analysis
We have shown that a reliable validation procedure for collision-free boson sampling can be achieved. However, 
in the practical application, there are still some factors that a reasonable validation procedure should consider. (1) 
Figure 2 only gives a general regularity for large amounts of U matrices under the condition of a large number of 
samples. However, in actual experiments, we usually can only sample a small amount of samples for only a few 
U matrices. Thus, we must consider how to use this method in practical experiments. (2) How sensitive is this 
method? For example, perfectly indistinguishable single photons are unlikely to be achieved in the experiment. In 
this case, it is necessary to research the phenomenon of imperfect collision-free boson sampling.

To apply our method to practical experiments, we should analyze the performance of our scheme for 
collision-free boson sampling with limited linear quantum network U and samples. Based on the method out-
lined above, without loss of generality, we simulate the experimental validation process with a randomly chosen 
matrix U and limited samples. In our simulations, we let m = 32, and n = 5, which means total Hilbert space size 
of the collision-free events is =C 201, 37632

5 . For each type of sampling, we simulate 200 rounds of sampling 
processing, and the sample size is fixed as Nm = 2000 for each round, which is a reasonable detection count in 
experiments. Figure 3 shows the result of the simulation, where each point is obtained from each round of sam-
pling. Obviously, in the case of a small number of samples, different types of sampling can still be distinguished. 
Our simulations show that one could conclusively certify the collision-free boson sampling with number of meas-
urements less than 1% of the Hilbert space dimension.

Furthermore, we also consider the effects of realistic conditions in experiments. The non-classical 
Hong-Ou-Mandel43 interference in the boson sampling multi-photon interferometry relies on a high degree of 
indistinguishability between the photons26,44,45. To quantify the sensitive of our method, here we employ our 
method to simulate the imperfect collision-free boson sampling with imperfect single photons as the input (see 
Fig. 4). In our simulation, for each of photon, we assume the indistinguishability can reach α, where 0 ≤ α ≤ 1, 
and α = 1 for perfect indistinguishable single photon. In particular, if the indistinguishability of photon is α, 
we could let the ratio of indistinguishable photons be α, and the ratio of distinguishable photons be 1 − α in 
numerical simulations. We note that, during the validation test, one should accept the experimental results that 
are included in the range of the point cloud of genuine collision-free boson sampling, and reject it if the exper-
imental results are out of the point cloud of genuine collision-free boson sampling. As seen in Fig. 4, with small 
noise (α = 0.95, see Fig. 4a), there is a large overlap between the statistical results of imperfect collision-free boson 
sampling and ideal collision-free boson sampling, we will likely accept the experimental results. When the dis-
tinguishability becomes substantial (α = 0.8, see Fig. 4b), imperfect collision-free boson sampling will not pass 
the validation test, since points obtained from imperfect collision-free boson sampling are gathered as a cloud 
different from the ideal collision-free boson sampling.

To characterize usually when the imperfect collision-free boson sampling will not pass the validation test, we 
need to estimate the critical value of α, which is determined when the cloud of points obtained from imperfect 
collision-free boson sampling is separated from the cloud of points obtained from ideal collision-free boson 
sampling. We randomly simulated 100 rounds of sampling processing for 100 U matrices. The counts of different 
critical values of α for these 100 rounds of simulations are shown in Fig. 5. In our simulation, the mean of α is 
0.79, which means that the imperfect collision-free boson sampling usually will not pass the validation test when 

Figure 3.  Numerical simulation results of the statistical analysis scheme with limited samples. In the 
simulations, m = 32, n = 5, which means total Hilbert space size of the collision-free events is C32

5 = 201,376. For 
each type of sampling, we simulate 200 rounds of sampling processing, and the sample size is fixed as Nm = 2000 
for each round. Obviously, in the case of the number of samples less than 1% of the Hilbert space dimension, 
different types of sampling can still be distinguished.
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the indistinguishability α = 0.79. The simulation shows that our method is sensitive to strong noise and could be 
used as a stringent validation test.

Conclusion
In summary, a statistical analysis scheme has been proposed to identify the nature of different types of sampling 
in a single framework, which opens up a new way for experimentally certifying the collision-free boson sampling 
with the current experimental technique. Numerical simulations are carried out to show we could conclusively 
certify the collision-free boson sampling with number of measurements less than 1% of the Hilbert space dimen-
sion, and our scheme is sensitive to strong noise. It would be very interesting to see whether the higher-order 
mode correlation function, such as three mode correlation function, could provide more information for us to 
study multi-particle quantum dynamics in our future work.
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