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LPPtiger software for 
lipidome-specific prediction 
and identification of oxidized 
phospholipids from LC-MS datasets
Zhixu Ni1,2, Georgia Angelidou1,2, Ralf Hoffmann1,2 & Maria Fedorova1,2

Oxidized phospholipids (oxPLs) have been recently recognized as important mediators of various and 
often controversial cellular functions and stress responses. Due to the low concentrations in vivo, oxPL 
detection is mostly performed by targeted mass spectrometry. Although significantly improving the 
sensitivity, this approach does not provide a comprehensive view on oxPLs required for understanding 
oxPL functional activities. While capable of providing information on the diversity of oxPLs, the main 
challenge of untargeted lipidomics is the absence of bioinformatics tools to support high-throughput 
identification of previously unconsidered, oxidized lipids. Here, we present LPPtiger, an open-source 
software tool for oxPL identification from data-dependent LC-MS datasets. LPPtiger combines three 
unique algorithms to predict oxidized lipidome, generate oxPL spectra libraries, and identify oxPLs 
from tandem MS data using parallel processing and a multi-scoring identification workflow.

Over last two decades, the predominant view of lipid peroxidation products (LPPs) underwent a significant par-
adigm shift – LPPs, previously seen as a toxic byproduct of free radical reactions, nowadays is recognized as 
an important mediator of various cellular responses and plays a significant role in organism redox balance1. 
Significant success in deciphering the role of free fatty acid (FFA)-derived LPPs, especially iso- and neuropros-
tanes, established them as biomarkers of inflammatory pathways2. Furthermore, the discovery of LPP synthesis 
enzymes, such as cyclooxygenases and lipoxygenases, allowed for the designing of widely used pharmacological 
intervention strategies3.

More recently, potential biological activity studies were translated from FFA-derived LPPs to oxidized phos-
pholipids (oxPLs). PL-bound LPPs have been demonstrated to play a significant role in platelet differentiation4, 
induction of ferroptosis signaling5, as well as an anti-inflammatory mediator in the context of atherosclerosis6. 
Despite a relatively limited amount of available data, it becomes clear that the structure of LPPs is one of the 
main determinants of their diverse biological activities, including pro-inflammatory and death signaling as 
well as anti-inflammatory and pro-survival effects. Systems wide profiling and identification of large number of 
PL-bound LPPs in biological samples are required to understand structure-functional relationships determining 
biological activities. Until now, most of the research in biological systems involved targeted MS strategies due to 
the low abundance on endogenous LPPs in complex natural lipidomes. Availability of state-of-the-art MS instru-
ments characterized by improved sensitivity and high dynamic range of detection, combined with optimized 
analytical workflows, provides possibility for untargeted LPP profiling. However, a bioinformatics solution for 
high-throughput identification of highly complex sets of possible LPPs remains the main challenge in systems 
wide LPP profiling.

Results and Discussion
Here we present LPPtiger, a new open-source software tool processing LC-MS/MS data dependent acquisition 
(DDA) datasets, which is capable of predicting sample-specific oxidized lipidome and used it for PL-LPP iden-
tification (Fig. 1). LPPtiger workflow relies on the sample-specific PL lipidome with a defined, discrete fatty acid 
composition. Considering the number, type, and positions of modifications, as well as combinations of these three 
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factors, the estimated number of potential LPPs derived from the initial lipidome is several orders of magnitudes 
larger than the number of native lipids. The exact FA composition of PLs will define the ensuing variety of LPP 
formed. For instance, PC(36:4) may correspond to at least two distinct lipids – PC(18:2/18:2) and PC(16:0/20:4). 
Oxidation of PC(18:2/18:2) results in 17 different LPP structures, while at least 104 LPPs can be formed from its 
isomer PC(16:0/20:4). Thus, based on the knowledge of original lipidome composition, an estimation of LPP 
variety can largely reduce analysis time and increase specificity of LPP identification.

Based on a comprehensive meta-study including over 170 publications focusing on the enzymatic and 
non-enzymatic LPPs production (Fig. 2A, Supplementary Table 1), networks of enzymatic and free-radical-driven 
oxidative reactions were reconstructed for the ten most abundant PUFAs (18:2, 18:3 n-3, 18:3 n-6, 20:3 n-6, 20:4 
n-6, 20:5 n-3, 22:4 n-6, 22:5 n-3, 22:5 n-6, and 22:6 n-3). CellDesigner-reconstructed networks are available as 
SBML files (Supplementary Files 1–10) and images at https://bitbucket.org/SysMedOs/filesrepository. Using this 
information, knowledge on the oxidation mechanisms for the bis-allylic positions in PUFA and the rearrange-
ment of the neighboring double bonds was summarized and translated into in silico oxidation algorithms. Each 
double bond and one of the neighboring (bis-)allylic positions was treated as a core unit of the oxidation process, 
and possible modifications of the defined core unit were predicted by enumeration methods (Fig. 2B). The overall 
theoretically possible LPPs can be predicted by applying all possible modifications (introduction of keto, hydroxy, 
hydroperoxy, epoxy groups) to all double bond units in a certain PUFA acyl residue. For cyclic LPPs (e.g., pros-
tanes), a three-double-bond core unit was used to construct the essential ring structures. Provided LPP networks 
included only oxygen addition products (OAP). For prediction of truncated oxidation cleavage products (OCP), 
the majority of which are formed via the Hock cleavage mechanism, each double bond position was treated as 

Figure 1.  LPPtiger workflow. The LPPtiger uses three unique algorithms: in silico oxidation (1), in silico 
fragmentation (2), and multi-score-based identification (3). Additionally, LPPtiger utilizes sample-specific 
native lipidome (i) to predict PL-bound LPPs (ii) from which a simulated tandem mass spectra library (iii) is 
generated and used for LPP identification (iv and v).

https://bitbucket.org/SysMedOs/filesrepository
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a potential point of truncation7–11. Predicted OCP were further populated with oxidation-derived functional 
groups (e.g., hydroxy and keto) based on the number of remaining double bonds (Fig. 2B).

Reconstructed networks of PUFAs oxidation used to design in silico oxidation algorithm included both enzy-
matic and non-enzymatic oxidation routes. Although it is possible to predict all combinations of modifications for 
all double bond units in selected PUFA, limits for the number and type of overall modifications produced under 
physiological conditions were introduced based on the literature survey, and defined via three levels (most com-
mon mild oxidation, pathway dependent, and less often reported oxidation routes; Supplementary Figure S1). 
These theoretical oxidation rules were implemented as in silico oxidation algorithms capable of predicting LPPs 
from the list of original PLs within the LPPtiger software. Using sample-specific lipidome as .xlsx file input, 
LPPtiger can predict sample-specific oxLipidome and store it as an .sdf library.

For a sample-specific .sdf library of potential oxidized PLs, LPPtiger utilizes an in silico fragmentation algo-
rithm, aiming to simulate collision induced dissociation (CID) tandem mass spectra for each predicted LPP. MS 
and MS/MS behavior of native PLs have been intensively characterized by many research groups over the last 
decade12–14. However, far less information on ionization and fragmentation mechanisms of PL-bound LPPs is cur-
rently available. Moreover, general mechanisms of the MS behavior of LPPs cannot simply be extrapolated from 

Figure 2.  Summary of meta-study data integration (A) and (B) formulation of an in silico oxidation 
algorithm. (A) – Summary of LPP networks reconstructed for the ten most abundant PUFA. (B) – Schematic 
representation of an in silico oxidation algorithm used for prediction of oxygen addition (OAP), oxidative 
cleavage (OCP) and prostane-containing LPPs exemplified on PC(16:0/20:4) lipid.
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corresponding PLs. The fragmentation mechanism of PL-bound LPPs, although somewhat similar to PLs, has its 
own specifics. A review of available literature7,9–11,15,16 and intensive MS and MS/MS studies (manual assignment 
of more than 300 in-house acquired MS/MS spectra) of in vitro-oxidized PL standards revealed several frag-
mentation patterns that have been defined for different types of PL-bound LPPs (Fig. 3; Supplementary Table 2). 
For instance, it should be noticed that truncated PC-bound LPPs will form different adducts upon the negative 
ionization mode in the presence of formate ions. Thus, carbonylated species will form prominent formate anion 
adducts similar to native PCs, whereas OCP, carrying terminal carboxylic moiety, will form deprotonated ions. 
Upon CID fragment ions and neutral losses of head group related structures, sn-1 and sn-2 residues are the main 
signals populating tandem mass spectra. Certain intensity distributions can be summarized for these ions based 
on the tandem mass spectra of LPP standards (Supplementary Table 2). Additionally, for some modifications, 
specific neutral losses can be detected (e.g. water loss from hydroxylated FA chains or hydrogen peroxide from 
lipid peroxides), while other modifications do not display any specific fragment ions (e.g. epoxy and keto groups). 
Modification specific fragments/neutral losses can partially assist prediction of MS/MS spectra for isomeric 
oxPLs. Thus, in silico fragmentation algorithm generated MS/MS spectra containing main (fragment ions and 
neutral losses of head group related structures, sn-1 and sn-2 residues) as well as modification specific (finger-
print predictions) fragment ions and neutral losses (Supplementary Figure S2). Together with the predicted LPP 
structures, these fragmentation features were used for the generation of an in silico-fragmented spectra library 
which can be used for the identification of LPPs by spectra matching approaches. Thus, LPPtiger utilized in silico 
fragmentation algorithms to generate an .msp library for all predicted LPPs. In the current version of LPPtiger, 
fingerprint prediction includes neutral losses specific for hydroxy, hydroperoxy and carboxy modified FA resi-
dues. However, upcoming LPPtiger versions will be able to predict elevated energy CID and MS3 spectra, neces-
sary to assign positional isomers.

The in silico-fragmented spectra library provides the opportunity to perform identification by spectra match-
ing software tools, and was integrated into LPPtiger using a reverse dot-product algorithm17. However, the large 
diversity of LPPs structures required additional scoring systems to improve the identification quality and reduce 

Figure 3.  Illustration of LPP fragmentation patterns used to generate in silico spectra libraries. Based on a list of 
manually-assigned spectra of OCP (A), OAP (B), and prostane-esterified LPPs (C), the main structure-related 
signals were marked and the corresponding relative intensities were indexed for each individual spectrum. The 
type and relative intensities of structure-related signals from multiple assigned spectra of the same LPP type 
were summarized and averaged to generate a compound-specific fragmentation profile.
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the rate of false positive identification. Thus, LPPtiger features an unique architecture based on five individual 
scores, each having its own specific focus and providing unique information for LPP identification (Fig. 4):

	(1).	 The Spectra Similarity Score uses the spectra matching approach, which compares measured spectra with 
in silico-generated LPPs spectra libraries using a reverse dot-product algorithm17.

	(2).	 The Rank Score provides an intensity-dependent score based on a bottom-up strategy by implementing an 
intensity-ranked comparison of observed fragment ions with a predicted white list of oxidized fatty acyl 
residues and PL head group-specific signals18. The Rank Score helps to assign structure-related signals of 
low intensity with no bias for sn-1 or sn-2 FA residues assignment by default settings. However, it can be 
tuned to distinguish potential isomers by applying customized weight factors to sn-1 or sn-2 FA residue-re-
lated signals based on observed distributions of relative intensities for specific instruments.

	(3).	 The Fingerprint Score is based on the modification type-specific intensity-independent scoring algorithm. 
In contrast to the dominant fragment ions, modification-specific fragments and neutral losses (e.g., water 
losses and prostane ring specific ions) may not have consistent relative intensities, or be represented by low 
intensity signals. However, these low intense signals, especially the combination of several water losses and 
head group-specific losses, can significantly improve the specificity of the identification. The Fingerprint 
Scoring algorithm uses an extended m/z list of fragment ions, neutral losses and all possible modifica-
tion-related signals generated during in silico oxidation as a white list matched to the measured spectra. 
Since it is an intensity-independent algorithm, even low abundant modification related signals can signifi-
cantly contribute to the final identification score. With the contribution of the Fingerprint Score, keto and 
hydroxy groups containing isomers of PL differed by one double bond can be successfully distinguished.

Figure 4.  Overview of five scoring algorithms used by LPPtiger identification workflow. LPPtiger combines the 
reverse dot-product Spectra Similarity Score (A), intensity based Rank Score for bottom-up identification using 
a white list of possible oxFA and PL head group combinations (B), intensity-independent Fingerprint Score that 
considers oxPL-specific fragments and neutral losses (C), Specificity Score to evaluate the ratio between LPP-
specific and unspecific fragments (D) and Isotope Score to evaluate isotope pattern fit (E). Five individual scores 
are averaged to derive a final LPPtiger Score for each identified PL-bound LPP.
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	(4).	 The Specificity Score utilizes adapted signal-to-noise function calculations19, aimed at indicating the ratio 
between specific signals supporting the identification of certain LPPs (treated as “signal”) versus signals 
corresponding to the other species (treated as “noise”). The Specificity Score can differentiate multiple LPPs 
identified from the same tandem mass spectrum by the sum of the intensities of their structure-specific 
signals. It was shown to be effective for identification of discrete LPPs from partially co-eluting signals or 
MS/MS spectra acquired in the valley of two chromatographic peaks corresponding to the neighboring 
isomeric LPPs.

	(5).	 The Isotope Score provides an isotope distribution check, which is commonly used to evaluate the fit 
between the elemental composition of the proposed structure and the observed isotope distribution 
pattern20.

The overall LPPtiger identification score merges these five individual scores, representing the identification 
quality from the above-mentioned aspects, and is used as the main criteria in the LPPtiger output. The unique 
LPPtiger scoring system reduces the complexity of overall decision making through its use of a single overall 
score.

LPPtiger is a Python-based tool with a graphical user interface (Supplementary Figure S3) and the source code 
is freely available for both Windows- and Linux-based operating systems. Additional compiled executable (.exe) 
file is also available for Windows platforms. LPPtiger natively supports parallel processing, with a build-in batch 
mode to accelerate the identification process (Supplementary Figure S4). Current version of LPPtiger supports 
prediction and identification of PL-bound LPPs from five main PL classes (PC, PE, PS, PG, and PA) base on a 
negative ionization mode DDA datasets obtained using Waters and ThermoFisher Scientific MS instruments. 
Future updates will support PI, PIP, phosphosphingolipids, ceramides, di- and triglycerides as well as input files 
from other MS vendors.

The final identification results are reported via a detailed excel table providing all main parameters – proposed 
LPP structure, elemental composition, theoretical and observed m/z values, mass accuracy, retention time, iden-
tification metrics (i.e., all scores, relative intensities of matched fragments, LPP specific and unspecific signals), 
and data specific details (e.g., DDA rank and scan number) (Supplementary Table 3). Furthermore, LPPtiger 
provides a graphical representation of each identification via a six-panel image integrated into an interactive 
HTML report file available for manual reviewing (Fig. 5, Supplementary Figure S5). Each identified LPP is sup-
ported by the image of precursor-specific XICs (Fig. 5A), a corresponding MS scan (Fig. 5B), a zoomed MS scan 
illustrating the isotope pattern and calculated Isotope Score (Fig. 5C), an MS/MS scan used for identification 
illustrating Spectra Similarity, Ranked and Fingerprint Scores, as well as a final LPP ID with an overall LPPtiger 
Score (Fig. 5D), zoomed region of fatty acid fragments (Fig. 5E), and neutral loss signals (Fig. 5F). A detailed 

Figure 5.  Example of the six-panel image from LPPtiger .html report for precursor at m/z 846.5789 identified as 
PC(18:0/18:1[1xDB,1xKETO]). Image summarizing extracted ion chromatogram (A), corresponding MS scan 
(B), zoomed MS scan with isotope pattern and Isotope Score (C), MS/MS spectrum used for the identification (D), 
MS/MS spectrum zoomed in on the region of fatty acid fragments (E) and neutral loss signals (F).
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step-by-step LPPtiger manual (Supplementary File 11) together with a training dataset is available at https://
bitbucket.org/SysMedOs/lpptiger/.

LPPtiger was first validated using DDA LC-MS datasets of in vitro-oxidized PL standards. The sample set 
included PC, PE, PS, PG, and PA lipids with different compositions of esterified PUFA to provide complex oxi-
dation patterns. Samples were separated by RP-HPLC coupled on-line to an ESI-QqTOF-MS operating in neg-
ative ion mode. Data were acquired using DDA and used for cross-validation of LPPtiger specificity. LPPtiger 
was found to demonstrate a high specificity of LPP identification (Supplementary File 12, Examples 1–12; 
Supplementary Table 4).

A final showcase of LPPtiger performance was performed using a DDA LC-MS dataset acquired from lipi-
domes of rat primary cardiomyocytes (CM) treated with peroxynitrite donor SIN-1 for 15, 30, 70 min and 16 h. 
Low SIN-1 concentrations (10 µmol/L) induce mild nitroxidative stress in treated cells, which is characterized 
by a low level of protein and lipid oxidation21. A significant increase in oxidized lipids and their accumulation in 
perinuclear space was demonstrated using fluorescent microscopy21. However, detailed MS-based identification 
of PL-bound LPPs had not been performed thus far. The cellular model of mild nitroxidative stress used here 
for LPPtiger validation imposes a number of challenges, including a low level of induced stress as well as the 
dynamic nature of the model (five time points over the course of the experiment). Furthermore, due to the high 
complexity of CM lipidome, large number of potential isomeric and isobaric species can be expected. Thus, com-
bination of optimized LC separation with high resolution MS detection is critical to address oxLipidome diversity 
(Supplementary Figure S6). Low abundance of endogenous LPPs requires optimized separation and sensitive 
detection strategies22–24. Coupling of reverse phase liquid chromatography to MS often provides a possibility to 
separate oxPLs from a bulk of native PLs. Furthermore, untargeted MS methods such as DDA have to be tuned for 
the detection of low abundant LPPs (e.g. using low intensity threshold to select precursor ions for the fragmenta-
tion) and structural LPP isomers (e.g. optimizing DDA dynamic exclusion parameters). One should also consider 
that lipids in general and LPPs in particular are very labile and can undergo artificial oxidation during sample 
preparation step. Thus, application of antioxidants such as butylated hydroxytoluene, EDTA and glutathione at all 
steps of sample handling are required to prevent artificial lipid oxidation25.

The previously identified native CM lipidome, characterized by 202 discrete lipid species from six PL classes18, 
was used by the LPPtiger for oxLipidome prediction. The application of an in silico oxidation algorithm resulted 
in 22,817 predicted LPPs (530 oxPA, 10,458 oxPC, 5,085 oxPE, 3,875 oxPG, 2,869 oxPS) summarized as .sdf 
libraries (available at https://bitbucket.org/SysMedOs/filesrepository). Corresponding .msp spectra libraries were 
generated for predicted LPP structures (available at https://bitbucket.org/SysMedOs/filesrepository) and used 
for LPPtiger assisted identifications. Overall, 30 lysoPL and 67 PL-bound LPPs were identified in the CM lipi-
dome, including 60 PC-, 18 PE-, 7 PG-, 7 PS-, and 5 PA-derived species, of which 30 were OCP, 36 OAP, and two 
prostane-containing LPPs (Fig. 6A, Supplementary Table 5). To the best of our knowledge, this represents the first 
dataset reporting such a high number of LPPs from five PL classes identified from untargeted lipidomics data. 
Examples of LPPs from each lipid class identified by LPPtiger in CM lipidomes together with a corresponding 
original CID tandem mass spectra are provided in Supplementary File 12 (Examples 13–20).

LysoPLs, known to be formed via oxidation-induced de-esterification of one of the FA residues, were dis-
tributed over all five detected PL classes, with the highest number identified for PC and PE lipids. OAP LPPs 
were represented by single keto (13 PC), single hydroxy (12 PC and one PS), double hydroxy or peroxy (two 
PC and one PS), and triple hydroxy or hydroxy and peroxy (six PC and one PE) derivatives. Most of the iden-
tified OAP LPPs were derived from PC lipids, whereas OCP were more evenly distributed among different PL 
classes. Most of the truncated PLs were represented by terminal carbonyls (28 out of 30) formed by a cleavage 
at positions four, five, seven, nine, ten or twelve of FA carbon chains, well corresponding to the general mech-
anisms of PUFA oxidation. Thus, five carbon-long OCPs are characteristic products of arachidonic acid oxida-
tion. LPPtiger identified four LPPs carrying five carbon-long truncated moieties, including PE(18:0/5:0 < CHO@
C5>), PE(18:0/5:0 < COOH@C5>), PS(18:0/5:0 < CHO@C5>), and PC(20:5/5:0 < CHO@C5>). Another 
prominent example are LPPs containing oxo-nonanoyl moiety formed by an oxidative cleavage of linoleic acid 
at C9 position. LPPtiger identified five oxo-nonanoyl-containing lipids corresponding to one PE and four PCs. 
PC-derived, C9-truncated LPPs were nicely LC-separated in agreement with the structure of a second fatty acyl 
present (e.g., 18:2 vs 16:0 vs 18:1 vs 18:0). Despite a high specificity of LPPtiger towards prostane-containing LPPs 
demonstrated on in vitro-oxidized standards, only two prostane LPPs, namely PA(18:1/A3-dihomo-IsoP) and 
PC(16:0/H1-phytoP), were identified in CM.

LPPtiger demonstrated a high specificity for the identification of isomers. Thus, isomeric species 
PC(18:1/18:1[1xDB, 1xKETO]) and PC(18:0/18:2[1xDB, 1xOH]) with the m/z 844.5704 (formate adduct) were 
identified at two different retention times – 19.7 and 22.2 min, respectively (Supplementary Figure S7). Similarly, 
three isobaric/isomeric PC-derived OCPs, PC(16:0/8:1[1xDB,1xOH] < CHO@C5>), PC(16:0/9:0 < CHO@
C9>), and PC(18:0/7:0 < CHO@C7>) with precursor m/z 694.39, 694.43 and 694.43 were successfully distin-
guished and assigned to the signals with characteristic retention times (9.7, 10.7 and 12.2 min, respectively).

Changes in LPPtiger-identified oxidized PLs were relatively quantified using Progenesis QI. Out of 97 identi-
fied LPPs, 52 showed significant (ANOVA p ≤ 0.05) up or down regulation within five experimental time points 
(Fig. 6B and Supplementary Table 6). Out of 52 regulated species, 18 corresponded to lysoPLs, 15 to OCP LPPs, 
and 18 OAP LPPs. The PCA analysis of relatively quantified LPPs clearly separated experimental groups (with 
more than 74% of the data explained by principal components 1 and 2), showing the differences between control 
and 16 h SIN-1-treated cells (Supplementary Figure S8). Furthermore, 15 min and 30 min experimental time 
points were found to be more similar to each other than to 70 min and control. A hierarchical clustering anal-
ysis of relatively quantified LPPs demonstrated a clearly distinct behaviour of OCP- and OAP-oxidized lipids, 
whereas lysoPL species showed more diverse behaviour (Supplementary Figure S9). Using a circos diagram gen-
erated by an in-house developed script LipidCircos (https://bitbucket.org/SysMedOs/lipidcircos), the relationship 

https://bitbucket.org/SysMedOs/lpptiger/
https://bitbucket.org/SysMedOs/lpptiger/
https://bitbucket.org/SysMedOs/filesrepository
https://bitbucket.org/SysMedOs/filesrepository
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between precursor PLs and corresponding OCP LPPs and OAP LPPs was demonstrated (Fig. 6C). Exemplified by 
PC(16:0/18:1) (dark green), PC(18:0/18:2) (dark blue), and PE (18:0/20:3) (dark red), the system demonstrated 
a significant elevation of truncated PL-LPPs by reducing OAP PL-LPPs and LysoPLs, while increasing OCP 
PL-LPPs. Moreover, the accumulation of truncated carbonylated PLs is in agreement with fluorescent microscopy 
imaging of cellular carbonyls21.

In summary, LPPtiger is an open-source software tool freely available for download (https://bitbucket.org/
SysMedOs/lpptiger), and can be easily tuned by the user based on the experiment type, instrument used, set of 
selected PL classes, and modification types. LPPtiger relies on the combination of three unique algorithms and 
allows for the prediction of sample-specific oxidized lipidome using a discrete FA composition of native PLs. This 
software also generates an LPP-specific tandem mass spectra library, which can be further used for LPP identifi-
cation based on the five scoring algorithms and thus increasing sensitivity and specificity of the results. Applied 
to large LC-MS/MS datasets powered by initial parallel processing support, LPPtiger can provide a systems wide 
view on oxPL lipidome in an high-throughput untargeted manner.

Figure 6.  Summary of LPPtiger identified and relatively quantified PL-LPPs in lipidome of SIN-1 treated 
cardiomyocytes. (A) – LPPs including lysoPL, oxidative cleavage (OCP), oxygen addition products (OAP), and 
prostanes from five PL classes identified by LPPtiger. (B) – Significantly regulated (ANOVA p ≤ 0.05) PL-LPPs. 
(C) – Circos diagram illustrating relationship between parent PL species and identified/quantified LPPs.

https://bitbucket.org/SysMedOs/lpptiger
https://bitbucket.org/SysMedOs/lpptiger


www.nature.com/scientificreports/

9Scientific REPOrtS | 7: 15138  | DOI:10.1038/s41598-017-15363-z

Methods
Chemicals.  Phospholipid standards were obtained from Avanti Polar Lipids (AL, USA): 1,2-dihepta-
decanoyl-sn-glycero-3-phosphate [PA(17:0/17:0)], 1,2-diheptadecanoyl-sn-glycero-3-phospho-
choline [PC(17:0/17:0)], 1,2-diheptadecanoyl-sn-glycero-3-phosphoethanolamine [PE(17:0/17:0)], 
1,2-diheptadecanoyl-sn-glycero-3-phospho-(1′-rac-glycerol) [PG(17:0/17:0)], 1,2-diheptadecanoyl-sn-
glycero-3-phospho-L-serine [PS(17:0/17:0)], 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (POPA), 1-palmi-
toyl-2-linoleoyl-sn-glycero-3-phosphate (PLPA), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 
1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoe-
thanolamine (POPE), 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphoethanolamine (PLPE), 1-palmitoyl-2-ara-
chidonoyl-sn-glycero-3-phosphoethanolamine (PAPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol 
(POPG), 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphoglycerol (PLPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-
phospho-L-serine (POPS), and 1-palmitoyl-2-linoleoyl-sn-glycero-3-phospho-L-serine (PLPS). Acetonitrile, 
methanol, isopropanol and formic acid were purchased from Biosolve (Valkenswaard, Netherlands). Dulbecco’s 
Modified Eagle Medium/Ham’s F-12 (DMEM/F12), phosphate buffered saline (PBS), foetal bovine serum 
(FBS), penicillin-streptomycin, L-glutamine, non-essential amino acids, sodium pyruvate, and gelatine were 
purchased from Life Technologies GmbH (Darmstadt, Germany). Horse serum, trypsin-EDTA solution, 
and butylated hydroxytoluene (BHT) were obtained from Sigma-Aldrich GmbH (Taufkirchen, Germany). 
3-Morpholinosydnonimine (SIN-1) was purchased from Enzo Life Sciences GmbH (Lörrach, Germany).

PL standards oxidation.  Lipid vesicles were prepared from five PL classes (PA: POPA and PLPA; PC: POPC 
and PLPC; PE: POPE, PLPE, and PAPE; PG: POPG and PLPG; and PS: POPS and PLPS) separately. PL stand-
ards (650 µg each; 10 mg/mL in chloroform) were diluted in chloroform (300 µL), dried under a stream of nitro-
gen and rehydrated in ammonium bicarbonate (143 µL; 3 mmol/L). Samples were sonicated for 15 min to form 
lipid vesicles. PL vesicles (125 µL; 6 mmol/L) were mixed with CuSO4 (50 µL; 0.75 mmol/L), ascorbic acid (50 µL; 
1.5 mmol/L), and water (275 µL) followed by 72 h incubation at 37 °C26,27.

Cell culture.  Primary rat cardiomyocytes (Innoprot, Elealde Derio, Spain) were cultured in gelatine-coated 
6-well-plates (CELLSTAR®, Greiner Bio-One GmbH, Frickenhausen, Germany) in DMEM/F12 medium sup-
plemented with 20% FBS, 5% horse serum, 2 mmol/L L-glutamine, 3 mmol/L sodium pyruvate, 0.1 mmol/L 
non-essential amino acids, 100 U/mL penicillin and 100 µg/mL streptomycin at 37 °C (humidified atmosphere 
of 5% CO2 and 95% air). When cells reached 80% confluence, medium was replaced by serum-free medium 
(DMEM/F12 supplemented with 100 U/mL penicillin and 100 µg/mL streptomycin), and cells were treated with 
10 µmol/L SIN-1. After 15 min, 30 min, 70 min, or 16 h, plates were placed on ice, and cells were washed with cold 
PBS containing BHT (0.01%, w/v) and scraped into 1 mL of cold methanol containing acetic acid (3%, v/v) and 
BHT (0.01%, w/v)28. Samples were spiked with internal standards [PC(17:0/17:0), PE(17:0/17:0), PS(17:0/17:0), 
PG(17:0/17:0), PA(17:0/17:0); 100 ng per sample), dried, and resuspended in 50 µL of a mixture of water, isopro-
panol, acetonitrile, and methanol (5:3:1:1, by volume).

RPLC-MS.  Acquity UPLC M-class (Waters GmbH, Eschborn, Germany) was coupled online to a Synapt G2-Si 
mass spectrometer equipped with an ESI source (Waters GmbH, Eschborn, Germany) operating in negative ion 
mode. Eluent A was a mixture of water and acetonitrile (90:10, v/v) containing formic acid (0.1%, v/v), and eluent 
B was a mixture of isopropanol, acetonitrile, and methanol (60:20:20, v/v/v) containing formic acid (0.1%, v/v). 
Lipids (1 μL in 50% B; each sample in triplicate) were loaded onto a C18-column Acquity UPLC® CSHTM C18, 
(internal diameter 1.0 mm, length 100 mm, particle diameter 1.7 μm) and eluted with linear gradients from 50 to 
90% eluent B (30 min) and to 99% B (1 min, and held for 10 min). Column temperature was set to 50 °C and the 
flow rate to 60 μL/min.

Sampling cone voltage was set to 40 V, source offset to 60 V, source temperature to 120 °C, cone gas flow to 
30 L/h, desolvation gas flow to 650 L/h, desolvation temperature to 250 °C, nebuliser gas pressure of 6 bar, and an 
ion spray voltage of -2.0 kV. Data were acquired in negative ion data-dependent (DDA) and independent (MSE) 
resolution modes. In the DDA mode, precursor ion survey scans (scan time 0.5 sec) were acquired for m/z 200 
to 1200. Minimum precursor intensity threshold for CID selection was set to 1000 counts. Tandem mass spectra 
were acquired for m/z 50 to 1200 with a ramp collision energy (LM CE start/end 10–40 and HM CE start/end 
20–60). MS/MS spectra were recorded (scan time 0.25 sec or till total ion current reached 100,000 counts) for 
the 12 most intense signals in each survey scan using a dynamic exclusion for 30 sec. For MSE low (3 V) and high 
collision energy scans (ramp from 20 to 50 V, scan time 0.6 sec) were acquired for m/z 50 to 1200. The signal of 
Leu-encephalin (554.26151−) was acquired as lock mass. DDA data were used for LPPtiger based identification 
of oxPLs. MSE data were used only for relative label free quantification.

Software assisted data analysis.  DDA datasets were converted into mzML format using the MSConvert 
module from ProteoWizard project (version 3.0.9134 64 bit)29 and processed by an in-house developed software 
LPPtiger to assist high-throughput PL-bound LPP identification. All mzML files are available at https://bitbucket.
org/SysMedOs/filesrepository/downloads/. LPPtiger was developed using Python programing language (version 
2.7) with RDkit package to operate compound structures30, pymzML package31 to process mzML files, and other 
packages, such as Numpy, Pandas, Scipy, and Matplotlib for data processing and visualisation. LPPtiger provides 
a cross platform Graphic User Interface (GUI) that can be executed on Windows and Linux platforms, the project 
repository is hosted on Bitbucket (https://bitbucket.org/SysMedOs/lpptiger).

Lipid abbreviations.  LPPs were abbreviated using an extended nomenclature of modification name spaces 
based on the discrete nomenclature of phospholipids proposed by the LIPID MAPS consortium32. The OCP 
LPPs were indicated by the corresponding terminal enclosed in angular brackets (e.g. “<” and “>”), with the 
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truncation site indicated by the carbon atom number (e.g., <COOH@C9> and <CHO@C12>, which can 
be found in Supplementary Figure S10A and B). The modification types and numbers were enclosed in a pair 
of square brackets, and the number of double bonds on the carbon chain were also marked (Supplementary 
Figure S10C).

Reconstruction of PUFA oxidation networks.  Networks summarizing oxidation of the ten most abun-
dant PUFA [linoleic (∆9,12 18:2), alpha-linolenic (∆9,12,15 18:3), eicosapentaenoic n-3 (∆5,8,11,14,17 20:5), docosa-
pentaenoic n-3 (∆7,10,13,16,19 22:5), docosahexaenoic n-3 (∆4,7,10,13,16,19 22:6), gamma-linolenic n-6 (∆6,9,12 18:3), 
dihomo-gamma-linolenic n-6 (∆8,11,14 20:3), arachidonic n-6 (∆5,8,11,14 20:4), docosatetraenoic n-6 (∆7,10,13,16 22:4), 
docosapentaenoic n-6 (∆4,7,10,13,16 22:5)] were reconstructed based on a literature meta-study (Supplementary 
Table 1) using CellDesigner 4.433. Networks include 490 (native and oxidized) LPPs and 569 reactions (enzymatic 
and non-enzymatic) are available as SBML34 files (Supplementary Files 1–10) and images at https://bitbucket.
org/SysMedOs/filesrepository. PUFA and LPPs are defined using a “simple molecules” symbol, interconnected 
with straight lines and filled arrow heads to illustrate the reactions. Enzymes catalyzing the reactions are denoted 
by circle-headed lines and illustrated using a “protein” symbol. For non-enzymatic reactions driven by reactive 
oxygen species, ROS are marked using a “simple molecule” symbol.

In silico oxidation algorithm.  PL in silico oxidation was performed by a systematic enumeration of all pos-
sible combinations of modification types and amounts based on the number of double bonds in each FA residue in 
the initial PL structure. Initial PLs, e.g., PE(16:0/20:4), were converted into SMILES (simplified molecular-input 
line-entry system)35 representations of the structure, decomposed, and reconstructed for each FA residue. For 
the selected unsaturated FA residues, SMILES segments representing double bond units together with neighbor-
ing bis-allylic positions were transformed into eight oxygen additions and four oxidative cleavage modifications 
(Supplementary Figure S1) based on the predefined SMILES in the configuration files (Supplementary Table 7). 
The combinatorics was controlled and filtered to keep only LPPs fulfilling user-defined criteria in the number and 
type of the modifications (e.g., maximum of three oxygen additions per LPP). In the current version of LPPtiger, 
all positional isomers with same number and type of modifications were merged into one entry in the structure 
library. The list of SMILES and corresponding abbreviations resulting from in silico oxidation of FA residues 
was used to reconstruct oxPL. A similar strategy was applied to prostanes and other more specific structures 
(e.g., thromboxanes and levuglandins) using predefined SMILES codes with a three-double bond. However, the 
positional isomers of prostanes were retained and abbreviated separately to maintain the possibility of specific 
identification. After in silico oxidation of all initial PLs, the generated SMILES were converted into .mol files and 
annotated with an additional 18 descriptors (Supplementary Figure S11). The annotated .mol files were exported 
as a single .sdf file, which could also be analyzed using other software, e.g, ChemAxon InstantJ36, Progenesis QI 
(version 2.1.0, Nonlinear, Newcastle, UK), and Progenesis SDF studio (version 1.0, Nonlinear, Newcastle, UK). 
Summary tables for essential descriptors were saved in .xlsx format for all LPPs and all FA residues (with and 
without in silico oxidation) for fast reviewing and for use as input files for further identification steps.

In silico fragmentation algorithm.  In silico fragmentation algorithm for predicted LPPs is based on the 
summarized knowledge of LPP MS/MS patterns. The algorithms include two major parts – the generation of in 
silico fragmentation spectra and the fingerprint m/z list. In silico fragmentation routes were formulated based on 
the data collected for in vitro-oxidized PL standards (Supplementary Table 2). Since the relative intensity of the 
fragmentation patterns are instrument-dependent, the optimization of fragmentation rules is crucial for the in sil-
ico prediction of tandem mass spectra. Product ions were predicted as structure-specific elemental compositions, 
and further annotated with a corresponding m/z value, relative intensity and ion type. In silico generated spectra 
are stored as a JSON (JavaScript Object Notation) string in the .sdf structure library, as .xlsx output, and as a .msp 
spectra file compatible with NIST MS Search and MSpeptide search tools37.

The Fingerprint m/z lists were generated by using elemental compositions of PL head groups and FA 
residue-specific fragments and neutral losses, as well as their combinations, to calculate all possible combinations 
of product ions including corresponding water losses. Calculated lists of elemental compositions were converted 
into m/z values to be stored in the .sdf structure library, and as .xlsx output.

LPPtiger scoring algorithms.  LPPtiger uses several scoring algorithms to generate the overall identifica-
tion score for each proposed LPP structure. Each of the scoring algorithms has its own specific focus and provides 
unique information. The current overall score is generated from the average of the five individual scores, includ-
ing Spectra Similarity Score, Rank Score, Fingerprint Score, Specificity Score, and Isotope Score.

Spectra Similarity Score.  As one of the most widely used classical algorithm of spectra matching38, the 
dot-product similarity scoring algorithm was incorporated into LPPtiger as a robust scoring method for spectra 
search-based identification strategies. A weight factor W is calculated (Equation 1) to represent each m/z and 
intensity pair, and further used for dot-product similarity scoring (Equation 2).

=W peak intensity m z[ ] [ / ] (1)m n

= × ∑
∑ ∑

Spectra Similarity Score W W
W W

100 ( )
(2)

lib obs

lib obs

2

2 2

The default values of m and n are set to 0.6 and 3, respectively, according to Stein et al.38. These values can be 
changed based on the instrument used, e.g., m = 0.5 and n = 139, m = 0.5 and n = 240, or any other combinations.
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Introduced by the NIST MS Search program37, the reverse dot-product algorithm modified the original algo-
rithm published by Stein et al.38 in such a way that only signals matched to the user spectra are considered. In the 
reverse dot similarity algorithm, the match score is not penalized by unmatched or impurity signals. Of note is 
that LPPtiger generates a spectra similarity score using only the reverse dot-product algorithm.

Rank Score.  The Rank Score is a bottom-up strategy scoring system upgraded from LipidHunter software18 
in which discrete LPP species are identified by comparing each signal of an MS/MS peak list with a predefined list 
of possible FA and PL head group-specific fragment and neutral loss signals, generated from the in silico oxidation 
step, and can be customized based on the .xlsx template. A list of all possible LPP sn-1 and sn-2 residues generated 
by an in silico oxidation algorithm, together with a list of all PL head group-specific signals, are used as a white 
list of FA and PL class specific signals. The observed tandem mass spectra (peak lists) are then compared against 
the white list. The top ten most intense matched signals corresponding to FA fragment or FA neutral loss ions are 
ranked by intensities and subsequently indexed (RankIndex). The Rank factor Rfrag is calculated for each matched 
signal using Equation 3.

=
− −

×R RankIndex(10 ( 1))
10

100% (3)frag

The Rank Score is calculated (Equation 4) as the sum of identification-supporting Rank factors multiplied by 
the instrument-dependent, user definable Weight factor Wfrag (Supplementary Table 7).

∑= ×Rank Score W R (4)frag frag

Fingerprint Score.  As described in the in silico fragmentation algorithm section, all LPPs upon CID have 
specific neutral losses and product ions. Thus far, in silico spectra generated by a fragmentation algorithm only 
considers the main fragments, since some fragments and neutral losses might not have consistent relative inten-
sities, or present as a low intensity signals. However, these low intensity signals – especially the combination of 
several water losses and head group- specific losses – can significantly support the identification of certain modi-
fications. A fingerprint scoring algorithm predicts all possible combinations of modified FA acyl residues, as well 
as PL head group-specific fragments and neutral loss ions (e.g., water losses, prostane rings specific fragments) as 
a list of predicted m/z values. Any match between m/z value in fingerprint list with a signal in observed MS/MS 
spectrum will be marked as 1, while fingerprint m/z value with no match in observed MS/MS spectrum will be 
marked as 0. The reverse dot-product of the observed fingerprint list (a list of 0 and 1) versus the entire fingerprint 
list (a list of 1) will be calculated using cosine similarity algorithm (Equation 5).

= ×
⋅Finger print Score F F

F F
100

(5)
obs lib

obs lib2 2

Application of the Fingerprint Score allows structural isomers to be distinguished which are differed by one 
double bond in combination of hydroxy versus keto functional groups.

Specificity Score.  A list of signals supporting certain LPP identifications and identified by the Rank Score, 
Spectra Similarity Score, and Fingerprint Score is generated and compared with the list of LPP-unspecific sig-
nals provided by the Rank Score algorithm (e.g., signals matched to other FA or head group combinations). The 
Specificity Score indicates the confidence of particular LPP assignments in comparison to all other possibilities 
supported by unspecific signals. Considering that a dynamic range of summed signal intensities can be distrib-
uted across several orders of magnitudes, the signal to noise ratio function by decibels definition19 was used to 
calculate the Specificity Score (Equation 6).

= × ×




∑

∑






Specificity Score F intensity of signals support identified structure
intensity of signals support other structures

20 log
(6)

amplify 10

The amplification factor Famplify was introduced as a user definable factor to amplify the score of certain inten-
sity ratios to 100. By default, this value is set to 10.4795, resulting in a Specificity Score of 100 when the ratio of 
structure-specific and unspecific signals is equal to 3. All Specificity Scores above 100 or below 0 are set to 100 and 
0, respectively. In case no structure-unspecific signal is identified, the Specificity Score is set to 100.

Isotope Score.  The Isotope Score is calculated using the previously reported algorithms20. The LPPtiger 
Isotope Score algorithm consists of two primary steps: the prediction of the isotope distribution by means of 
binomial and McLaurin expansion (Equation 7) and similarity score of the relative intensity distribution by cal-
culating the similarity between experimental and theoretical isotope distributions.

For instance, the following [M + HCOO]− adduct of PC(18:0/18:1[1xDB,1xKETO]) with an elemental com-
position of C45H85NO11P− is as follows (phosphorus as a monoisotopic element is not considered in the equation).
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Afterwards, the Isotope Score is generated using Equation 8 based on the observed intensities of signals from 
[M+0] to [M+i], while IM and IM+i refer to their signal intensities, respectively.

∑= × − − = ≤ ≤. .
+Isotope Score r r with r

I
I

i100 (1 ) , 1 2
(8)obs i lib i i

M i

M

LPPtiger Score.  When it is possible to calculate and overcome defined thresholds for all five scores provided 
above, the overall LPPtiger Score is assigned to the proposed LPP identification by averaging all five individual 
scores (Equation 9):

=
+ + + +LPPtiger Score Rank S Spec Sim S FpS Specif S Isotope S( )

5 (9)

The LPPtiger Score is used as the main representative value of the identification quality and reported in the 
HTML reports and six-panel assigned spectra images, while the individual scores can be accessed in the final 
results summary table.

Parallel and batch processing mode.  The identification of LPPs from in silico-predicted libraries with 
five-criteria LPPtiger scores from large LC-MS/MS datasets demands a large source of computing power and 
could be a time consuming process. Thus, a native three-level parallel processing workflow was integrated into 
LPPtiger to accelerate the identification process (Supplementary Figure S4). The basic level of parallel processing 
(Lv1) is to run multiple files in parallel, which allows for a full CPU load, yet results in inefficient RAM usage.

The core level of parallel processing (Lv 2) distributes a task into multiple sub-processes within three phases of 
the identification process (Lv2.1 - precursor match, Lv2.2 - XIC extraction, and Lv 2.3- MS/MS assignment and 
scoring). Level 2 parallel processing is extremely intensive for both CPU and RAM load, but provides the most 
significant acceleration of the entire process.

Level 3 (Lv3) parallel processing utilizes vectorized functions to accelerate the calculation of precursor selec-
tion windows, mass tolerance, and mass accuracies. Moreover, the vectorized functions can take advantage of 
multicore CPUs. Optimization of GPU-based parallel processing is currently under development.

Using a three-level parallel processing workflow gradually reduces the processing time from over four hours 
(single thread algorithm) to less than one hour (four CPU cores and 8 GB RAM configuration). Since a perfor-
mance check using up to 16 CPU cores did not exhibit any significant improvement in processing time over five 
CPU cores on a single file (Supplementary Figure S12), we recommend to run multiple files in parallel, with each 
file assigned to five CPU cores and 10 GB of RAM as an optimal configuration.

LPPtiger provides an integrated batch mode to process multiple files in parallel or as a sequence. Using batch 
mode and parallel processing of 15 LC-MS/MS datasets (3.5 GB), the identification time was significantly reduced 
from over one month to less than five days for LPP identification from five PL classes.

Relative label free quantification.  Datasets acquired in MSE mode were imported into Progenesis QI 
(version 2.1.0, Nonlinear, Newcastle, UK). PLs identified by LipidHunter from DDA data were matched to the 
corresponding features (m/z values and retention time) in aligned MSE datasets. Spiked internal standards were 
used for normalization.

PLs detected with significantly different intensities (ANOVA p value ≤ 0.05) were exported and further ana-
lyzed by EZinfo (version 1.0, MKS Instruments, Crewe, UK) and Genesis (version 1.7.7)41. A circos diagram42 was 
generated by customized python scripts named LipidCircos based on Circos package (version 1.3.5)43, and the 
scripts are freely available at https://bitbucket.org/SysMedOs/lipidcircos.

Data availability.  LPPtiger source code is freely available at https://bitbucket.org/SysMedOs/lpptiger. Fatty 
acid oxidation networks are available as SBML files and images at https://bitbucket.org/SysMedOs/filesrepository. 
LipidCircos source code is freely available at https://bitbucket.org/SysMedOs/lipidcircos. The datasets generated 
during and/or analysed during the current study are available at https://bitbucket.org/SysMedOs/filesrepository/
downloads/.
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