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Specific and intrinsic sequence 
patterns extracted by deep learning 
from intra-protein binding and non-
binding peptide fragments
Yuhong Wang1, Junzhou Huang2, Wei Li3, Sheng Wang2 & Chuanfan Ding1

The key finding in the DNA double helix model is the specific pairing or binding between nucleotides 
A-T and C-G, and the pairing rules are the molecule basis of genetic code. Unfortunately, no such rules 
have been discovered for proteins. Here we show that intrinsic sequence patterns between intra-protein 
binding peptide fragments exist, they can be extracted using a deep learning algorithm, and they bear 
an interesting semblance to the DNA double helix model. The intra-protein binding peptide fragments 
have specific and intrinsic sequence patterns, distinct from non-binding peptide fragments, and multi-
millions of binding and non-binding peptide fragments from currently available protein X-ray structures 
are classified with an accuracy of up to 93%. The specific binding between short peptide fragments may 
provide an important driving force for protein folding and protein-protein interaction, two open and 
fundamental problems in molecular biology, and it may have significant potential in design, discovery, 
and development of peptide, protein, and antibody drugs.

Protein folding and protein-protein interaction are two fundamental, long-standing problems in molecular biol-
ogy, and their importance can hardly be overestimated. The protein folding problem is to predict three dimension 
structure (3D) of a protein from its amino acid sequence (1D)1. The protein-protein interaction (PPI) is to predict 
specific binding/interaction between two or more proteins2. Life depends upon its components, these compo-
nents’ functioning, and information flow between them. Protein is one fundamental component of life, and its 
function depends upon 3D structure. PPI is the molecule basis of information flow.

Experimental approaches for determination of protein structure and PPI have advanced at an ever-faster 
rate2,3, but they remain expensive, time-consuming, and insufficient. For example, it is difficult to detect weak, but 
biological important interactions between proteins. While computational approaches are fast and inexpensive, 
their current roles remain supplementary. It remains a highly challenging task to predict protein structures and 
PPI de novo2,3 despite the huge advances in computing power.

For protein folding process, three main models have been proposed4. The first assumes a bottom up, sequen-
tial, and stepwise formation process5. Secondary structure elements are formed first, followed by their diffusion, 
collision and coalescence to form tertiary structure. The second is similar to the first, but it assumes nucleation6 
first, followed by propagation of structures. The third, more modern one, assumes that the initial steps involve 
hydrophobic collapse7–10, followed by formation of secondary structure elements and correct packing inside a 
relatively compact volume.

Theoretically protein folding and PPI are mainly driven by non-covalent, weak interactions11,12. van der Waals 
interactions, the most common one, are short range forces and occur when atoms come close to each other. 
Hydrophobic interactions and hydrogen bonds both make large contributions to protein stability. The burial of 
nonpolar side chains removes them from water, enhances van der Waals interaction, and leads to tight packing in 
the protein interior. The hydrogen bonds take place between a proton donor and a proton acceptor. Electrostatic 
interactions, unlike van der Waals forces and hydrogen bonds, are long range ones; they remain relevant beyond 
the limits of the closest neighbors.
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The limited applications of computational approaches in prediction of protein structure and PPI suggest a 
need for novel ideas, in particular for force fields. This study is one such effort, and it started from our earlier 
interests in binding or spatially close peptide fragments in globular proteins13. Computational approaches for 
protein folding and PPI problem starts from the assumption that a protein’s native conformation corresponds 
to its global free energy minimum1 and binding peptide fragments are brought together after 3D structures are 
formed. However, we did observe interesting patterns between intra-protein binding peptide fragments. Thus, 
we proposed an alternative mechanism: binding peptide fragments are formed first and drive the formation of 
protein 3D structure and PPI. Unfortunately, available protein structure data in early 1990s was not sufficient for 
further exploration.

Results
In this study, we examined this alternative hypothesis, and our main thinking is that if this hypothesis is true, 
binding peptide fragments must have specific and intrinsic sequence pattern that are distinct from non-binding 
ones. If sufficient number of samples is collected, binary classification algorithm in machine learning can be 
applied to identify such intrinsic patterns and distinguish binding from non-binding samples.

We used Deep Learning14 methods for this classification. Comparing with traditional machine learning 
method, Deep Learning methods allow deep neural networks discovering complex relationship between input 
variables and output observations and are more efficient for problems of large sample size. The deep neural net-
work we used contains an input layer, four hidden layers, and an output layer (Fig. 1). In this study, the input 
variables are the amino acid sequences of peptide fragments, and the output is a binary classification: binding or 
non-binding. Each layer consists of a number of neurons or nodes. A typical machine learning process consists 
of two steps: training and testing. Training is performed on training data set. In this step, the connection weights 
between neurons are iteratively adjusted so the generated output values are as close to the expected ones as pos-
sible. In the testing step, the trained model is applied to test data set, which is distinct from the training data set, 
and collect a number of benchmarks. One common benchmark is the accuracy or the percentage of the samples 
in test data set that have been correctly predicted.

We focused upon specific interactions between two and three short peptide fragments, named as peptide triad 
(PT) and duo (PD), respectively, after common music terms. A binding peptide triad (BPT) and duo (BPD) and 
a non-binding peptide triad (NBPT) and duo (NBPD) are defined as PT and PD having all pair-wise minimum 
distances between center residues <5.0 Å and >30 Å, respectively. For fragments having even number of residues, 
the minimum distance between two fragments is calculated as the average of minimum distances between two 
center residues. The minimum distance between two residues is defined as the minimum distance between all 
non-hydrogen atoms of the two residues. Binding and non-binding peptides are solely defined using distance 
cutoff.

From 12,946 X-ray protein structures15, we extracted 1.2–3.5 millions of BPTs, 1.4–4.5 millions of NBPTs, 
and 0.4–0.9 millions of BPD and NBPDs (Table 1). We designed a neural network (Fig. 1) and performed super-
vised deep learning classification algorithm on the combined 2.6–8.0 and 0.8–1.9 million of PT and PD samples, 
respectively. The input is the amino acid sequences of peptide triads or duos. Each hidden layer consists of 256 
nodes. The output layer has two nodes for binding or non-binding.

The combined samples are randomly split into three data sets: 80% for training, 10% for validation, and 10% 
for test. The neural network was trained by minimizing the “cross-entropy” loss function using the ADAM opti-
mizer16, a mini-batch size of 128, and other optimized parameters (Table 2). The training process was monitored 
by checking accuracy of the validation data set, and terminated when no further improvement was observed. The 
trained models were applied to the test data set for benchmarking in terms of accuracy, area under the ROC curve 
(AUC-ROC), F-Score, precision and recall. For purpose of negative control, the labels (binding or non-binding) 
of samples were randomized, and the same training procedure and benchmarking were performed.

For PTs of 7 residues, the loss function of training data set dropped fast in the first 10 iterations, followed 
by noticeably slower decrease (Fig. 2). The prediction accuracy on validation data set increased fast in the first 
10 iterations, followed by remarkably slower improvement (Fig. 3). For PTs of 7 residues of randomized labels, 
the loss function decreased fast in the first a few iterations and then stayed constant; the accuracy stayed at 0.5 
throughout the training process. PTs of 2, 3, 4, 5, and 9 residues and PDs of 3, 5, 7, and 9 residues had very similar 
profiles.

Figure 1.  Illustration of the forward deep learning model for classification of binding and non-binding peptide 
fragments.
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The trained models were applied into test data sets and the performance benchmarks are listed in Table 1. For 
PTs of 2–9 residues, the accuracy increases from 0.74, 0.79, 0.84, 0.912, to 0.931 and then comes down to 0.923. 
PTs of 7 residues have the best accuracy of 0.931 and AUC-ROC of 0.979 (Fig. 4), and this finding seems to be 
consistent with recent screening results17. PDs of 3–9 residues have the accuracy of 0.620, 0.841, 0.836, and 0.770. 

Peptide fragments No of BPFS1 No of NBPFS2 Final loss Accuracy AUC-ROC F-Score Precision Recall

Peptide Triads

3 × 2 3,506,094 4,573,534 26,417 0.739 0.807 0.675 0.735 0.624

3 × 3 3,202,563 3,727,467 19,058 0.793 0.871 0.768 0.797 0.742

3 × 4 2,454,016 2,821,820 11,256 0.849 0.924 0.834 0.852 0.817

3 × 5 1,943,073 2,346,432 5,491 0.915 0.969 0.906 0.911 0.902

3 × 7 1,561,153 1,744,130 3,450 0.931 0.979 0.927 0.938 0.917

3 × 9 1,276,502 1,398,539 2,815 0.923 0.975 0.919 0.915 0.923

Peptide Duos

2 × 3 938,992 972,945 7,463 0.620 0.668 0.577 0.639 0.526

2 × 5 692,955 658,592 2,689 0.841 0.911 0.841 0.861 0.822

2 × 7 526,614 506,836 1,572 0.836 0.905 0.835 0.856 0.816

2 × 9 419,945 420,781 1,238 0.770 0.845 0.758 0.800 0.721

Table 1.  Classification results of binding and non-binding peptide fragments on test data sets in terms of 
accuracy, area under the ROC curve (AUC-ROC), F-Score, precision, and recall. Loss function is optimized 
using the ADAM optimizer and a mini-batch size is 128. Other optimized parameters are given in Table 2. 
1Number of binding peptide fragments samples, and 2number of non-binding fragments samples.

Peptide fragments
Regularization 
coefficient

Starting learning 
rate

3 × 2 0.0000010 0.0006

3 × 3 0.0000010 0.0006

3 × 4 0.0000010 0.0006

3 × 5 0.0000010 0.0006

3 × 7 0.0000025 0.0006

3 × 9 0.0000025 0.0008

2 × 3 0.0000010 0.0008

2 × 5 0.0000010 0.0008

2 × 7 0.0000010 0.0008

2 × 9 0.0000010 0.0008

Table 2.  The regularization coefficient and starting learning rate for the neural network training; both were 
optimized after a grid search.

Figure 2.  Model loss on training data sets for peptide triads of 7 residues with correct and randomized labels. 
Sample size of the training data set is 2,644,109.

http://2
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PDs of 5 residues have best accuracy of 0.841 and AUC-ROC of 0.911. No meaningful models could be learned 
from PTs and PDs of randomized labels (Table 3), and the AUC-ROC have perfectly random values of 0.5.

Discussion
The up to 93% of accuracy (Table 1) and AUC-ROC of 0.979 (Fig. 4) from multi-millions of PT and PD samples 
shows that intra-protein binding peptide fragments do have specific and intrinsic sequence patterns, which are 
distinct from the non-binding ones. The learned patterns, encoded in the neural network model, are unlikely 
computational artifacts. First, no models could be learned from negative control or PTs and PDs of randomized 
labels. Second, substantial changes in the neural network structure, including number of hidden layers and nodes, 
and training parameters do not significantly affect the classification performance.

The difference in amino acid composition between BPTs/BPDs and NBPTs/NBPDs is overall insignificant 
(Fig. 5, pvalue = 1.0). However, hydrophobic residues (I, L, F) seem to be more prevalent in the binding peptide 
fragments and charged ones (D, E, K) in the non-binding ones (Fig. 5), and one may ask whether the binding is 
driven by hydrophobic interactions and non-specific. To answer this question, we generated 1,561,153 randomly 
swapped PTs from 1,561,153 binding PTs of 7 residues long (see Method section for description of the procedure). 
The binding PTs and the randomly swapped PTs have exactly the same composition of peptide fragments, and 
the difference is only in the combination. Again, 80% of the combined 3,122,306 samples were used as training 
set, 10% as validation set, and 10% as testing set. We performed classification of the binding PTs and the ran-
domly swapped PTs using long short-term memory18 (LSTM) model of recurrent neural network19 (RNN). RNN 

Figure 3.  Model accuracy on validation data sets for peptide triads of 7 residues with correct and randomized 
labels. Sample size of the validation data set is 330,869.

Figure 4.  ROC curves for binding peptide triads of 7 residues. Total sample size of test data is 330,305. The 
AUC-ROC are 0.979 and 0.500 for test data of correct and randomized labels, respectively.
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has demonstrated excellent performance in identify patterns in sequence data such as natural language. For the 
training, we used 1024 hidden variables, a regularization coefficient of 0.0001, and a learning rate of 0.001, and a 
mini batch size of 128. We also used the cross entropy as the cost function. The training stopped after 50 iterations 
when the cost started to rise.

The prediction accuracy on the test data set is 85%, the AUC-ROC is 0.92, the precision is 0.81, and the recall 
is 0.90. The excellent prediction accuracy provides convincing evidence that the binding between peptide frag-
ments in BPTs is specific and it mainly depends upon correct combination of peptide fragments. Non-specific 
hydrophobic interactions cannot be fully ruled out, but its role is secondary.

PTs of 7 residues have the best accuracy of 0.931 and AUC-ROC of 0.979. Computationally, if peptide frag-
ments are too short, the neural network model may not have sufficient capacity for the sequence patterns. This 
is likely true for PTs of 3 residues. On the other side, if the peptide fragments are too long, there may not be 
sufficient number of samples for training. In this study, 7 seems to be a well-balanced choice. Biochemically, to 
achieve a binding of sufficient strength that withstand thermal noise, peptide fragments also need to be of suffi-
cient length.

PTs have a significantly better performance than PDs. The best accuracy for PDs is 0.841, lower than the best one 
for PTs (0.931). This difference is unlikely due to size of the input layer of the neural network. We achieved accu-
racy of 0.80 with 6.9 millions of PTs of three residues and the input layer size of 180 (3 × 3 × 20). In contrast, for 0.8 
million samples of PDs of 9 residues with the input layer size of 360 (2 × 9 × 20), the accuracy is 0.770. As discussed 
above, RNN model with 1024 hidden variables is capable of differentiating over 1.5 millions of binding PTs from 
the randomly swapped ones. However, the same model is incapable of classifying binding PDs from the randomly 
swapped ones. One explanation is that the RNN model is not powerful enough; however, this does not seem likely 
as intuitively PTs are more complex than PDs. We speculate that binding PTs might be a new natural phenomenon; 
furthermore, three peptide fragments could geometrically form more compact and stable structure.

Peptide Fragments No of BFSs1 No of NBFSs2 Final loss Accuracy AUC-ROC F-Score Precision Recall

Peptide Triads

3 × 2 3,506,094 4,573,534 34,992 0.501 0.502 0.6683 0.501 1.000

3 × 3 3,202,563 3,727,467 30,027 0.499 0.499 0.666 0.499 1.000

3 × 4 2,454,016 2,821,820 22,864 0.500 0.499 0.0004 0.000 0.000

3 × 5 1,943,073 2,346,432 18,585 0.502 0.500 0.668 0.502 1.000

3 × 7 1,561,153 1,744,130 14,319 0.500 0.500 0.667 0.500 1.000

3 × 9 1,276,502 1,398,539 11,586 0.500 0.500 0.666 0.500 1.000

Peptide Duos

2 × 3 938,992 972,945 8,284 0.501 0.500 0.000 0.000 0.000

2 × 5 692,955 658,592 5,857 0.498 0.500 0.665 0.498 1.000

2 × 7 526,614 506,836 3,625 0.503 0.504 0.523 0.503 0.544

2 × 9 419,945 420,781 2,519 0.501 0.500 0.505 0.500 0.510

Table 3.  Classification results of binding and non-binding peptide fragments with randomized labels on test 
data sets in terms of accuracy, area under the ROC curve (AUC-ROC), F-Score, precision, and recall. Loss 
function is optimized using the ADAM optimizer and a mini-batch size of 128. 1Number of binding peptide 
fragments samples, and 2number of non-binding fragments samples. Calculated probability in the binding 
output node for all test data set with randomized labels is constant and slightly above 0.53 or below 0.54.

Figure 5.  Amino acid composition of binding and non-binding peptide triads of 7 residues. A student t test 
gives a pvalue of 1.0.
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In this study, all BPTs and BPDs from known protein X-ray structures are predicted with accuracies of up to 
93% and 84%, respectively, and they are apparently helpful in predicting topology and large-scale structure of 
proteins from amino acid sequence20. BPTs plus BPDs are likely important force in forming large scale structures 
of proteins, and they may provide another explanation to the Levinthal’s paradox21. For a protein of 150 residues, 
assuming a minimum amino acid separation of 10 between two binding fragments, we have roughly 15 chunks. 
The possible combinations of choosing 3 out of 15 is 455. Thus, a protein, itself a computing machine, may not 
need to search through astronomical number of possible conformations to find global free energy minimum.

Our finding suggests a hybrid model for protein folding: folding starts with a hydrophobic collapse, followed 
by formation of BPTs, equivalent of nucleation, and finally acquisition of correct packing interactions. The mech-
anism of coupled folding and binding22 is to some degree relevant to this hybrid hypothesis. Many eukaryotic 
proteins are disordered under physiological conditions, and fold to ordered structures only on binding to external 
cellular targets23. In the hybrid model, we proposed intra-protein, specific binding between peptide fragments 
in BPTs as a key step in protein folding process. The mechanism of coupled folding and binding suggests that 
inter-protein, specific binding may play a similar role.

This research is apparently at a very early stage, but the results, after further improvements and testing, 
could be applicable for protein structure computation. Given a new protein with known amino acid sequences, 
binding points could be predicted using the trained neural network models to form a scaffold for the protein. 
Protein-protein interactions are more complex. But for those involving interactions between consecutive pep-
tides, the deep learning method may be applicable if sufficient number of samples is available and the rules gov-
erning inter-protein peptide binding are comparable to those governing intra-protein peptide binding.

It would be very nice if meaningful, and human understandable sequence patterns could be extracted from 
the trained neural network models. Unfortunately, the model used in this study consists of four hidden layers and 
each layer consists of 256 neurons; at present, no effective methods are available for this task. In order to extract 
patterns that are comparable to well-known ones, we trained a linear model, without any hidden layers, over the 
training data set for PT. In this model, the binding is considered as the result of linear combination of all input 
variables or amino acids in the peptide fragments, and the trained weights would represent contribution of each 
amino acid at a given position. The training process converged very quickly in one iteration, which consists of 
roughly 20,000 minimizations for PTs of 7 residues, and the trained linear model achieved an accuracy and ROC 
of 0.668 and 0.674, respectively. This linear model is weak, and the heat maps (Fig. 6) for both the binding and 
non-binding connection weights do not show any obvious patterns. Hydrophobic and charged amino acids do 
not have significantly enhanced connection weights for binding and non-binding, respectively. This suggests that 
the relationship between binding and non-binding peptide fragments is mainly nonlinear (in other words, the 
binding is not proportional to the sum of individual contributions from residues) and unlikely as simple as A-T 
and C-G in DNA double helix model.

Machine learning algorithms have been applied into prediction of protein contact map with various degree of 
success24. These efforts are based upon the assumption that two residues of a protein are brought together and in 
contact after the protein’s 3D structure is formed; thus, they use entire protein sequences in the machine learning 
algorithm. This study is based upon the hypothesis that specific binding between short peptides are the driving 
force. The excellent performance of the trained neural network supports this hypothesis, and apparently it also 
benefits from the much larger data sets for training and testing. Many efforts have been made to explore the rela-
tionship between point mutation and protein stability25–28. The neural network model we proposed in this study is 
very different from these efforts. On the one hand, the neural network model is capable of capturing complex and 
non-linear relationships between input peptide fragments and their binding. Similar neural network model could 
become a powerful tool in studying other complex relationships such as the one between multiple gene mutation 
and cancer. On the other hand, the resultant model is difficult to decipher. New algorithms and user interfaces are 
apparently needed to extract human understandable patterns in the trained deep neural network.

Methods
Protein structure data.  We used 12,946 protein X-ray structures from Protein Data Bank (PDB)15 to 
extract intra-protein peptide fragments, either binding or non-binding. These proteins are from the precompiled 
culled PDB list29, and the goal of the list is to create a non-redundant coverage for all available protein structures. 
Proteins in this list have an amino acid percent identify <50%, a resolution better than 2.0 A, and a R-factor 
smaller than 2.5.

Extraction of peptide triads and peptide duos.  An intra-protein BPT is defined as three peptide frag-
ments of a protein having all three pair-wise minimum distances between center residues smaller than 5.0 Å 
(Figs S1 and S2). For fragments having even number of residues, the minimum distance between two fragments 
is calculated as the average of minimum distances between two center residues. The minimum distance between 
two residues is defined as the minimum distance between all non-hydrogen atoms of the two residues. A NBPT is 
defined as three peptide fragments having all three pair-wise distances between center residues greater than 30 Å. 
Choosing 30 Å is to produce a balanced training data set, and smaller cutoffs do not affect the training results. To 
avoid redundancy, if the positions on the amino acid sequences of all three fragments of two PTs, either binding 
or non-binding, are less than 9 residues away from each other, these two PTs are considered as the same, and only 
one PT is used. Duplicated PTs (about 5–10%) were eliminated, and the numbers of unique BPTs and NBPTs of 
2–9 residues, extracted from 12,946 protein database entries, are given in Table 1.

An intra-protein BPD is similarly defined as BPT, and the difference is in the number of fragments (three vs 
two) (Figs S1 and S2). One BPT essentially consists of three BPDs. To learn the model for two peptide fragments 
only, BPDs from BPTs are excluded in the training and test of PDs. We also performed training and testing with 
BPDs including BPTs, and observed no significant differences.

http://S1
http://S2
http://S1
http://S2
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To perform the deep neural network training, each amino acid is encoded by 20 bit vector or 20 neurons. For 
PT of seven residues, for example, the total size of the input vector or number of neurons in the input layer is 
3 × 7 × 20 = 480. Among the 480 bits or neurons, only 21 (3 × 7) have 1 s, and all rest 0 s.

Deep learning.  Deep Learning14 methods, as representation learning methods, allow deep neural networks 
discovering the representations from raw data for specific tasks such as classification and detection. Supervised 
learning is the most common form of machine learning which deep learning improves the state-of-the-art of 
most supervised learning problems. With the help of the ground truth or label of data set, deep learning can learn 
better representation to predict such ground truth. A loss function captures the distance between the current out-
put of the neural network and the ground truth, then the network propagates the error backwards to adjust all the 
parameters (weights) in the neural network. In this way, the loss or distance can be significantly reduced after the 
training process. The binding and non-binding peptide fragments classification is supervised learning with the 
ground truth as if the peptide fragments are binding or non-binding. Thus, we use deep learning to learn better 
features and get better classification performance.

We designed a fully connected feedforward neural network of one input layer, four hidden layers, and one 
output layer for binding and non-binding classification (Fig. 1). For PTs of 2, 3, 4, 5, 7, and 9 residues, the input 
layer consists of 120, 180, 240, 300, 480, and 540 nodes, respectively. Each hidden layer consists of 256 nodes or 
neurons. In each hidden layer, the fully-connected layer is followed by the activation function of Rectified Linear 
Units (ReLU)30 which can introduce nonlinearity into the presentation learning. After the hidden layers, Softmax 
layer is used as the classification layer (or the output layer of two nodes for binding or non-binding). Significant 
changes in the neural network, including number of hidden layers and nodes, will not significantly affect the 
classification performance, and 4 hidden layers of 256 nodes tend to produce good results. Backpropagation is 
used for training the network31.

The input to the jth node of a hidden layer is calculated according to following equation, where wi,j is the 
weight connecting ith node of previous layer and θj is the bias.

Figure 6.  Connection weight from linear model assuming binding as linear sum of contributions from all 
amino acids. For peptide triad of seven amino acids, there are a total of 21 amino acids (3 × 7) and 420 nodes 
(3 × 7 × 20) in the input layer. Each amino acid is represented by 20 binary nodes. For example, alanine 
is represented by 10000000000000000000, and tyrosine by 00000000000000000001. Each node has two 
connections to the binding node and the non-binding nodes in the output layer, respectively. For an amino acid, 
the connection weight shown here is the sum over the 20 nodes connecting to the binding and the non-binding 
nodes; it roughly represents the contribution of the amino acid to the binding and non-binding of peptide 
triads. A positive value means favoring binding, and a negative value means opposing binding.
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All hidden layers use the Rectified Linear Unit as the activation function, and output layer uses Softmax func-
tion as the activation function.

We used “cross-entropy” with L2 regularization as the loss function according to the following equation:

∑∑ ∑λ θ= ′ + +H y y wlog( ) ( )
(2)i j

j j
i

i i
2 2

where i denotes i th training sample, j j th class, y is the predicted probability distribution, y′ is the true distribu-
tion (the one-hot representation of the label), and λ is the coefficient for L2 regularization.

Optimization of the loss function is carried out by mini-batch of a size 128 and the ADAM optimizer16, which 
is implemented as tf.train. AdamOptimizer in the Tensorflow library (www.tensorflow.org). The regularization 
coefficient and starting learning rate were optimized after a grid search (Table 2).

The neural network training and prediction were performed on CyberpowerPC SLC2400C desktop with Intel 
core i7 and 8GB Nvidia GeForce GTX 1080 graphic processing unit, installed with Ubutun distribution of 16.10, 
python 3.4, CUDA driver version 8.0, cuDANN version 5.1, and Tensorflow 0.11rc. The python program was 
written to implement the neural network model (Fig. 1) and optimize the loss function.

BPTs/BPDs and NBPTs/NBPDs were randomly split into three data sets: 80% for training, 10% for validation, 
and 10% for test (Table 1). The training process was constantly monitored by checking the accuracy of the valida-
tion data set, and it was terminated in about 3000 iterations and about 20 hours when either no further improve-
ment was observed or the improvement was deemed too slow to be meaningful. The trained models were applied 
to the test data set for benchmarking.

For negative control, the label of each PT and PD was randomly assigned as binding (1) or non-binding (0), 
and the same training procedure and benchmarking were performed.

Training process.  The loss of training data set for peptide triads of 7 residues is plotted versus iterations in 
Fig. 2. The plots for other training data sets are very similar. For peptide triads of 7 residues, after a dramatic drop 
in the first 10 iterations, the loss keeps decreasing, but at a significantly reduced speed. This observation is typical 
of neural network training process, and it also indicates that the hyper parameters have been well optimized. 
We stopped the training process after about 3000 iterations. It is interesting to see a relatively quick reduction in 
loss function between iteration 128 and 256. For peptide triads with random labels, no noticeable reduction is 
observed after first 10 iterations.

The prediction accuracy of validation data set shows similar profiles (Fig. 3). For peptide triads of 7 residues, 
the accuracy has a fast increase in the first 10 iterations. Afterward, it keeps increasing, but at a much reduced 
speed. Corresponding to fast decrease in loss function between iteration 128 and 256, we also see a relatively 
quick increase in accuracy. For peptide triads of randomized labels, the accuracy stays at 0.5 throughout the 
training process.

Random swapping of peptide triads.  To illustrate the process, let us assume three peptide triads 
A1-B1-C1, A2-B2-C2, and A3-B3-C3 and list them in a tabular form:

A1 B1 C1
A2 B2 C2
A3 B3 C3
�We randomly shuffle each column three times, the number of rows. The above three peptide triads could 
become:

A3 B1 C2
A1 B3 C1
A2 B2 C3
�and then take each row to generate the randomly swapped peptide triads of A3-B1-C2, A1-B3-C1, and 
A2-B2-C3.

Amino acid composition.  We also compared amino acid composition difference between binding and 
non-binding peptide triads and observed no difference (pvalue = 1.0, Fig. 5).
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