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Remote-controlled aerial drones (or unmanned aerial vehicles; UAVs) are employed for surveillance
by the military and police, which suggests that drone-captured footage might provide sufficient
information for person identification. This study demonstrates that person identification from drone-
. captured images is poor when targets are unfamiliar (Experiment 1), when targets are familiar and
. the number of possible identities is restricted by context (Experiment 2), and when moving footage
. isemployed (Experiment 3). Person information such as sex, race and age is also difficult to access
. from drone-captured footage (Experiment 4). These findings suggest that such footage provides a
particularly poor medium for person identification. This is likely to reflect the sub-optimal quality of
such footage, which is subject to factors such as the height and velocity at which drones fly, viewing
distance, unfavourable vantage points, and ambient conditions.

Unmanned aerial vehicles (UAVs), commonly referred to as drones, are increasingly utilised by police and the

military. In the UK, for example, a key application of drones by police organisations is to assist in searches for

missing persons’, as well as crowd control®. In addition, drones are routinely used by the military in operations
. such as reconnaissance, target acquisition, and to carry out lethal strikes®*. These deployment strategies imply
© that drone-captured footage provides sufficient information for person identification. However, due to the var-
: iable height and velocity at which drones fly, such footage is likely to be subject to momentum, unfavourable
. vantage points, and unpredictable ambient conditions. For example, military drones operate from ground level
© up to maximum altitudes of 200 ft for micro drones*, which are small tactical drones of up to 2kg in weight, and
© up to 45,000 ft for large drones** that comprise unmanned long-endurance aircraft of over 600kg. Moreover,
* the ground speed at which these drones operate varies considerably, from 0-250 kts**. In addition, drones
. employed in police operations record surveillance footage whilst operating at altitudes ranging from ground
. level to up to 400 ft, and at speeds of up to 38 kts®. This range in operational parameters raises the possibility that

drone-captured footage can be of sub-optimal quality for person identification.

The current study reports four experiments that investigate this issue, by examining the accuracy of person

identification from drone-captured footage of a football (soccer) match at a UK university. This set up presents

a natural scenario that should provide relatively favourable conditions for image capture and subsequent person
© recognition. We recorded such footage with a commercially available remote-controlled drone, with a minimum
. take-off weight (MTOW) of 300 g. As classified by NATO regulation, this type of drone falls into Class I(b)” and is
. therefore comparable to micro drones in use by the UK military® and police force®. We present four experiments
¢ that utilised the footage recorded with this drone to examine the accuracy of person identification from such

surveillance material.

To our knowledge, these experiments represent the first systematic investigation of person identification by

. human observers from aerial footage recorded by a remote-controlled drone. By contrast, a compelling body of
© research already exists on person identification in other applied settings, such as passport control®?, closed-circuit
* television (CCTV)!®!!, and eyewitness scenarios'®'®. This research demonstrates that familiar people, who are
. known to an observer, can be identified with good accuracy'*'*. This is found under challenging conditions, for
. example, when people are viewed in poor-quality surveillance footage!!, or heavily degraded video'®, or when
. they are only seen briefly', partially'®!?, or in unfavourable non-frontal views?.
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This reliable recognition of familiar people is held to be based on sophisticated cognitive representations that
build up through substantial exposure to a person’s face across a range of ambient conditions?*%. Such experience
enables the extraction of the stable visual characteristics of an individual’s identity, and for the dissociation of
this information from ambient factors that interact with a person’s appearance, such as variation in lighting or
viewing direction®. The exact nature of these representations remains under investigation, but might reflect a
cognitive “average” of the encounters with a face>**, with dimensions that capture the different ways in which a
person’s appearance can vary around such an average?"?*. Such approaches view familiarity as a continuum, from
unknown to well-known faces. Consequently, whether a specific point exists on this continuum at which faces can
be defined as “familiar” is an open question. What is clear, however, is that when the cognitive representations of
familiar faces are firmly established, these allow for recognition to generalise across a broad range of conditions,
and to succeed even with very limited visual information!%19,

By contrast, the identification of unknown or unfamiliar people, of whom an observer has no prior experience,
is error-prone, even under seemingly good conditions. For example, when observers try to identify a target from
a ten-face array, accuracy is only at 70%%2°. This is found with high-quality images that depict people in a frontal
view, with a neutral expression, and under good lighting. Performance remains poor when this task is reduced
to a 1-to-1 comparison®”?5, or when observers match a live person to their photo?**, or moving video images®'.
This difficulty of unfamiliar person identification reflects the fact that, without extensive prior exposure, observ-
ers can only have limited information about how a person can vary naturally in their appearance. Consequently,
attempts to identify an unfamiliar person have to rely on unsophisticated image-comparison techniques. This
issue is illustrated by the fact that unfamiliar face identification is trivial across identical images*"?, but becomes
more error-prone as variability in a person’s appearance increases across to-be-compared images*>*. Similarly,
accuracy declines when lighting or viewing angle are variable across images®, or image resolution is poor®.
Considering that drone-captured footage is restricted by such factors, the question arises also of the extent to
which unfamiliar people can be identified from such material. In this study, we investigate these questions across
several tasks to examine the identification of unfamiliar (Experiment 1) and familiar people (Experiment 2 and 3),
as well as the perception of a person’s sex, race, and age from drone-captured footage (Experiment 4).

Experiment 1

In this experiment, observers were presented with arrays comprising a high-quality face photograph and
drone-captured images of a person, and had to decide whether these materials depicted the same person or two
different people. Such identity-matching tasks have been used extensively in forensic face identification®*’, and
minimize the contribution of other factors, such as memory demands, that can reduce performance®. In light
of the expected difficulty of this task, three drone-captured images were provided for comparison with each face
photograph to increase the possibility that correct identifications are made®***. Our drone was also equipped
with two different forward-facing cameras, the footage of which was compared on a between-subject basis.

Method

Participants. Forty students (34 female) from the University of Kent, with a mean age of 22.1 years
(SD =8.0), participated for course credit. All experiments reported in this paper were approved by the Ethics
Committee in the School of Psychology at the University of Kent and conducted in accordance with the ethical
guidelines of the British Psychological Society. In all experiments, informed consent was obtained from all par-
ticipants before taking part.

Stimuli. A remote-controlled Parrot AR Drone 2.0 Power Edition, with a minimum take-off weight (MTOW)
of 300 g, was employed for stimulus capture. This type of drone falls into Class I(b) with a MTOW of 200 g-2kg as
classified by NATO regulation’, and is comparable to drones that are in use by the UK military® and police force®.
The drone was equipped with two forward-facing cameras, comprising the drone’s integrated HD camera with a
maximum video resolution of 1280 x 720 pixels at 30 fps, and a retro-fitted GoPro Hero4 Silver with a maximum
video resolution of 2704 x 1520 pixels at 30 fps. To provide stimulus footage for the experiments, this drone
recorded the protagonists of a football game from pitch-side. Maximum flight-height was restricted to 15 metres
of elevation using the drone’s navigation software (AR.FreeFlight2.4 v2.4.22). From each camera, a total of 42
images were extracted manually with graphics software, comprising three images for each of 14 different players.
This footage was synchronized across cameras, so that it captured the players at the same point in time, but varied
depending on each camera’s characteristics. The sets of three same-person images were arranged side-by-side, and
displayed each at a size of 150 x 150 pixels for the drone camera at 72 ppi. The GoPro images were presented at a
slightly smaller size of 120 x 120 at 72 ppi due to the higher resolution of this recording equipment. In addition,
a high-quality full-face photograph was also taken for each player at a distance of approximately 1 m immediately
prior to the drone recording. These images were then cropped to remove extraneous background and resized to
250 (W) x 340 (H) pixels at a resolution of 72 ppi.

To create the stimulus displays, the high-quality full-face images were arranged above three drone-captured
video stills. For each of the 14 players, an identity match was created, in which the full-face photograph and
drone-captured images depicted the same person, and an identity mismatch, in which two different people were
shown. These mismatch pairings were generated by the experimenters (MB and MCF) based on the extent to
which different identities were similar in terms of race, hair colour, and age. However, considering the small pool
of targets, the number of possible pairings was restricted greatly (for example, the pool of targets comprised only
two players of African ethnic origin). Combining the stimulus images in this way resulted in a total of 56 exper-
imental trials, comprising 28 for each drone camera (14 identity matches and 14 mismatches). Example stimuli
are illustrated in Fig. 1.
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Figure 1. Illustration of an aerial view from the GoPro camera (top) with a highlighted target (red circle). The
top array depicts three image stills from the drone-integrated camera and GoPro for this target, and the high-
quality face photograph for the familiarity check. The bottom array depicts the corresponding images of the
mismatch identity that was selected for this target. Please note that the depicted target, and all other players
visible in this figure, have provided informed consent for publication of these images.

Procedure. Participants were allocated randomly to one of the two camera conditions. The experiment
was run on a computer using PsychoPy software*!. Each trial began with a 1-second fixation cross, which was
presented in the centre of the screen. This was followed by a stimulus array, which remained onscreen until a
button-press response had been registered. Participants were asked to decide as accurately as possible whether a
stimulus display depicted an identity match or mismatch, by pressing one of two designated buttons on a standard
computer keyboard. Each participant completed 28 trials, which were presented in a unique random order.

The matching task was followed by a familiarity check to eliminate stimulus identities that might have been
known to a participant prior to the experiment. For this purpose, the high-quality full-face photographs were
presented individually and participants indicated whether they were familiar with a target, by providing a name
or uniquely-identifying semantic information.
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Data Availability. The experimental stimuli and the datasets generated and analysed during the current
experiments are available from the corresponding author on reasonable request.

Results

The familiarity check indicated that participants were familiar on average with 1.6 targets (SD =1.2) in the drone
camera condition and 0.3 targets (SD =0.6) in the GoPro camera condition prior to the experiment. As each
identity featured in one match and two mismatch trials, this led on average to the exclusion of 4.8 (SD =3.6) and
0.9 (SD=1.7) trials in these conditions, respectively. For the remaining data, the percentage accuracy for identity
match and mismatch trials was calculated.

For the drone’s integrated camera, match and mismatch accuracy was at 48.4% (SD =12.9) and 73.2%
(SD =14.1), respectively. Similarly, accuracy for GoPro images was at 37.1% (SD = 16.0) for match trials and
66.7% (SD = 14.4) for mismatch trials. A 2 (camera type: drone cam vs. GoPro) x 2 (trial type: match vs. mis-
match) mixed-factor ANOVA of these data revealed a main effect of camera type, F(1,38) =12.94, p < 0.001,
11,>=0.25, due to overall higher accuracy for the drone camera, and a main effect of trial type, F(1,38) = 50.59,
p<0.001, I]pz =0.57, due to higher accuracy for mismatch trials. An interaction between factors was not found,
F(1,38)=0.39, p=0.53,77,>=0.01.

As accuracy was low, this was also compared to chance performance (i.e., of 50%) via a series of one-sample
t-tests (with alpha corrected at p < 0.0125 [i.e., 0.05/4] for multiple comparisons). This revealed that mismatch
accuracy for the drone camera and the GoPro was above chance, #(19) =7.36, p < 0.001 and #(19) =5.19,
P <0.001, respectively. By contrast, match accuracy was at chance for the drone camera, #(19) =0.57, p=0.58,
and below chance for the GoPro, #(19) =3.61, p < 0.01.

Discussion

Observers’ ability to match drone-captured images to high-quality photographs of unfamiliar faces was at or
below chance, with accuracy averaging 43% across camera conditions, which indicates that positive person iden-
tifications could not be made reliably. Mismatch decisions were comparatively better but still highly error-prone,
averaging at 70%. This low accuracy was obtained despite the provision of three drone-captured images for com-
parison with each target, which should facilitate person identification****, and under conditions in which the
mismatch stimuli were constructed from a limited number of identities.

As a small extension of this work, we also compared person identification for footage from two different
camera types, comprising the drone’s integrated HD camera and a retro-fitted GoPro Hero4 Silver. This revealed
an advantage for the drone’s integrated camera (61%) over the GoPro (52%). The difference in identification
accuracy between these cameras might reflect that the drone’s integrated equipment is better optimized for the
viewing conditions that are incurred by aerial recordings. However, even for footage captured with the drone’s
integrated camera, identification accuracy was generally low. By comparison, in face-matching studies that com-
bine high-quality face portraits from more conventional footage in 1-to-1 comparisons, and utilise more refined
identity mismatches, mean accuracy is typically at 80-90%>"%%. The current results therefore suggest that the
identification of unfamiliar people from drone-captured footage is a particularly difficult task.

Experiment 2

Whereas unfamiliar face identification is error prone, recognition of familiar faces, that we have encountered
many times before, is much more accurate*>* and proceeds even under challenging conditions, such as when
poor-quality surveillance footage is employed'!. Consequently, it is possible that people can be identified reli-
ably from drone-captured footage when they are familiar to the observer. This was explored in Experiment 2
by assessing recognition accuracy of observers that personally knew the people in this footage. Two groups of
observers were compared, comprising colleagues of the depicted targets and members of the same football group.
Participants in the latter group had not been present during the recording of the drone footage, but had the addi-
tional contextual advantage of knowing who comprised the members of the football team to facilitate identifica-
tion. Non-face objects can be identified in familiar contexts from images with very low resolution*. Experiment 2
investigates whether a similar advantage is also present during person identification from drone-captured footage.

Method

Participants. The group of colleagues comprised 17 academic staff members (eight male) at the University of
Kent, with a mean age of 37.6 years (SD =11.0), who worked alongside several of the people that were depicted
in the drone-captured footage. The group of teammates consisted of ten participants (all male), with a mean age
of 44.8 years (SD = 14.6), who were members of the same football group but were absent from play on the day of
the drone recording.

Stimuli and Procedure. The stimuli were the same as in Experiment 1, but the face-matching task was
replaced with a recognition test. Thus, the three-image arrays of drone images were now presented without the
high-quality face image and participants were asked to name the depicted people directly. If participants indicated
familiarity but were unable to name the target, then they were asked to provide unique semantic information
to confirm identification. In this manner, all participants were presented with 28 stimulus arrays, comprising a
three-photo array for each of the fourteen target identities and each of the two cameras. After completion of this
task, all participants were given a familiarity check comprising the high-quality full-face photographs.

Results

In the familiarity check, participants recognized on average 3.8 (SD=0.5) of 14 targets in the colleagues group,
equating to 27.3% (SD = 3.8) of identities, and 10.3 (SD = 3.2) of 14 targets, or 73.6% (SD =22.8), in the team-
mates group. For these familiar identities, performance with the drone-captured images was analysed by grouping
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Drone camera

11.2(16.7)

13.4(20.3)

75.4(29.4)

14.1 (18.0)

GoPro camera

5.6 (10.4)

19.1 (27.3)

75.3(29.3)

16.4 (21.2)

Drone camera 36.5(11.0) 25.8(17.9) 37.7 (12.6) 18.1(20.9)
GoPro camera 34.6 (12.9) 28.1(16.3) 37.3(17.1) 20.0 (26.2)
Drone camera 32.7(16.1) 8.7 (14.0) 32.7(16.1) 30.7 (36.0)

Table 1. Person Identification Performance for Experiment 2 and 3, by Participant Type (Colleagues versus
Teammates) and Camera Type (Drone versus GoPro Camera). Standard deviations are shown in parentheses.

responses into correct identifications of a target (hits), incorrect identifications of a target as somebody else (misi-
dentifications), and those cases in which no identifications were made (misses). In addition, performance was cal-
culated for targets that observers indicated as unknown in the familiarity check. For these, the percentage of trials
was calculated on which an identification was incorrectly made (false positives) from the drone-captured images.

The mean percentages of responses that fall into each of these categories are illustrated in Table 1 for both
cameras and participant groups. These data show that recognition performance was extremely poor. For example,
across both cameras in the teammates group, targets could be identified on only 36% of trials (hits). By contrast,
27% of familiar faces were misidentified as someone else, and 19% of unfamiliar faces were also falsely identified
as someone familiar. This poor performance was even more marked in the colleagues group, where hits averaged
across both cameras were very low, at 8%, whilst almost twice as many misidentifications (16%) were made.

To analyse these data, separate 2 (group: teammates vs. colleagues) x 2 (camera type: drone cam vs. GoPro)
mixed-factor ANOVAs were conducted for each of the four measures. For hits, this analysis revealed a main
effect of group, F(1,25) =37.51, p < 0.001, 17P2 =0.60, due to higher recognition accuracy among teammates than
colleagues. In turn, a main effect of group was also found for misses, F(1,25) =17.21, p <0.001, ,>=0.41, as the
teammates were less likely to fail to identify a known person. For hits and misses, a main effect of camera was
not found, F(1,25)=1.67,p=0.21, ’7112 =0.06 and F(1,25)=0.00, p=0.95, ’7172 =0.00, and no interaction between
factors, F(1,25) =0.42, p=0.52, 57,> = 0.02 and F(1,25) = 0.00, p = 0.97, 7,> = 0.00, respectively. None of the main
effects or interactions were significant for misidentifications and false positives, all Fs(1,25) <2.33, all ps > 0.14,
all ,<0.09.

The different response categories were also compared directly to determine which identification outcome was
most likely. For this analysis, the data for both cameras were combined and a series of paired-sample t-tests were
conducted to compare hits, misses, misidentifications and false positives (with alpha corrected at p < 0.008 [i.e.,
0.05/6] for multiple comparisons). For teammates, this analysis failed to find differences between any of the meas-
ures, all £5(9) <2.05, all ps > 0.07. Thus, teammates were as likely to make a correct identification as an incorrect
identification, or to fail to recognize a target altogether. In the colleagues group, observers recorded more misses
than hits, misidentifications and false positives, all £s(16) > 5.26, all ps < 0.001, whereas these three measures did
not differ from each other, all #5(16) <1.95, all ps > 0.07.

Discussion

Teammate observers already knew more of the targets than colleagues prior to the experiment. They were also
more likely to identify these familiar targets from the drone-captured footage, and less likely to fail to recognize a
known person, indicating a context advantage that facilitated identification from low-quality images**. Generally,
however, recognition accuracy was poor for both groups. For example, teammates only identified 36% of targets
that could be recognized from the high-quality images, and recognition accuracy for colleagues was at just 8%.
Thus, still images from drone-captured footage only allow for very limited recognition of familiar people. This
problem is compounded by incorrect identifications, both for targets that were personally familiar and unfamiliar,
which occurred as frequently as correct identifications.

Once again, we also compared person identification from footage captured by the drone’s integrated cam-
era and a retro-fitted GoPro. As in Experiment 1, an advantage in correct identifications, and a corresponding
reduction in incorrect identifications, was obtained for the integrated camera. While this is consistent with the
notion that the characteristics of this equipment might be more optimized for aerial footage than the GoPro, these
differences were small (~4%) and not statistically reliable in Experiment 2. This might suggest that differences in
recording equipment exert less of an effect on the identification of familiar than unfamiliar faces.

Experiment 3

Whilst the identification of familiar people is difficult from drone-captured still images, identification can be
enhanced when moving images are provided®, particularly under difficult viewing conditions'®4. Experiment
3 therefore investigated the recognition accuracy of familiar people from moving drone-captured footage, by
replacing the image arrays of Experiment 2 with 10-second video recordings from which these still images were
originally taken. Due to the comparable performance across camera types in Experiment 2, only footage from the
drone’s integrated camera was employed in Experiment 3.
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Method

Participants. The participants consisted of 16 males who were members of the football group that was
recorded by the drone. Seven of these participants are depicted in the drone footage, whereas the other nine were
absent from play on the day of the drone recording. One participant failed to record their age. The remaining par-
ticipants had a mean age of 42.7 years (SD = 10.7). Data collection was conducted online and participants were
invited to take part via a football members email list.

Stimuli and Procedure. The stimuli and procedure were identical to Experiment 2, except that the stimu-
lus arrays comprising three drone-captured images were replaced with the video footage from which these still
images had been taken. This footage was displayed in an online browser using Qualtrics survey software. In total,
14 video clips were shown, comprising a 10-second recording from the integrated drone camera for each of the
14 target identities. As the recording captured a game of football, several targets were visible in each video clip.
The first second of each video therefore displayed a still image in which the to-be-identified target identity was
highlighted with a red circle, followed by nine seconds of moving footage that followed on naturally from the still.
Following each video, participants were asked to name the target or to provide unique semantic information for
identification. The videos were shown in a random order. After completion of the video task, all participants were
given the familiarity check comprising the high-quality full-face photographs.

Results

The familiarity check indicated that participants recognized on average 10.5 (SD = 2.5) of the 14 targets, equating
to 75.0% (SD =18.1) of identities. For these familiar identities, performance with the drone-captured footage was
broken down into hits, misidentifications and misses (see Table 1). In addition, performance for unfamiliar tar-
gets was also converted into false positives. Note that two of the 16 observers recognized all of the target identities
in the familiarity check. Analysis of false positives is therefore based on N=14.

To determine which identification outcome was most likely, the different response categories were compared
directly via a series of paired-sample t-tests (with alpha corrected at p < 0.008 [i.e., 0.05/6] for multiple compar-
isons). This analysis revealed that more hits than misidentifications of familiar targets were made, #(15) =4.71,
P <0.001. By contrast, the percentage of hits was comparable to false positive identifications of unfamiliar targets,
t(13) =0.21, p=0.84. Target misses exceeded misidentifications, #(15) =5.99, p < 0.001. Misses also exceeded
hits and false positives, but these differences were not significant, #(15) =2.87, p=0.01 and #(13) =1.89, p=0.08,
respectively. Misidentifications did not differ reliably from false positives, #(13) =2.27, p=0.04.

To examine the potential benefit of moving footage for identification directly, these data were compared
with the teammates’ performance with still images from the drone camera in Experiment 2 via a series of
independent-samples t-tests (with alpha corrected at p < 0.013 [i.e., 0.05/4] for multiple comparisons). This
revealed that hits were comparable for still images and moving footage, #(24) =0.65, p =0.52, as were false posi-
tives, £(22) =0.99, p=0.33. By contrast, still images gave rise to more misidentifications, #(24) =2.73, p < 0.013,
and fewer misses, #(24) =2.71, p < 0.013.

Due to the restricted subject pool that teammates provide, seven of the participants of Experiment 3 also
appeared in the stimulus footage as football players. As a final step of the analysis, this allowed us to probe
self-recognition from the drone footage. All recognized themselves in the familiarity check, but only three of
these seven participants (41.9%) recognized themselves in the drone video. Of the remaining four participants,
one misidentified themselves as another person (14.2%) and three could not make an identification (41.9%).

Discussion

The percentage of correct identifications from moving drone-captured footage in this experiment was comparable
to the static drone footage of Experiment 2. Still images gave rise to more misidentifications of familiar people and
fewer cases in which no identification was made. This suggests that moving drone footage might lead participants
to exert more caution in committing to an identification. At the same time, false identifications, of targets that
were not known to participants prior to the experiment, were comparable across both types of footage.

Overall, these data confirm that person identification from drone footage is highly error-prone. This appears
to be the case under conditions that typically facilitate identification, namely when recognition of familiar people
is examined!#>*, context limits the number of possible answers*, and moving footage is supplied'®. In addi-
tion, the stimuli also provided body information, which can aid identification further*>*. The difficulty of this
task is illustrated further by the observation that only three of seven participants who were featured as stimuli
could identify themselves from the drone footage.

Experiment &4

Considering that identification is highly error-prone, the question arises of whether other person information
can be gleaned from drone-captured footage. In Experiment 4, observers unfamiliar with the targets depicted
in the drone-captured footage were asked to judge the sex, race and age of these persons. This information is
typically extracted accurately from high-quality images®*->. It is unknown to which extent this is possible from
drone-captured footage.

Method

Participants. A total of 60 participants (33 female) volunteered to participate in this experiment. Two partic-
ipants did not record their age. The remaining participants had a mean age of 26.4 years (SD = 15.0). All reported
normal (or corrected-to-normal) vision. Data collection was conducted online and participants were invited to
take part via an email list for research volunteers.
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Stimuli and Procedure. For each target, a drone-captured still image was selected from the stimulus arrays
of Experiment 2, which depicted the person in frontal or near-frontal face view, as well as the high-quality photo-
graphs. The drone-captured images were presented at a size of 150 x 150 pixels, whilst digital photographs were
presented at a size of 400 x 300 pixels at a resolution of 72 ppi. In the experiment, these stimuli were displayed
in a web browser using Qualtrics software on a between-subject basis. Thus, half of the participants viewed the
drone images, whilst the other half the viewed high-quality face photographs. For each target, observers were
required to make sex, race, and age judgements, which were presented in multiple-choice format. For sex, the
response options consisted of “male” and “female”. For race, these choices comprised “White”, “Black”, “Asian’,
“Mediterranean’, “Indian”, and “Hispanic’, to reflect the ethnicities of the depicted football players, as well as
“Middle-Eastern’, and “Mixed-Ethnicity”. In addition, observers were permitted to enter an alternative classifica-
tion in text. For age, each option covered a period of ten years, with 10-19 years and 60 + years being the young-
est and oldest possible responses, respectively. In addition, each question included “Cannot tell” as a possible
response option. Finally, as a familiarity check, participants were also asked to name targets, or to provide unique
semantic information, for any targets that were recognized.

Results

The familiarity check indicated that none of the participants recognized any of the 14 targets. The mean per-
centage of correct responses was then calculated for the drone and high-quality images for the sex, race, and age
decisions. An independent-samples t-test showed that the accuracy of sex decisions was better for high-quality
face photographs at 98.6% (SD = 3.5) than the drone images at 62.6% (SD =13.6), #(58) = 14.03, p < 0.001. A sim-
ilar advantage for high-quality photographs was observed for race decisions, at 74.3% (SD = 14.8) versus 42.4%
(SD=10.3), #(58) =9.68, p < 0.001, and age decisions at 46.4% (SD = 12.4) versus 26.9% (SD =13.5), #(58) =5.84,
p<0.001.

Discussion

This experiment provides broader evidence that drone-captured footage forms an unreliable basis for person per-
ception. Sex information, for instance, was extracted poorly from drone stills, for which only 63% of targets were
classified correctly. We did not plan to examine sex categorisation when we initiated this series of experiments,
but were led to examine this question by the poor identification accuracy in Experiments 1 to 3. Consequently, all
of the targets in the drone-captured footage were men, rather than a mixture of males and females. This one-sided
sample could have affected observers’ responses from drone-captured footage, by leading to some female-sex
decisions on the basis that observers might have expected a proportion of such stimuli in a sex categorization
task. However, this was clearly not the case for the high-quality face photographs, for which performance was at
ceiling. This contrast demonstrates that the low accuracy of sex categorization is reflective of the drone-captured
footage, rather than the composition of targets’ sexes in this experiment. Accuracy for race and age decisions from
drone-captured footage was even lower, at 42% and 27%, respectively. Thus, these decisions were more likely to be
incorrect than correct under the current conditions. By contrast, performance with the face photographs here, as
well as previous research, demonstrates that sex, race and age information are consistently extracted with much
better accuracy from high-quality images®->4.

General Discussion

This study explored the extent to which people can be identified from aerial footage recorded by a
remote-controlled drone. The identities of unfamiliar (Experiment 1) and familiar target people (Experiment
2 and 3), and their sex, age and race (Experiment 4) were difficult to extract from drone-captured footage. This
suggests that such footage provides a challenging substrate for person classification. In an extension of this work,
we also compared identification of unfamiliar (Experiment 1) and familiar targets (Experiment 2) for footage
from two different camera types, comprising the drone’s integrated HD camera and a retro-fitted GoPro. Whilst
this revealed a small advantage for the drone’s integrated camera, identification accuracy was generally low for
both camera types.

Many factors could account for these results. The movement speed and trajectory of the drone, its flight sta-
bility, as well as distance-to-target and its high vantage point are likely to degrade the available information for
person identification. On the other hand, we employed high-definition recording equipment with good image
stabilisation, flight height was limited to only 15 meters, targets were recorded from pitch-side, against a uniform
background (the green pitch), and the number of (familiar) target identities was limited.

In this context, the current data have important implications. Drones are already employed routinely in mili-
tary and police operations, for example, in searches for missing persons', crowd control?, and military reconnais-
sance and lethal strikes®*. The drone of the current study provides a limited proxy for military aircraft drones.
However, some of the smaller drones employed by military and police are comparable to the equipment of this
study®. For example, some police-employed drones operate at altitudes between ground level and 400 ft and at
speeds from 0 to 38 kts>*”. Moreover, some of these drones carry recording equipment with a resolution that is
substantially less than the cameras employed here (e.g., only 640 x 512 pixels)*. By comparison, the drone in the
current study recorded targets from a maximum altitude of 49 ft in the experiment and was equipped with two
cameras with considerably higher resolution (e.g., 1280 x 720 pixels for the drone’s integrated HD camera). In
addition, the targets” distance and orientation to the drone varied naturally during the recordings, thereby pro-
viding multiple perspectives to facilitate identification. These advantages did not appear to offset the difficulty of
the task, however. Consequently, the finding that it is extremely difficult to identify people, or even just their sex,
race and age from drone-recorded footage, such as that provided in the current study, raises concerns about their
application for person perception in police and military operations.
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In drawing these conclusions, we note also that this is only the first study to explore person identification with
drone-captured footage. Our trial count was restricted by the number of targets that could be recorded, whilst
sample size was limited by participants who were familiar with these targets. Moreover, it is presently unknown
how these findings generalize across different drone types and viewing conditions. It is possible, for example,
that the poor accuracy in person identification that was observed here can be offset when flight height is lowered
or drone-to-target distance is reduced, though operational requirements may not allow this to safeguard those
on the ground®® or to avoid detection of a drone during covert deployment®. Similarly, it is possible that per-
son identification from drone-captured footage might be improved by magnification equipment, such as optical
zoom, though this may also increase the difficulty of target tracking. In addition, we note that the identification
of unfamiliar people can be difficult even with high-quality face portraits®2©2842 Thus, the extent to which person
identification is possible from drone-captured footage under viewing conditions that are optimised further is an
open question.

Finally, whilst the aim of the current study was to examine person identification from drone-captured footage
by human observers, similar studies in computer vision are now beginning to emerge®’. This raises the ques-
tion of how the accuracy of human observers and machine algorithms in person identification might compare.
Face-matching studies with more conventional footage suggest that machine algorithms outperform human
observers under conditions of moderate difficulty®®®, and perform at least to a similar level with challenging face
pairs, such as images in which illumination and a person’s day-to-day appearance are variable®>**. However, the
face images that were employed in these studies are of substantially higher quality than the drone-footage under
investigation here, making it difficult to draw direct comparisons at this point in time.

In conclusion, the current study suggests that a person’s identity, sex, race and age are difficult to extract from
drone-captured footage. However, more extensive studies are clearly needed to investigate unfamiliar and famil-
iar person identification and categorization from drone-captured footage, with more stimuli and greater sample
sizes, utilising more drone types, a greater range of image-capture and magnification devices, and with footage
recorded under a much wider range of viewing conditions. Comparisons of human observers and machine algo-
rithms in person identification from drone-captured footage are also required to advance the field.
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