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Developmental Emergence of 
Sparse Coding: A Dynamic Systems 
Approach
Vahid Rahmati1, Knut Kirmse2, Knut Holthoff2, Lars Schwabe3 & Stefan J. Kiebel1

During neocortical development, network activity undergoes a dramatic transition from largely 
synchronized, so-called cluster activity, to a relatively sparse pattern around the time of eye-opening 
in rodents. Biophysical mechanisms underlying this sparsification phenomenon remain poorly 
understood. Here, we present a dynamic systems modeling study of a developing neural network 
that provides the first mechanistic insights into sparsification. We find that the rest state of immature 
networks is strongly affected by the dynamics of a transient, unstable state hidden in their firing 
activities, allowing these networks to either be silent or generate large cluster activity. We address how, 
and which, specific developmental changes in neuronal and synaptic parameters drive sparsification. 
We also reveal how these changes refine the information processing capabilities of an in vivo developing 
network, mainly by showing a developmental reduction in the instability of network’s firing activity, an 
effective availability of inhibition-stabilized states, and an emergence of spontaneous attractors and 
state transition mechanisms. Furthermore, we demonstrate the key role of GABAergic transmission and 
depressing glutamatergic synapses in governing the spatiotemporal evolution of cluster activity. These 
results, by providing a strong link between experimental observations and model behavior, suggest 
how adult sparse coding networks may emerge developmentally.

The proper development of neural networks is strongly activity-dependent1. A common feature of the immature 
cortex is the generation of synchronized network activity in which discrete events are separated by relatively long 
quiescent periods2,3. During development, this so-called cluster activity transitions to a sparse firing pattern as 
typically observed in adult networks4. Sparse firing is supposed to represent an efficient coding regime for pro-
cessing and storing information in the mature cortex during adulthood5,6. The developmental transition from 
dense to sparse coding has been observed in all cortical areas examined to date2,3,7 and, in addition, in human 
cortex8. Moreover, since, unlike adult networks, eliciting large cluster activity is a ubiquitous feature of many 
immature neural structures1,9, sparsification is believed to be a universal phenomenon of neural network matura-
tion. Although sparsification is thought to represent an essential aspect of cortical development, the mechanisms 
underlying this process are currently not understood. Data obtained from rodents led to the conclusion that the 
process of sparsification is largely, though not entirely3, independent of sensory inputs2,7. Strikingly, the time 
period of development during which sparsification occurs coincides with major changes in both intrinsic neu-
ronal and synaptic properties. These include, for example, a profound decline in membrane resistance2,10, a steep 
increase in the number/density of both GABAergic and glutamatergic synapses11,12, an acceleration of the kinetics 
of postsynaptic currents12 as well as pronounced changes in short-term synaptic plasticity10,12.

Here, we describe a computational modelling approach based on experimentally measured trajectories 
of intrinsic neuronal and synaptic parameters in order to provide mechanistic insights into the generation of 
cluster activity and the transition from dense to sparse coding during development. To this end, we use the 
well-established extended Wilson-Cowan-type model accounting for mechanisms of short-term synaptic plas-
ticity13. Despite the lack of well-established immature neuron models, as still many unspecified parameters need 
to be measured first, using this biophysically interpretable mean-field model enables the study of developing 
networks based on the average effects of these parameters at a network level. By combining this model with 
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experimentally reported trajectories of neurobiologically plausible parameters during postnatal development, we 
found that we can emulate typically observed in vivo features of developing network function.

By using the mathematical tool of stability analysis, we derive three key results which help to better under-
stand the sparsification process. Firstly, in the model we find that at early postnatal days, while the network is 
resting at its low-activity spontaneous state, an unstable state is built up in its firing activities. This is important, 
because we find that this transient, hidden unstable state is key to the emergence of large postnatal cluster activ-
ity. Using the model, we show how sparsification is driven developmentally, and how during this process the 
network’s information processing is refined. Secondly, we address the open question what mechanisms govern 
the spatiotemporal evolution of postnatal cluster activity. Thirdly, we quantify the effect of different maturational 
processes on sparsification. Together, this study provides the first mechanistic insights into the in vivo biophysical 
mechanisms underlying sparsification, and the implications of this process for the refinement of information 
processing.

Results
To study developmental changes in postnatal neuronal activity, we used simulations of a spatially localized recur-
rent neural network with short-term synaptic plasticity (STP-RNN)13, where STP renders synaptic efficacies 
dynamic over time14,15; see Methods. This network is a mean-field Wilson-Cowan-type model of one excita-
tory (E) and one inhibitory (I) neuronal population with recurrent dynamic synaptic connections (Fig. 1a). This 
model has the advantage of being biophysically interpretable and mathematically accessible. The activity rates (Er 
and Ir) can be properly scaled to represent locally the average recorded activities in the populations. Here, we use 
experimentally reported, postnatal changes in neurobiologically plausible parameters (Table 1) to assess how the 
network’s spontaneous behavior and sensory processing properties are refined toward the postnatal onset of sen-
sory transduction. To study the developmental states of visual cortical networks from before to after eye-opening, 
we selected four postnatal days (P) for modelling: P3 (period of physiological blindness), P10 (a few days before 
eye-opening), P14 (the day after eye-opening) and P20 (a few days after eye-opening)3. During this period, imma-
ture networks not only undergo the sparsification process but also a dramatic development in intrinsic neuronal 
and STP properties10,12; see Table 1 and Supplementary Methods. To derive the results, we used system dynamics 
methods described in the Methods section (see also Supplementary Methods). For quick reference, all important 
technical terms are explained in Table 2.

Transient unstable state hidden in firing activities.  We first address what mechanisms may underlie 
the emergence of cluster activity in immature networks, by analyzing model behavior at P3 as a representative 
early postnatal stage.

Previous experimental16,17 and modeling studies18,19 usually considered adult networks to be bi- or multi-stable 
where, e.g., spontaneous (stimulus-absent) network activity can transition between two stable activity states: A 
relatively quiet activity state, and a higher activity state. For early postnatal stages, our stability analysis and sim-
ulations indicate that the proposed developing network model is actually mono-stable whose only stable state is 
a quiescent, spontaneous state (Fig. 1b). To demonstrate this, we plotted in Fig. 1b the so-called phase plane of 
network dynamics in terms of the average activity in the E- and I-populations (Er-Ir-plane; Table 2). Figure 1b 
shows that the network’s fixed point (FP; Table 2) is located at Er = Ir = 0 which is essentially a stable activity state 
of the network (see Supplementary Methods). In the following, we will call this specific FP the rest state of the 
network. This analysis result fits well with experimental findings of near-zero hertz spontaneous activity of imma-
ture populations3,20, and the absence of spontaneous network’s persistent activity states mainly during periods of 
physiological blindness7,21.

How can a quiescent, immature, mono-stable network generate large cluster activity? By analyzing net-
work perturbations, we found strikingly that while a P3 network model was relaxed at its stable rest state, 
threshold-crossing perturbations of E-population were amplified profoundly (Fig. 1c, Supplementary Fig. 1c). 
This amplification resulted in population spikes (PSs, Table 2), which, in the model, we assume is the analogue to 
experimentally observed cluster activity. Note that this perturbation can be due to, e.g., a single-shock electrical 
stimulation22, the onset of a longer-lasting external input (Supplementary Fig. 2c), or a random input driven by 
spontaneous retinal waves or the thalamus3,20.

While previous studies showed the underlying mechanism of PSs generation mainly in adult bi-stable network 
models18,19, here we sought to address this mechanism in an immature mono-stable network (Fig. 2). As the 
initial phase of PSs is known to be governed by the network’s fast (i.e. firing activity) dynamics18, we re-plotted 
the Er-Ir-plane after freezing the network’s slow (i.e. STP) dynamics at the rest state (Fig. 2d); thus, it is turned to 
a Static-RNN (Table 2) with frozen synaptic efficacies (Frozen STP-RNN). Surprisingly, we found that in addi-
tion to the stable rest state, there is an unstable FP hidden in the network’s fast dynamics (i.e. in the respective 
Frozen STP-RNN, Fig. 2e), which does not exist in the (non-frozen) STP-RNN (Fig. 1b). This unstable FP (black 
dot, Fig. 2e), which is located close to the rest state, can confine the attraction domain (grey region, Table 2) of 
the stable rest state in the Er-Ir-plane of the corresponding Frozen STP-RNN (Fig. 2d); but, clearly, not in the 
Er-Ir-plane of the STP-RNN itself (Fig. 2c). We call the outer border of this domain in Fig. 2d (before perturba-
tion) the amplification-threshold. Almost exactly the same border exists for activity-perturbation domains of the 
STP-RNN (Fig. 2c). Cluster activity is initiated by an activity perturbation exceeding this threshold, where the 
activity will be moved far from the rest state in both corresponding networks with frozen (Frozen STP-RNN) or 
dynamic (STP-RNN) synapses. Strikingly, when freezing synaptic efficacies at different times during a cluster 
activity (Fig. 2a), we can see that this unstable FP disappears roughly after the peak of cluster activity (Fig. 2e), 
thereby allowing network activity to converge back to its stable rest state in the STP-RNN (Fig. 2a). This dis-
appearance is mainly because of the weakening of the excitatory synapses at high activity rates (Fig. 2b); these 
synapses provide positive feedback to the network. Importantly, as it can be seen in Fig. 2e (panel IV), while the 
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network is again at the origin after cluster activity, sufficient recovery time is required for the re-emergence of the 
unstable FP.

Our analyses further show that the experimentally observed variability in size (i.e. the number of network 
neurons recruited by cluster activity) and duration of spontaneous cluster activities at each postnatal day2,3 is 
effectively governed by the relatively long recovery time of immature excitatory synapses (Supplementary Fig. 1). 
In addition, in our model, cluster activity was generated only if the perturbation strength was sufficiently large 
(Supplementary Fig. 1c and d) and was able to push network activity beyond the amplification-threshold (Fig. 2c 
and d). This is consistent with experimental reports of immature networks7,23, and may underlie a relatively 
all-or-none characteristic of postnatal cluster activity.

Figure 1.  The stationary and cluster activity properties of a STP-RNN at P3. (a) Graph representing the 
spatially localized network of one excitatory, E, and one inhibitory, I, neuronal populations that are recurrently 
connected (RNN), and can receive inputs. (b) The Er-Ir-plane of the RNN with dynamic synapses (STP-RNN) at 
postnatal day P3 (early period of physiological blindness). The colored regions show the fixed point (FP) 
domains of three possible operating regimes: unstable dynamics, inhibition-stabilized network (ISN), and Non-
ISN; see Table 2 for details. (Inset) Zoom-in of the phase plane at lower activity ranges, overlaid by the FP of the 
STP-RNN. The ISN FP-domain is barely visible. The rest state and the vertical branch of the quasi Er nullcline at 

=E 0r  belong to the Non-ISN FP-domain. The horizontal branch of the quasi Ir- nullcline at =I 0r , forming the 
bottom-border of the ISN (barely visible) and unstable regimes, belong to the unstable FP-domain (see 
Supplementary Methods). Only the non-negative branches of the quasi Er- and Ir- nullclines (i.e. in ≥0 Hz 
ranges) were displayed (e.g. see Supplementary Fig. 4, for the negative branches of the quasi nullclines). (c) 
Cluster activity triggered by an impulse perturbation (eE

per) to the E-population at time =t 0 when the network 
was relaxed at the stable rest state. (Inset) Trajectories of cluster activity in Er-Ir-plane. Simulations were 
performed for = = =e e t( 0) 30E

per
E  Hz. For all simulations, parameter values can be found in Table 1.
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The route towards sensory processing.  The sparsification of activity patterns sets in around 
eye-opening3,7. We now use our model at the stages P10 to P20 to address the question what refinements of the 
developing network enable sparsification.

Firstly, similarly as for P3, at all later stages up to P20 in the model we found that for a developing network 
relaxed at its stable rest state (Fig. 3a), again an unstable FP is hidden in the network’s fast (i.e. firing activity) 
dynamics (Fig. 3b). Consequently, a threshold-crossing perturbation of the E-population at rest state led to cluster 
activity (Fig. 3c). In addition, our analysis revealed that the amplification-threshold tends to move toward higher 
E-activity rates, from P3 to P20 (Fig. 3b, Supplementary Fig. 3). This result suggests that a stronger input may be 
required to trigger (large) cluster activities at late development stages.

Experimental in vivo findings show that the cluster activity size starts to drop dramatically around the end of 
the second postnatal week2,3. Here, we consider this developmental decrease in cluster activity size as an indicator 
for the developmental transitioning from dense to sparse coding (sparsification process); similarly to experimen-
tal studies2,3. In our model, we approximate the cluster activity size by a measure of the average activity of both 
E- and I-populations (PSnet

amp; see Table 2 and Methods). Using this measure, we observed, similarly as in experi-
ments, that cluster activity size undergoes developmental reduction between P10 to P20 (Fig. 3c and d, see also 
Supplementary Fig. 2c): It was relatively large at P10 ( ≈PS 85net

amp ), but starkly reduced after eye-opening (P14; 
≈PS 30net

amp ), followed by some further reduction to P20 ( ≈PS 15net
amp ).

Secondly, the results also show that immature networks probably lack any spontaneous, non-quiescent stable 
FP (i.e. a spontaneous attractor or persistent activity state) up to a few days prior to eye-opening. In Fig. 3a this 
is indicated by the existence of only one green dot at P3 and P10. However, after eye-opening, new spontaneous 
FPs with higher activity rates than the rest state emerged (note the non-origin FPs at P14 and P20 in Fig. 3a). 
This is compatible with experimental data showing the existence of spontaneous persistent cortical activity for 
stages mostly after the second postnatal week3,21,24 and their absence during early development7,21. In our model, 
in the absence of a stimulus, these FPs emerge mainly because of the developmental increase and decrease in 
background activity2,3,7 and membrane resistance2,10, respectively. Their combined effects determine the increase 
in population activity thresholds θE and θI (see also Supplementary Fig. 4). While in the model the network’s FP 
domains (FP-domains; Table 2) are not affected by these thresholds (see “Characterization of operating regimes” 
section in Supplementary Methods and also Supplementary equation (17)), the developmental reduction in the 
network instability (yellow regions, Fig. 3a) allows for these FPs to be stable. This means that attractors start 
emerging, under a wide range of E-activity; note the non-origin green dots at P14 and P20 in Fig. 3a.

Thirdly, the emergence of spontaneous attractors not only turns the developing mono-stable network (at P3 
and P10) into a bi-stable (at P14 and P20) network (Fig. 3a), but also has a striking effect on the dynamical trajec-
tory of cluster activity. That is, in the model, we found a fundamental difference between spontaneous postnatal 
cluster activities and those in more mature networks (Fig. 3c): before eye-opening (P3 and P10), the cluster activ-
ity is of the so-called mono-stable type (see Supplementary Methods), while after eye-opening the cluster activity 
can be also of the bi-stable type. The difference is that a mono-stable cluster activity (P3 and P10 in Fig. 3c) is 
initiated and terminated at the stable rest state, while a so-called bi-stable cluster activity is initiated at the stable 
rest state but converges to a spontaneous attractor (P14 and P20 in Fig. 3c, green dots). This difference may be 

P3 P10 P14 P20

τE 0.045 0.030 0.020 0.010

τI 0.0225 0.0150 0.010 0.005

τr E
5.5 3 0.7 0.5

τr I
5 2.5 0.4 0.2

τfE
0.8 0.4 0.1 0.05

τfI
0.8 0.4 0.1 0.05

UE 0.9 0.8 0.65 0.55

UI 0.9 0.8 0.55 0.4

JE 3.7 7 6.3 5.5

JI 0.1 3 4 4.5

θE 0.3 0.47 0.7 1

θI 0.3 0.5 1.7 2

Table 1.  Parameter values used in the developing STP-RNN model. This table lists the values of the developing 
STP-RNN parameters at postnatal days P3 (early period of physiological blindness), P10 (a few days before eye-
opening), P14 (the day after eye-opening) and P20 (a few days after eye-opening). The time constants are in 
units of [s]. All parameters are consistent across the figures, unless stated otherwise. τi is an approximation to 
the decay time constant of postsynaptic responses, τr i

 is the synaptic recovery time constant of depression, τfi
 is 

the synaptic facilitation time constant, Ui is the release probability, Ji is the absolute synaptic efficacy, and θi is the 
population activity threshold (in units of [Hz]). The quantities express the mean parameter values for excitatory 
( =i E) and inhibitory ( =i I) populations. Although not listed here, for simplicity, we fixed Gi (the linear input-
output gain above θi) at 1, while considering its developmental changes in values of Ji. See “Parameterization of 
postnatal developing networks” section in Supplementary Methods for the list of experimental papers that we 
used to determine these developmental changes in parameter values.
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interpreted as a first expression of information processing where the newly emerged attractors, which a bi-stable 
cluster activity converges to, can be seen as representative states that are the basis of perception. In the model, the 
time required for an effective transition to the attractor, and thus an effective representation of perceptual stimuli, 
is probably equal to the duration of cluster activity (see dashed grey lines, Fig. 3c): ~240 ms at P14 and ~180 ms at 
P20; these transition times are consistent with experimental observations at these stages17,24.

Moreover, our simulations showed that the spatiotemporal characteristics (i.e. size and duration) of 
mono-stable cluster activities are in general considerably more robust to interfering perturbations (P3 and P10, 
Supplementary Fig. 5), as compared to the bi-stable ones (P14 and P20, Supplementary Fig. 5). This suggests 
that the trajectories underlying mono-stable cluster activities (P3 and P10) can be seen as signals with high 
signal-to-noise ratio, which may act as a reliable neuronal communication mechanism in neonatal networks. The 
decreased robustness of bi-stable cluster activities after eye-opening (P14 and P20) can in principle augment the 
network’s information processing capability by making it more flexible in responding to sensory input.

In addition, we found that at the new spontaneous attractors (non-origin green dots; Fig. 3a) the network 
operates as a so-called inhibition-stabilized network (ISN, light-yellow regions, see also Table 2)25,26. An ISN 
regime is thought to allow the cortex to process complex computations27, and some experimental evidence indi-
cates that adult cortical networks operate as ISNs25,28. Our results show that the ISN regime becomes effectively 
accessible after eye-opening, as the unstable FP-domain, which is confined to low E-activity ranges, is develop-
mentally substituted by an ISN FP-domain. This indicates a developmental increase in the ratio of areas of the 
ISN (AODISN) and unstable FP-domains (AODUnstable), which we quantified by AODISN/Unstable (Table 2) in Fig. 3e. 
In practice, this means that in parallel to the strengthening of the sensory inputs after eye-opening, a larger set 
of potential stimulus-evoked ISN attractors will be accessible for the network, presumably to perform complex 
sensory computations.

Overall in our model, the process of sparsification is translated not only to a potent reduction of postnatal 
network instability but also to a potential emergence of new attractors and information processing capabilities.

Spatiotemporal evolution of postnatal cluster activity.  What mechanisms govern the spatiotemporal 
evolution (i.e., size and duration) of cluster activity during development in vivo? We addressed this question by 
analyzing how a postnatal cluster activity, once on a trajectory away from the rest state, is brought back to either 
the rest state or another FP with an activity level higher than the rest state.

In our model, there are two important factors: (i) the inhibitory transmission, which is believed to play a criti-
cal role in the stabilization of adult networks25,28, and (ii) STP, which can dynamically control the gain of neuronal 
responses14 and acts strongly depressing in immature networks10,12.

Firstly, we found that cluster activity initiated at the rest state can still converge back to this state even when 
blocking GABAergic receptors, at all stages from P3 to P20 (Fig. 4a). This finding suggests that inhibitory 

Abbreviation Description

RNN Recurrent neural network (RNN) of one E-I pair of synaptically coupled populations*.

STP-RNN & Static-RNN A RNN composed of synaptic connections with short-term plasticity (STP-RNN) which renders the 
synaptic efficacies dynamic over time. The RNN with constant efficacies is a Static-RNN†.

Frozen STP-RNN A STP-RNN with the synaptic efficacies frozen e.g. at the FP; thus, a Static-RNN-type model$.

Er-Ir-plane A 2D phase plane of E- and I-population activity rates (Ir vs. Er)‡.

FP A fixed point (FP) is the steady state of a network, and is determined as the intersection of (quasi) Er- 
and Ir- nullclines in the Er-Ir-plane‡.

Spontaneous activity Network activity in the absence of stimulus (or sensory input)*.

Attractor A non-quiescent stable FP (in this paper); also known as memory or persistent activity state.

Attraction domain For a stable FP (in this paper), a region in phase plane comprising all initial conditions that lead to that 
FP.

Amplification-threshold
The outer border of the attraction domain of the rest state in the Frozen STP-RNN, beyond which 
network perturbations undergo an overall continuous growing (in the Frozen STP-RNN) or will 
effectively trigger cluster activity (in the STP-RNN).

Nullcline For example, an excitatory nullcline is a set of points (a curve) in Er-Ir-plane for which =dE dt/ 0r
‡.

FP-domain For example, an unstable FP-domain is a domain of all potential FPs in the Er-Ir-plane, at which the 
network will be unstable¶.

AOD Area of domain (AOD); for example, AODUnstable is the area of the unstable FP-domain¶.

ISN Inhibition-stabilized network (vs. Non-ISN) which requires sufficiently strong, dynamic inhibitory 
feedback to preserve its overall stability.§

AODISN/Unstable
=AODISN/AODUnstable; this ratio is used to measure the relative area of the ISN FP-domain vs. unstable 
FP-domain¶.

PS The near coincident firing of many neurons is often referred to as population spike (PS)#.

Cluster activity Network spike (PSnet), which involves both E- and I-populations; i.e. both PSE and PSI
#.

PSnet
amp The scaled amplitude of PSnet, which provides a qualitative approximation to the cluster activity size#.

Table 2.  Overview of technical terms and analysis metrics. This table lists the descriptions for abbreviations 
and definitions which we used in our study. The sections in Supplementary Methods providing detailed 
descriptions: *Model description, †STP-RNN, $Frozen STP-RNN, ‡Computation of 2D phase planes, 
¶Operational FP-domains, §Characterization of operating regimes, and #Population spike.
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processing may not be necessary for stability in the developing network with depressing excitatory synapses. 
However, blockage of GABAergic receptors yielded an increase in cluster activity size (Fig. 4a and c), consistent 
with in vivo reports20,29. This blockage effect on cluster activity size became more pronounced during the course 
of development (Fig. 4c), in spite of the developmental reduction in the network instability (e.g. see AODISN/Unstable 
in Fig. 3e). This finding may underlie a developmental enhancement of an effective contribution of inhibitory 
transmission to network activity (see also Supplementary Fig. 2d showing the ability of inhibitory inputs to turn 
off activity at the attractor22, after eye-opening). In addition, we found that the blockage of GABAergic receptors 
shortened the cluster activity duration, for example, from approximately 330 to 320 ms at P3 (Fig. 4a and b) and 
from approximately 265 to 210 ms at P10 (Fig. 4a). The range of these cluster activity durations in our model is 
compatible with previous experimental reports7,30. Moreover, we found that this blockage effect on cluster activity 
duration increased from P3 to P20 (Fig. 4d).

Secondly, in contrast to GABAergic transmission, we found that at P3 the simulated removal of the STP 
effect led to run-away excitation (Fig. 4e). After freezing the synaptic efficacies (see Supplementary Methods) 
at the stable rest state, a threshold-crossing perturbation of the E-population (similarly as in Fig. 1c) caused a 
seizure-like surge of network activity (Fig. 4e). Importantly, this means that the rest state in the corresponding 
Frozen STP-RNN is a locally, but not globally, stable FP (see Methods). Similar results were observed for P10 to 
P20 (data not shown). Accordingly, we conclude that the strongly depressing immature STP, but not inhibitory 
synaptic transmission, guarantees the stabilization of postnatal cluster activities during the course of develop-
ment. This finding also holds, when GABAergic transmission is considered as excitatory at the network level 
during the first postnatal week (see Supplementary Methods and Supplementary Fig. 6b). Under this assump-
tion, blocking GABAergic receptors led to a decrease in cluster activity size, which is not compatible with in vivo 
data20,29. Therefore, our modeling results (Fig. 4b) are in agreement with recent in vivo findings that while GABA 

Figure 2.  The transient unstable state hidden in fast (i.e. firing activity) dynamics of a STP-RNN at P3. (a) The 
same cluster activity as in Fig. 1c, but shown in terms of the sum activity = +A E Isum r r. (b) The time-
evolution of synaptic efficacy of the recurrent excitatory connection J x uE E E, during the network activity shown 
in (a). (c) Activity-perturbation domains of STP-RNN. For the network relaxed at the rest state, setting the 
initial condition of the network activity at different E-and I-activity values revealed two different types of 
domains; amplification domain (cream-colored region): After perturbation, the sum activity was effectively 
amplified and cluster activity emerged; Non-amplification domain (black region): After perturbation, the sum 
activity monotonically decayed back to the rest state. Note, for the P3 network (mono-stable), both these 
domains are attraction domains of the rest state in the STP-RNN. (d) The Er-Ir-plane and the Er- (red) and Ir- 
nullclines (blue) of the STP-RNN with frozen synaptic efficacies (i.e. Frozen STP-RNN) at the rest state (see the 
time I in (a); = −t 150 ms, relative to onset of input). Grey region: The attraction domain of the stable rest state 
in the Frozen STP-RNN. Purple region: The activities initiated here undergo an overall continuous growing 
(non-attraction domain). We call the border between these two regions the amplification-threshold. This border 
is approximately the same as the border between the two domains in (c). (e) Disappearance of the hidden 
unstable state during cluster activity. (I): Zoom-in of (d) at lower activity rates, overlaid by the FPs of the 
corresponding Frozen-RNN. (II-IV): Same as (I), but for synaptic efficacies frozen at different sample times (see 
(a)): (II): =t 75 ms, (III): =t 175 ms, (IV): =t 1000 ms. Black dots show the unstable FPs. Dark-brown 
streamlines show, at each point, the local direction of sample trajectories in the corresponding Frozen-RNN.
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Figure 3.  Sparsification process in developing cortex. (a) Postnatal changes of the network’s stationary firing 
dynamics. The same format is used as in Fig. 1b; unstable dynamics (yellow region), ISN (light-yellow region), 
and Non-ISN (pink region). (b) The existence of a hidden unstable state (black dot) in the firing activity of 
developing networks. The same format is used as in Fig. 2e, panel I. The networks were frozen at the rest state 
( = −t 150 ms). (c) Postnatal changes of the network’s transient firing dynamics where cluster activity was 
triggered by an impulse perturbation. The same format is used as in Fig. 1c. P3: early period of physiological 
blindness, P10: a few days before eye-opening, P14: the day after eye-opening, and P20: a few days after eye-
opening. Green dots represent the stable FPs. (d) Developmental changes in the size of cluster activities, 
estimated qualitatively by PSnet

amp. (e) Developmental changes in the area of the FP-domain (AOD) of Non-ISN 
and ISN operating regimes, and the ratio AODISN/Unstable of areas of ISN and unstable FP-domains. The 
developmental increase in AODISN/Unstable indicates that the unstable FP-domain was effectively decreased, and 
replaced by the ISN FP-domain. For each panel, the values were normalized to the maximum value during all 
four stages. At each of these stages, the AOD s were computed based on the square Er-Ir-plane with the lower-left 
corner located at the rest state (origin) and the upper-right corner (i.e. E I[ , ]r

max
r
max ) at [10,10] Hz. Moreover, 

the developmental decrease in −AOD Non ISN just means that the E-activity rate after which the Non-ISN FP-
domain starts in the Er-Ir-plane, was shifted to higher levels. See Table 2 for details about technical terms.
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acts as a mainly depolarizing transmitter during the first postnatal week, it exerts an inhibitory effect on the 
underlying network activity in the immature cortex and hippocampus20,31.

Moreover, cluster activity was abolished by simulated blockage of glutamatergic receptors (data not shown), 
consistent with experimental in vivo data20,29. This is because the main source of the network instability in our 
model is determined by glutamatergic synapses which provide positive feedback to the network. Therefore, block-
ing glutamatergic receptors removed all unstable FPs as well as the attractors in Fig. 3a and forced spontaneous 
network activity to the rest state (as observed experimentally17,22), and removed the unstable FP hidden in the 
network’s fast dynamics in Fig. 3b, throughout P3 to P20 (data not shown). In addition, note that the GABAergic 
transmission can play an important modulatory effect on this instability (see Supplementary Methods), where an 
increase in the efficacies of inhibitory synapses can effectively attenuate the instability (not shown). This implies 
that relatively weak GABAergic inhibition (Table 1) is permissive for the generation of the unstable states (e.g. 
see Fig. 3a and b) in developing networks; note that in our model these synapses strengthen during development 
(Table 1).

In sum, we found that strongly depressing excitatory synapses have a key role in the termination of postnatal 
cluster activities, whereas GABAergic transmission mainly regulates their spatiotemporal evolution.

Key maturational processes mediating sparsification.  The most influential, maturational processes 
mediating sparsification are still not clearly understood2,3. By using our modelling approach, we mechanistically 
quantified the impact of different network parameters on the emergence of sparse coding.

To do this, we replaced single parameters or parameter combinations of the P10 network model by their 
respective values at P20 and measured to what extent this modification can account for the normal decrease in 
PSnet

amp and normal increase in AODISN/Unstable, when transitioning from P10 to P20. To quantify effects we com-
puted ratioPS and ratioAOD as the ratios of the modification-induced changes in PSnet

amp and AODISN/Unstable, relative 
to their respective normal developmental changes during this period (Fig. 5). We found that only three parame-
ters caused a substantial decrease in PSnet

amp (Fig. 5a): the two absolute synaptic efficacies (JE and JI) caused the 
largest decrease close to that in the normal transition and, to a minor degree, the excitatory release probability UE. 
Strikingly, for the excitatory synaptic time constant (τE) the modification led to an increase in PSnet

amp, i.e. when this 
parameter is changed on its own, it tended to reverse sparsification (see also Supplementary Figs 6c and 7). We 
obtained qualitatively similar conclusions when analyzing the effect of replacing single parameters or parameter 
combinations of the P20 network model by their values at P10 (Supplementary Fig. 8a). When testing for changes 

Figure 4.  Contribution of GABAergic transmission to cluster activity during course of development. (a) The 
effect of blocking GABAergic receptors (i.e. =J 0I ) on cluster activities, during development. The plots show 
that even with this blockage, cluster activity that emerges from the rest state can still converge back to this state. 
Solid lines: cluster activity before the blockage, Dashed lines: cluster activity after the blockage. (b) Zoom-in of 
P3 in (a) at lower activity rates. Note the increase in E- and I-activities after the blockage. (c) Normalized 
differences in cluster activity size before and after the blockage (after minus before), at the four developmental 
stages. The values were normalized to the maximum difference observed throughout P3 to P20. (d) Same as (c), 
but for cluster activity duration. (e) The effect of freezing the synaptic efficacies at the stable rest state, at P3. A 
threshold-crossing perturbation (see light-purple region in Fig. 2d) leads to run away activities; note the scale of 
the y-axis.

http://6c
http://7
http://8a
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in AODISN/Unstable, we found that the inhibitory synaptic depression time constant τrI
 had the strongest contribution 

to the normal transition from P10 to P20, whereas all other single parameter substitutions had relatively weak 
effects (Fig. 5b). Note that the change in τrI

 appears to be a necessary but not a sufficient condition for the normal 
transition from P10 to P20, as substituting JE and JI in the P20 model by their respective P10 values virtually abol-
ished the developmental change in AODISN/Unstable (Supplementary Fig. 8b). Figure 5 further shows that the mod-
ification effect of the population activity thresholds (θE and θI) was virtually negligible for ratioPS and zero for 
ratioAOD. However, as shown above, their maturation plays an important role for the emergence of spontaneous 
attractors (see also Supplementary Fig. 4).

Discussion
We modelled the in vivo activity of a developing cortical network during the first postnatal month by combining 
an extended Wilson-Cowan model with experimentally reported trajectories of neuronal and synaptic param-
eters. We revealed mechanistically that a particular combination of a transient, hidden unstable state in firing 
activities and strong synaptic depression enables an immature network to generate large cluster activity while 
otherwise being mostly silent. We further found that the normal developmental transition from dense to sparse 
coding is strongly dependent on an elaborate, parallel refinement of absolute synaptic efficacies, both short-term 
synaptic plasticity (STP) and intrinsic membrane properties, and background activity. Strikingly, in our model, 
sparsification translates not only to a reduction of postnatal instability of network activity but also to an effective 
availability of the inhibition-stabilized network (ISN) regime as well as the emergence of spontaneous attrac-
tors, providing a novel mechanistic explanation for how the network’s information processing is refined towards 
eye-opening.

How can immature networks be quiescent for relatively long periods and occasionally generate large cluster 
activity3,32? Surprisingly, we found that while the developing networks (P3 to P20) are operating at their rest state 
(Fig. 3a), an unstable state is formed in their fast (i.e. firing activity) dynamics (Figs 2e and 3b). This may be a key 
to this biphasic behavior (Fig. 3c and Supplementary Fig. 2c). In addition, we found that at early stages prior to 
eye-opening (P3 and P10) immature networks are mono-stable, where the only FP of the network is its stable rest 
state (Fig. 3a). Accordingly, the underlying mechanism of cluster activity emergence in these networks is in stark 
contrast to models of cluster activity proposed for adult networks, based on the usual assumption of a bi-stable 
(or multi-stable) network18,19. Our finding about the strong effect of the hidden unstable state (Fig. 3b) during 
the initial phase of network activity at the rest state (see Figs 2 and 3c) may provide an explanation why neonatal 
networks, e.g. at P3 and P10, are more susceptible to seizures than mature networks32,33. Moreover, the lack of any 
spontaneous attractor in these networks (Fig. 3a) might also contribute to this susceptibility, since the attractors 
can, in principle, aid in stabilizing a network’s activity.

Sparsification coincides with the peak of GABAergic and glutamatergic synaptogenesis11,12 and overlaps with 
a developmental reduction in release probabilities, particularly at glutamatergic synapses10,12. Using a computa-
tional study, we here revealed how these changes are suited to drive the transition from dense to sparse coding 
during network maturation (e.g. see Figs 3 and 5). Since sensory deprivation affects the total synapse numbers 
only modestly34, our results might also explain previous experimental findings: While sensory experience may 
have a modulatory effect on sparsification during the first days after eye-opening3, this process is largely mediated 
internally, i.e. independent of sensory inputs2,3,7.

How does the sparsification process prepare in vivo developing networks for effective sensory processing? 
While the answer to this question remains poorly understood by experimental studies, our computational study 
provides two mechanistic insights: Firstly, we found that Non-ISN and instability may play key roles as the dom-
inating operating regimes prior to eye-opening (Fig. 3a), possibly reflecting an immaturity of inhibitory trans-
mission. That is, our modeling results imply that during stimulation (e.g. in response to long-lasting external 
inputs) the immature networks will operate under a Non-ISN regime, rather than an ISN regime (P3 and P10; 
Supplementary Fig. 2b), due to the lack of an effective availability of the ISN regime during early development 
(P3 and P10; Fig. 3a). The Non-ISN regime will enable the immature networks to maintain their stability with-
out requiring inhibitory transmission effects (see Methods). For adult networks, however, some experimental 
evidence indicates that cortical networks operate as ISNs25,28. Strikingly, in the model, during sparsification, the 
unstable FP-domain is effectively replaced by that of an ISN regime (Fig. 3a and e). This may enable cortical 
networks to process complex sensory computations27 in parallel to the developmental strengthening of sensory 
inputs.

Secondly, we found that spontaneous attractors start emerging around eye-opening, which, in our model, is 
mainly due to the combined effect of developmental increase in background activity2,3,7 and the developmental 
decrease in membrane resistance2,10. In general, attractors can represent the solution to a specific neural compu-
tation35. They are also thought to be the substrate of, and used to model, e.g., the working memory36, eye position 
stability37, and orientation selectivity38. Besides, in our developing model, the attractor emergence phenomenon 
can also underlie three developmental mechanisms. First, it provides the basis for transitioning between FPs 
(here, via bi-stable cluster activity at P14 and P20; Fig. 3c) and may be thought of as an early step towards rep-
resentation of perceptual stimuli. Second, it enables inhibitory transmission to contribute effectively more to 
network activity, e.g. through providing a sufficiently strong balancing of the intrinsic instability of the E-activity 
under an ISN regime26,27 (P14 and P20; Fig. 3c), or by becoming amenable to terminate activity at the attractor22 
(Supplementary Fig. 2d). This may be important for a presumably more effective processing of sensory inputs. 
Third, this phenomenon may also initiate the effective interaction of spontaneous activity with sensory cortical 
responses, as observed experimentally17.

Evidence from in vitro studies suggests that GABA depolarizes neonatal neurons, e.g. in rodents during the 
first postnatal week20,32. However, the effect of GABA at the network level is still an open question. While most of 
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the previous in vitro studies reported that GABA is excitatory (or both excitatory and inhibitory) at the network 
level32, recent in vivo studies harnessing new experimental techniques found that GABA inhibits intact neonatal 
networks in neocortex and hippocampus20,29,31. In particular, GABAergic transmission was shown to limit the 
spatial extent of cluster activity20. In our model, we tested these two hypotheses by blocking the GABAergic 
receptors in two P3 networks with either excitatory (Supplementary Fig. 6b) or inhibitory GABAergic transmis-
sion (Fig. 4b). This simulated manipulation led to an increase in the cluster activity size only when GABAergic 
transmission was inhibitory at the network level. Therefore, our results support the recent in vivo findings31,33. 
Importantly, this finding implies that even when GABA depolarizes immature neurons, GABA still can attenuate 
the instability effect on network activity, thereby restricting cluster activity size.

To our knowledge, there are only few previous modelling studies covering this developmental period (e.g. see 
refs39,40), where the authors’ main focus was on the potential mechanism of the cluster activity generation under 

Figure 5.  Impact of specific maturational processes on the sparsification process. We measured the change in 
network behavior when, virtually, we only mature a single parameter or small sets of similar parameters from 
P10 to P20. This enables us to indicate key parameters required for sparsification. (a) The plotted values of 
ratioPS measure the modification-induced changes in PSnet

amp, i.e. the size of simulated cluster activity, relative to 
the decrease when transitioning from P10 to P20. The dashed orange line at = −ratio 100 %PS  indicates the 
normal amount of decrease in PSnet

amp, as expected when transitioning from P10 to P20. (b) The plotted values of 
ratioAOD measure the modification-induced change in AOD ISN / Unstable, i.e. the ratio of areas of ISN and 
unstable FP-domains, relative to the increase when transitioning from P10 to P20. The dashed orange line at 

= +ratio 100 %AOD  indicates the normal amount of increase in AODISN/Unstable, as expected when transitioning 
from P10 to P20. See Methods for the formulas of ratioPS and ratioAOD. For computing AODISN/Unstable, we 
considered the Er-Ir-plane plots with E I[ , ]r

max
r
max  = [10,10] Hz. Parameters combinations are = J JJ { , }E I , 

τ ττ = { , }syn E I , =STP {STP , STP }all E I , τ τ= USTP { , , }E E r fE E
, τ τ= USTP { , , }I I r fI I

, θ θθ = { , }E I .
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in vitro condition. These studies were focused on a single postnatal stage and this stage was mostly restricted to 
the first postnatal week, like P5. Moreover, these authors probably did not consider some important biophysical 
considerations which have only recently been revealed by in vivo studies: the abolishment of cluster activity 
following the removal of glutamatergic synapses20,29, the existence of a profound inhibitory effect of GABAergic 
transmission at the network level20,29 and its non-excitatory (but depolarizing) effect at the neuron level20,31 dur-
ing the first postnatal week, or that the loss of large cluster activity occurs around eye-opening2,3 and not around 
P741. In contrast, here, (i) we used a unified computational model which takes into account most of these recently 
reported biophysical considerations (see Supplementary Method and Table 1), (ii) our work shows results based 
on, and mainly in accordance to the recent in vivo studies, where these studies revealed some critical features 
different from those reported for in vitro data, (iii) we studied the whole developmental period, comprising the 
time course of sparsification, and not only a single postnatal stage, (iv) we not only address the possible underly-
ing mechanism of the postnatal cluster activity generation, but also the developmental changes in the operating 
regimes and information processing capabilities, as well as the possible refinements in network properties gov-
erning the sparsification.

There are advantages and limitations of our modeling approach. Clearly, as compared to a mean-field model as 
employed here, a spiking network model can in principle provide more detailed results, e.g. one could model the 
temporal sparseness of spiking activities, or the specific patterns of sensory inputs at the neuron level. However, 
for this early developmental period, we are not aware of any established neuron model. For such a model, a 
considerable amount of unspecified neurobiological parameters is required to be measured experimentally first. 
Instead, using a mean-field model enabled us to forgo such detailed parameterizations by considering only their 
average characteristics over the network. Although this procedure comes at the price of removing biological 
details, this enabled us to use an extended Wilson-Cowan-type model13; a well-established model and extensively 
used before to study adult networks behavior18,42. This model enabled us to incorporate the available, experi-
mentally reported developmental trajectories of intrinsic neuronal and synaptic parameters (see Supplementary 
Method and Table 1), including short-term synaptic plasticity. In addition to its biophysical interpretability, this 
model is in general mathematically tractable which allowed us to derive analytical expressions, e.g. in our sta-
bility analyses (see Supplementary Methods). Moreover, this model is readily extendable to incorporate other 
biophysical mechanisms like spike-frequency adaptation, or to build a spatial graph of multiple homogenous and 
heterogeneous inter-connected networks to study, e.g. the activity propagation over different brain areas.

In sum, we have shown that by establishing and extending a novel application of an existing computational 
model to immature networks and integrating recent experimental findings, new mechanistic insights into the 
development of neural networks can be obtained. We expect that, in the future, this modelling approach can also 
guide research by providing for concrete predictions that can be tested experimentally.

Methods
Here, we briefly describe the main components of our model and the analyses. A detailed description can be 
found in Supplementary Methods.

STP-RNN model.  This model (Fig. 1a) is an extended version of Wilson-Cowan’s recurrent neural network 
(RNN) mean-field model43, for which the short-term plasticity (STP) of synaptic connections were also mod-
eled13. The equations governing the model dynamics over time are (dots denote the time derivatives):
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where j and ∈i {E, I}, ∈A E I{ , }j r r , j is the index of presynaptic population, Er (=AE) and Ir (=AI) are the aver-
age activity (in hertz) of E- and I-populations which receive, respectively, the external inputs eE and eI, e.g., from 
other brain regions, Gi is the linear input-output gain above population activity threshold θi (otherwise =G 0i ), 
and xij and uij are the dynamic variables of short-term synaptic depression and facilitation mechanisms. The 
parameter definitions and values are listed in Table 1. A STP-RNN with synaptic efficacies frozen at the FP is 
called Frozen STP-RNN (a Static-RNN-type model).

Phase plane components.  Er-Ir-plane is the 2D phase plane of E- and I-population activity rates (Ir vs. Er), 
in which the Er- and Ir- nullclines are represented as the set of points for which =dE dt/ 0r  and =dI dt/ 0r , respec-
tively. For a STP-RNN, the depicted quasi Er and Ir nullclines in Er-Ir-plane are based on the reduced STP-RNN 
(Supplementary equation (7)). Any intersection of these two quasi nullclines (i.e. the FP) can represent the steady 
state of the whole network (i.e. the 10D STP-RNN).

Stability of FPs.  To determine the stability of any FP of interest we applied linear stability analysis to our 10D 
STP-RNNs (or 2D Frozen STP-RNNs): We investigated whether all eigenvalues of the network’s system of equa-
tions linearized around the FP (using the Jacobian matrix) have strictly negative real parts (if so, the FP is stable), or 
whether at least one eigenvalue with positive real part exists (if so, the FP is unstable). This can be re-stated as: A FP 
is stable if following a small perturbation from that FP (at which the network was before perturbation), the network 
dynamics converge back to it. Conversely, if the dynamics move away from the FP or dies out, that FP is unstable.

http://7


www.nature.com/scientificreports/

1 2SCiEntifiC REPOrTS | 7: 13015  | DOI:10.1038/s41598-017-13468-z

Operating regimes and FP-domains.  The stable operating regimes of a RNN at a FP can be classified as 
an inhibition-stabilized network (ISN) vs. a Non-ISN25,26. To discriminate between these two regimes three crite-
ria were defined: (A) Excitatory instability: For the inhibitory activity rate fixed at the FP, the recurrent excitation 
is strong enough to render the E-population intrinsically unstable. (B) Excitatory stability: In contrast to (A), the 
E-population is stable per se, i.e. even with a feedback inhibition fixed at its level at the FP. (C) Overall stability: 
The dynamic feedback inhibition to the E-population is strong enough to stabilize the whole network activity. At a 
FP, a network operating under the (A) and (C) criteria is an ISN, while a network operating under the (B) and (C) 
criteria is a Non-ISN. A network, which is neither ISN nor Non-ISN at the FP, operates under an unstable regime.

We partition the Er-Ir-plane into different domains of operating regimes (FP-domains). Each FP-domain con-
tains all potential steady states (i.e. FPs) at which the network could operate under the corresponding regime. 
The area of each FP-domain is computed numerically as AOD (area of domain). Note that the borders between 
the FP-domains (Fig. 3a) were determined by using numerical simulations, when we plotted the FP-domains of 
operating regimes based on their stability criteria (A-C) obtained analytically in Supplementary Methods (see 
“Characterization of operating regimes” section in Supplementary Methods).

Cluster activity size and duration.  In a RNN, the cluster activity (network spike; PSnet) usually involves 
the population spikes44,45 in both E (PSE) and I (PSI) populations. To approximate cluster activity size, i.e. the total 
number of neurons synchronized during a cluster activity, we calculate ω= × −PS A A( )net

amp
sum
amp

sum
0  (a dimen-

sionless parameter), where Asum = Er + Ir is the sum of the activity of E- and I-populations (in hertz), A sum
amp and 

A sum
0  are the maximal activity during the cluster activity and the preceding activity, respectively, and ω is a scaling 

factor (in units of [Hz−1]) to convert the activity rate to an approximate number of activated neurons during the 
cluster activity. For simplicity, we set ω = 1, since its veridical value is not defined for the mean-field model. We 
measure the cluster activity duration as its termination time minus its onset time.

Computation of ratioPS and ratioAOD.  To investigate the impact of specific maturational processes on 
sparsification (as used in Fig. 5), we first substituted single parameters or a small combination of parameters at P10 
by their values at P20 (Table 1), followed by the computation of the ϖ γ γ γ γ= × − −γratio 100 ( )/( )P10

res
P10 P20 P10 , 

where for ratioPS we set γ = PSnet
amp with ϖ = −1, and for ratioAOD we set γ = AODISN/Unstable with ϖ = +1. γP10

res  is 
the value of γ measured after the parameter(s) value(s) substitution.

Data availability.  Custom Matlab and Mathematica codes for our model are available upon request from the 
corresponding author.
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