SCIENTIFIC REPORTS

Received: 5 June 2017 Accepted: 21 September 2017 Published online: 12 October 2017

OPEN Characterization and genomic study of "phiKMV-Like" phage PAXYB1 infecting Pseudomonas aeruginosa

Xinyan Yu¹, Yue Xu¹, Yu Gu¹, Yefei Zhu² & Xiaoqiu Liu¹

Bacteriophage PAXYB1 was recently isolated from wastewater samples. This phage was chosen based on its lytic properties against clinical isolates of Pseudomonas aeruginosa (P. aeruginosa). In the present study, characterized PAXYB1, clarified its morphological and lytic properties, and analyzed its complete genome sequence. Based on the morphology of PAXYB1, it is a Podoviridae. The linear GC-rich (62.29%) doublestranded DNA genome of PAXYB1 is 43,337 bp including direct terminal repeats (DTRs) of 468 bp. It contains 60 open reading frames (ORFs) that are all encoded within the same strand. We also showed that PAXYB1 is a virulent phage and a new member of the phiKMV-like phages genus. Twenty-eight out of sixty predicted gene products (gps) showed significant homology to proteins of known function, which were confirmed by analyzing the structural proteome. Altogether, our work identified a novel lytic bacteriophage that lyses P. aeruginosa PAO1 and efficiently infects and kills several clinical isolates of P. aeruginosa. This phage has potential for development as a biological disinfectant to control P. aeruginosa infections.

Pseudomonas aeruginosa (P. aeruginosa) is an opportunistic human pathogen that is widely distributed in various environments. P. aeruginosa can cause chronic infections or acute life-threatening infections in patients hospitalized with cystic fibrosis, otitis media, keratitis, and severe burns and in immunocompromised individuals^{1,2}. P. aeruginosa is a highly adaptable bacterium, making it one of the most resistant microorganisms in the presence of long-term antibiotic therapy. The continuing increase in the antibiotic resistance of clinical P. aeruginosa strains worldwide and a shortage of new drugs being discovered in the pipeline have led to an urgent need to explore more alternative strategies such as phage therapy, which has been demonstrated as a promising way to control P. aeruginosa-mediated infections3.

Several studies have shown the potential of phage application into the treatment of infectious diseases caused by *P. aeruginosa*, particularly in infections caused by multidrug resistant strains⁴⁻⁶. Phage therapy has been used for the control and treatment of multidrug-resistant P. aeruginosa in lung infections in mouse models and in cystic fibrosis airway lung cells in vitro^{7,8}. P. aeruginosa phages also have therapeutic effects on infectious keratitis, burn wound infection, gut-derived sepsis and chronic otitis^{9–13}. Interestingly, a mixture of six lytic phages was shown to be effective in treating clinical ear infections caused by *P. aeruginosa*¹⁴. It is generally accepted that the use of mixtures (cocktails) of phages targeting different hosts counteracts the downsides of phage therapy, such as their relatively narrow host range and emerging bacterial resistance¹⁵.

Bacteriophages are estimated to be more numerous globally (10³¹) than bacteria¹⁶. Presently, 2111 phage genomes have been sequenced (from the NCBI database). However, only some of them have been tested for their capacity to target various clinical strains either in vitro or in animal models. Amongst the 2111 phages, 152 are Pseudomonas phages (from the NCBI database), and more than twenty phages targeting P. aeruginosa have been tested in animal models these past few years^{17,18}. Compared to the large number of phages on earth, the available number of isolated phages is still relatively limited. An urgent demand for the isolation of potent, strongly lytic, well-characterized phages from the environment and for use in phage therapy is steadily growing¹⁹. The isolation of new phages against non-laboratory strains of P. aeruginosa and an analysis of their genomes and lytic behaviour will lead to a more comprehensive view of the antimicrobial potential of virulent P. aeruginosa phages.

¹Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China. ²The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China. Correspondence and requests for materials should be addressed to X.L. (email: xiaogiuliu2014(a)126.com)

Figure 1. Isolation, morphology and biological properties of phage PAXYB1. (**A**) Plaque morphology of phage PAXYB1. (**B**) Transmission electron micrographs of PAXYB1 phage particles, negatively stained with phosphotungstic acid (2% [wt/vol]). The scale bars represent 50 nm in B. (**C**) Thermo stability of PAXYB1: the phages were incubated at different temperatures for 30 min. (**D**) One-step growth curve of PAXYB1 on *P.aeruginosa* strain PAO1. (**E**) Adsorption assays of PAXYB1 on *P. aeruginosa* strain PAO1. (**F**) Individual *in vitro* lysis kinetics for PAXYB1 at an MOI of 0.001 on the *P. aeruginosa* strain PAO1. Each value is the average from three different cultures ± standard deviation in (**C**–**F**).

Here, we isolated and characterized a new phage infecting *P. aeruginosa* named PAXYB1. It is a *Podoviridae* from its virion structure, and it has a strong ability to infect several clinical isolates of *P. aeruginosa*. The genome sequence of this phage is over 90% identical to other members of the PhiKMV-like virus genus^{18,20,21}. We also analyzed the particle protein content of this phage and detected 17 structural proteins. Based on morphological, genomic, and proteomic analysis, PAXYB1 is a new member of the PhiKMV-like virus genus. In-depth characterization of this new phage will contribute to the promising therapeutic use of this phage.

Results

Isolation and morphology of the PAXYB1 bacteriophage. The lytic phage PAXYB1 isolated from wastewater was used to infect *P. aeruginosa* strain PAO1. As shown in Fig. 1A, PAXYB1 formed large, clear and round plaques approximately 0.8 cm in diameter after incubation for 12 h at 37 °C. Under the electron microscope, intact PAXYB1 particles had an approximately 50 nm-diameter icosahedral head and a short tail approximately 10 nm in length (Fig. 1B), demonstrating that PAXYB1 belongs to the *Podoviridae* family.

Host range analysis and thermo stability. To estimate the potential application of PAXYB1 in phage therapy, 20 clinical isolates of *P. aeruginosa* from different sources (Table 1), most of which are multi-drug-resistant, were used to test the lytic spectrum. The results showed that PAXYB1 was able to infect 13 of the 20 tested strains and formed clear plaques on 10 of the strains (Table 1), indicating that PAXYB1 can efficiently infect and kill some clinical isolates of *P. aeruginosa*.

Assessment of the thermal stability of PAXYB1 revealed that PAXYB1 was active at a wide range of temperatures from 37 °C to 55 °C for 30 min, with more than 70% of the phages still alive even after incubation at 60 °C (Fig. 1C). However, a marked decline of the survival rate was observed at 65 °C, with less than 1% of the phage particles surviving at 65 °C (Fig. 1C). Karumidze's study showed that the half-lives of *P. aeruginosa* phages vB_Pae-Kakheti25 and vB_Pae-TbilisiM32 are 49 and 46 min at 70 °C, respectively²¹, which indicates that these two phages are more stable than PAXYB1 at higher temperatures. A survey showed that the titres of *P. aeruginosa* phages P2S2 and P5U5 decreased following heating for 10 to 50 min at 45 °C or 60 °C²². *Pseudomonas fluorescens* bacteriophage KSL-1 titre reduction was calculated as only 1.1 log at 60 °C²³. PAXYB1 is relatively stable compared to phages P2S2, P5U5 and KSL-1 at higher temperatures.

One-step growth curve, adsorption assays and lysis kinetics. To further reveal the lytic cycle of PAXYB1, a one-step growth curve was performed. As shown in Fig. 1D, the latent and rise periods for PAXYB1 were approximately 30 and 100 min, respectively. The burst size was approximately 141 PFU/infected cell.

Adsorption assays showed that PAXYB1 particles efficiently adsorb to *P. aeruginosa* cells (ka = 3.7×10^{-9} ml min⁻¹), resulting in a 10-fold reduction in nonadsorbed phage particles 7 min after infection (Fig. 1E). This differs compared to LKD16 and phiKMV, both of which failed to produce a clear adsorption curve and showed only minor adsorption to host cells [20 to 30% at an multiplicity of infection (MOI) of 0.001]²⁴. However, they are similar to PAK_P3 and LKA1 particles^{24,25}, which efficiently adsorb to *P. aeruginosa* cells 4–5 min after infection.

We then determined the lysis kinetics of PAXYB1 on the PAO1 stain at MOI 0.001 in liquid medium (Fig. 1F). The OD values decreased approximately 75 min after incubation with PAXYB1, similar to PAK_P1, PAK_P2, PAK_P4 and PAK_P5, which lyse the PAK-lumi strain after approximately 70 min²⁶. PAXYB1 lysis on PAO1 occurred more rapidly compared to LUZ19 (270 min), PhiKZ (210 min) and LBL3 (180 min) on the PAK-lumi stain²⁶.

Analysis and annotation of the PAXYB1 genome. Throughout sequencing of the PAXYB1 genome, reads were assembled into a circular, single contig of 42,869 bp. To verify the obtained nucleotide sequence, the genome DNA was further digested with *Eco*RI (3 sites), *Hin*dIII (5 sites), *Xba*I (2 sites), *Bam*HI (0 site), *Sal*I (2 sites) and *Sac*I (1 site) (Fig. S1). As expected, the genome could not be digested by *Bam*HI and only released a few fragments using the other five restriction endonucleases for digestion. However, the restriction digestions of *Hind*III, *Xba*I, and *Sac*I produced unexpected 1.3, 6.1 and 3.2 kb fragments, respectively, indicating that the PAXYB1 genome is likely linear but not circular. To determine the terminal sequences of the PAXYB1 genome, the 6.1 and 3.2 kb fragments digested by *Xba*I and *Sac*I, respectively, were recovered and directly sequenced with outward pointing primers. As we anticipated, the sequencing reaction came to a stop at the end of the genome. Thus, the PAXYB1 genome is indeed linear and has identical direct terminal repeats (DTRs) of 468 bp.

The reassembled genome of PAXYB1 is 43,337 bp in length and has an average G + C content of 62.29%. Using artemis and blast analysis, 60 ORFs (\geq 30 aa) were predicted as potential genes, which were encoded within the same direction ((Fig. 2, Table 2). Amongst these, 28 gene products showed significant homology to proteins with known function, and the other 32 genes are presumed to encode hypothetical proteins. No gene related to phage lysogeny was found, confirming the lytic characteristics of phage PAXYB1.

The overall gene organization of phage PAXYB1 resembles that of the well-known *P. aeruginosa* phage phiKMV²⁴. The overall nucleotide sequence of the PAXYB1 genome is approximately 94% identical to that of phiKMV (Table S1). Similar to phage phiKMV²⁷, the PAXYB1 genome also comprises early, early middle, middle and late clusters according to the genes' functions (Fig. 2). The early region (ORF1-ORF16) contains all unknown function genes. The early middle region contains genes that are usually associated with DNA metabolism, including the putative DNA-binding protein, DNA primase, DNA helicase and DNA ligase (Fig. 2). The middle cluster (ORF26-ORF36) is likely responsible for DNA metabolism with DNA polymerase, exonuclease, endonuclease and RNA polymerase. Amongst these genes, the putative DNA-dependent RNA polymerase (ORF36) is located at the end of the DNA metabolism gene cluster, which is the feature of the phiKMV-like phages that is distinguished from other members of the T7 supergroup²⁷. The remaining ORFs (ORF37-ORF60), which encode structural and lysis proteins, constitute the late cluster. Based on the similarity of the sequence and gene organization between PAXYB1 and phiKMV^{24,27}, we conclude that PAXYB1 is a phiKMV-like virus.

We also searched the genome regions of PAXYB1 for promoters. Five putative host promoters (two upstream ORF2 and three upstream ORF3) were identified within the first 1,309 bp of the PAXYB1 genome (Fig. 3), similar to that in the LKD16 genome²⁴. PAXYB1 differs from phiKMV, however, which has four potential host sigma70 promoters upstream ORF1²⁴. PAXYB1 has a promoter in front of ORF17 (DNA-binding protein) that supports DNA-binding proteins and downstream genes that are located in the early middle cluster (Fig. 3). Moreover, two promoters were predicted in front of ORF37 (the gene after RNA polymerase), which is a starting site of a late cluster (Fig. 3). Eleven promoters were only found in PAXYB1 but not in the other two phiKMV phages (Fig. 3), suggesting slight differences in transcriptional regulation amongst phiKMV-like phages.

Comparison of the genomes of PAXYB1 and other phiKMV-like phages. To investigate the relationship between newly isolated PAXYB1 and other phiKMV-like phages, we performed a blastn analysis of the entire PAXYB1 genome against the nucleotide collection database at NCBI. As expected, the PAXYB1 genome is

Strains	Resistance	Source	Lysed or not
P. aeruginosa PAO1		Standard Laboratory Reference Strain	Clear plaque
Escherichia coli K-12 MG1655		Standard Laboratory Reference Strain	N
P. aeruginosa 2320	Amikacin, minocycline, ticarcillin/clavulanic acid, aztreonam, piperacillin, ceftazidime, ticarcillin	Sputum, Male, 86 [#]	N
P. aeruginosa 2321	Minocycline, ticarcillin/clavulanic acid, aztreonam, piperacillin, ceftazidime, ticarcillin	Wound secretion, Male, 48 [#]	Clear plaque
P. aeruginosa 2324	Minocycline, ticarcillin/clavulanic acid, ticarcillin	Wound secretion, Male, 71 [#]	Turbid plaque
P. aeruginosa 2325	Minocycline	Sputum, Female, 65 [#]	Clear plaque
P. aeruginosa 2357	Minocycline, ticarcillin/clavulanic acid, ticarcillin	Sputum, Male, 58 [#]	N
P. aeruginosa 2372	Ampicillin, cefotetan, ceftriaxone, cotrimoxazole, ampicillin/ sulbactam, cefazolin	Blood, Female, 77 [#]	Clear plaque
P. aeruginosa 2382	Amikacin, cefepime, levofloxacin, piperacillin, ceftazidime, ticarcillin, gentamicin, aztreonam, imipenem, meropenem, cefoperazone/sulbactam, ticarcillin/clavulanic acid, piperacillin/ tazobactam	Sputum, Male, 87#	N
P. aeruginosa 2383	Ticarcillin/clavulanic acid, imipenem, aztreonam, ceftazidime, ticarcillin, levofloxacin, cefoperazone/sulbactam	Sputum, Male, 82 [#]	Clear plaque
P. aeruginosa 2384	Ticarcillin, imipenem, ticarcillin/clavulanic acid	Sputum, Female, 69#	Clear plaque
P. aeruginosa 2387	meropenem, ticarcillin/clavulanic acid, aztreonam, levofloxacin, ticarcillin, imipenem	Sputum, Male, 69 [#]	Clear plaque
P. aeruginosa 2388	Amikacin, cefepime, levofloxacin, gentamicin, imipenem, cefoperazone/sulbactam, piperacillin/tazobactam, ampicillin, cefoxitin, ciprofloxacin, tigecycline, cotrimoxazole, amoxicillin/ clavulanic acid, cefazolin, ceftriaxone, tobramycin, nitrofurantoin	Urine, Male, 81#	Clear plaque
P. aeruginosa 2395	Ampicillin, cefotetan, ceftriaxone, cotrimoxazole, ampicillin/ sulbactam, cefazolin	Blood, Female, 67 [#]	Clear plaque
P. aeruginosa 2399	Imipenem	Blood, Female, 73 [#]	Clear plaque
P. aeruginosa 2401	Amikacin, ticarcillin, gentamicin, imipenem, ticarcillin/clavulanic acid	Sputum, Male, 86 [#]	N
P. aeruginosa 2541	Amikacin, cefepime, levofloxacin, piperacillin, ceftazidime, ticarcillin, gentamicin, aztreonam, imipenem, meropenem, cefoperazone/sulbactam, ticarcillin/clavulanic acid, piperacillin/ tazobactam	Sputum, Male, 50#	Clear plaque
P. aeruginosa 2558	Ticarcillin, ticarcillin/clavulanic acid	Sputum, Female, 64#	Turbid plaque
P. aeruginosa 2579	Ticarcillin, imipenem, ticarcillin/clavulanic acid	Urine, Female, 67#	N
P. aeruginosa 2612	Imipenem	Sputum, Female, 61#	N
P. aeruginosa 2619	Levofloxacin, piperacillin, ticarcillin, gentamicin, imipenem, meropenem, ticarcillin/clavulanic acid	Sputum, Male, 81 [#]	N
P. aeruginosa 1609443	Levofloxacin, ticarcillin, gentamicin, imipenem, ticarcillin/ clavulanic acid	n.d.	Turbid plaque

Table 1. Test lysis spectrum of phage PAXYB1. Positive results are indicated by "Clear plaque" or "Turbid plaque", and negative results are indicated by "N"; n.d., no data available; *numbers in the column "source" represent "the age of the individual".

highly homologous (coverage 86–97%, identity 91–99%) to 15 other phiKMV-like phages. Their genomic properties are summarized in Table S1. We observed that although isolated from different sources and areas all over the world, many characteristics of the 16 phages are remarkably similar, including the genome size and G + Ccontent. Ten of these sixteen phages were determined to have a similar size (413–488 bp) of DTRs (Table S1).

Most of the genomic diversity of these 16 phages is displayed within the early/early middle clusters, as frequently observed in phage genomes (Fig. S2). A second hot spot of diversity is found within the cluster encoding the tail fibers (Fig. S2). To further investigate the differences between tail fiber proteins of PAXYB1 and other phiKMV-like phages, we performed a protein BLAST analysis to search the homologues of the four proteins in other phages. The global identities between the homologous proteins were then determined by the EMBOSS Needle tool at EMBL-EBI. As shown in Table S2, in other phiKMV-like phages, the homologues of four tail fiber proteins are also arranged sequentially. Gp49 of PAXYB1 is considerably conserved in phiKMV-like phages (identity 83.7–100%), whereas the other three tail fiber proteins vary significantly (28.1–99.3%, 24.9–100% and 34.3–100% of identity, respectively).

Considering the complexity of the evolutionary relationship of the phiKMV-like phages group, phylogenetic analyses were performed based on RNAP (Fig. 4A) and whole genome sequence comparisons (Fig. 4B). In the two phylogenetic trees, the results showed that 16 phages were both classified into three branches. Even though the two trees report distinct evolutionary relationships between the phages, they both indicate that PAXYB1, MPK6, ABTNL and MPK7 are more closely related between them and that PAXYB1 is distantly related with phiKMV. Combined with the overall nucleotide blast result (Fig. S2), PAXYB1 has the closest relationship with MPK6. In Fig. 3, almost all homologous proteins between PAXYB1 and MPK6 display more than 80% identity, confirming that these two phages are closely related. The most significantly different region between these

two phages is gp11-13 (all hypothetical proteins in phiKMV-like phages). There are no homologous proteins of gp11 and gp13 found in MPK6, whereas the gp12 amino acid sequence is 61.9% identical to the corresponding MPK6 protein (Fig. 3). Gp3 and gp19 of PAXYB1, two hypothetical proteins, also exhibited slightly lower identities (64.1% and 50.3%, respectively) with MPK6 (Fig. 3). Gp11-13, gp3, and gp19 have homologues in other phiKMV-like phages, such as MPK7, phiKF77 and phiKMV. These five genes are located in low-identity genomic regions of phiKMV-like phages (Fig. S2), indicating that they are likely highly variable in the process of phage evolution. In agreement with the evolutionary relationship, the PAXYB1 genome is relative different from that of phiKMV. Three out of four putative tail fiber proteins, gp50-52 of PAXYB1, show considerably low homologies with the corresponding proteins of phiKMV (identities of 28.1%, 24.9% and 34.3%, respectively) (Table S2). The difference of tail fiber proteins of these phages might cause difference in their host range.

Structural proteins of phage PAXYB1. The highly purified PAXYB1 particles were separated on SDS-PAGE and stained with silver (Fig. 5, Fig. S3). At least 17 protein bands with molecular masses of 6.9–144 kDa were observed. In the previous studies, 12, 13 and 18 proteins from phage phiKMV, LKD16 and M32 were detected, respectively^{21,24,28}. To identify as many structural proteins as possible, whole phage PAXYB1 particles were directly digested with trypsin and then detected by mass spectrometry. The results showed that 17 structural proteins of PAXYB1 were detected (Table 3). Most of them were also found in the other three PhiKMV-like phages. Scaffolding protein was also confirmed as a structural protein, similar to the phiKMV phage²⁸. Furthermore, three additional proteins (gps16, 50, and 57) that were not previously identified were also found in the PAXYB1 virions. Amongst these proteins are located in the late region of the PAXYB1 genome. Gp50 is predicted as one of the tail fiber proteins of PAXYB1. Gp57 (Rz protein) is a member of the lysis cassette that is highly conserved amongst phiKMV-like viruses and organized with four overlapping genes²⁷.

Compared to the results of the SDS-PAGE of PAXYB1 particles, 17 identified proteins corresponded to the protein bands in turn (Fig. 5, Fig. S3, and Table 3). These results convincingly demonstrated that these 17 proteins are related to particles of phage PAXYB1. These proteins, particularly the three proteins not previously identified, may reveal more details of the PAXYB1 structure.

Discussion

The enormous variety of bacteriophages in environmental reservoirs provides us a successful phage-based antibacterial treatment strategy, which is dependent on the availability of new phages against different pathogen hosts. In this work, we isolated a new phage PAXYB1, which infects *P. aeruginosa*, and investigated its biological properties. PAXYB1 also has a strong ability to infect several clinical isolates of *P. aeruginosa*, which makes it promising for use in phage therapy. A structural analysis of PAXYB1 indicates that it is a new member of the *Podoviridae* family, exhibiting a morphological similarity to several other *P. aeruginosa* phages, such as MPK6, LUZ19 and phiKMV^{27,29,30}.

The advancement of sequencing technology has allowed us to explore the genomic characterization of isolated phages more quickly and deeply, thus giving us better insights into their biological nature. Furthermore, a genomic analysis of phages may also provide us useful information in regard to their safety as potential therapeutics, such as excluding temperate phages or phages carrying toxins or antibiotic resistance genes³¹. PAXYB1 is likely lytic since no genes related to phage lysogeny were found in its genome. The PAXYB1 genome is intensely homologous with the genome of known members of phiKMV-like phages (Fig. 3, Fig. S2). PAXYB1's genome information, together with its structural characteristics, lead to the conclusion that it is a new member of the phiKMV-like phage group²⁴. The phiKMV-like viruses constitute an important genus of T7 related phages that infect *P. aeruginosa* and seem to be environmentally important as they appear ubiquitously and infect a wide range of *P. aeruginosa* strains²⁹. Genomes of several phiKMV-like phages have been extensively analyzed, such as phiKMV, LKD16, LUZ19 and MPK6^{18,22,26}.

To date, 15 members of phiKMV-like phages have been sequenced. PAXYB1 displays strong similarity at the nucleotide level (up to 90% identity) to other "phiKMV-like viruses" (Table S1). The early and early middle regions of PAXYB1 are different with other PhiKMV-like phages (Fig. 3, Fig. S2). All predicted genes' functions remain unknown in the early cluster of PAXYB1. Only a few early middle proteins of known phiKMV-like phages have been expressed and examined in detail 21, 24, 28. Some early proteins of phages are gene regulators that interact with genes of the bacteria host. For example, T4 phage early proteins AsiA, MotA and Mrh can interact with sigma70 or sigma32 subunits of bacterial host RNA polymerase^{32,33}. Early protein E3 of phage SPO1 led to growth inhibition when expressed in E. coli through targeting on host RNA polymerase^{20,34}. Rybniker et al. identified three ORFs within an early operon of mycobacteriophage L5, which encodes gene products (gp77, gp78 and gp79) that are toxic to the host $Mycobacterium smegmatis^{35}$. The co-expression network between P. aeruginosa phage PaP3 and its host suggested that the early genes of PaP3 had the primary responsibility to inhibit the expression of host genes³⁶. Later on, one early gene product of PaP3, gp70.1, was shown to have growth-inhibitory effects on *P. aeruginosa* and *E. coli*, which targets the host protein RpoS³⁷. Phages' early genes encoding growth inhibitors of bacteria may be used as antibacterial agents. The identification of their cellular targets might provide a tool for the rapid identification of promising drug targets in emerging pathogens, such as multidrug resistant P. aeruginosa. A survey revealed that most (64%) of the phage toxic proteins were encoded by phage early genes³⁸. Therefore, we should further investigate the function of PAXYB1 early genes to determine the potential growth inhibitors of bacteria and toxic proteins in our future studies.

Phage PAXYB1 also encodes its own RNA polymerase (RNAP, ORF36), which is located at the end of the middle cluster that is a feature of the phiKMV-like phages. This phage may transcribe its late genes using its own RNAPs, similar to other phiKMV-like phages²⁷. In the late region, PAXYB1 genes are organized in a very similar way with other known phiKMV-like phages that encode phage particle proteins and lysis proteins. Most

Figure 2. Genome organization of PAXYB1. The first circles represent the ORFs on the sense strands in PAXYB1. Sixty ORFs are marked with different colours according to their different functions and arranged in early, early middle, middle and late clusters. The DTRs are also indicated. The second circle shows the G/C content. Red outward and blue inward indicate that the G/C content of this region is high and less than the average G/C content of the whole genome, respectively. The third circle shows the GC skew.

of the predicted structural proteins of PAXYB1 were confirmed in the particle proteins by SDS-PAGE and mass spectrometry (Fig. 5, Table 3). We also found potential lysis cassette including endolysins, holin, Rz and Rz' genes within late cluster of the PAXYB1 genome that is conserved amongst phiKMV-like viruses³⁹. Interestingly, an analysis of one lysis protein gp57 (Rz protein) identified in PAXYB1 phage particles using mass spectrometry indicated that it may represent a component in PAXYB1 particles. Most of the known phiKMV-like phages have short or long gaps in late clusters compared to PAXYB1, particularly in genes encoding tail fiber proteins (gp50-52) (Table S2). Ceyssens' study showed that some phiKMV-like phages are similar at the genome level, but they display a surprisingly large variation in various phenotypic properties, such as little overlap in host spectrum and different ability in escaping immune defence²⁰. In particular, these phages had limited overlaps in the host spectrum even with almost identical tail fibers, implying that minor genomic changes can cause a significant

NormNo	ORF	Start	Stop	Direction	No of residues	Mol mass (kDa)	Calculated	Putative function	
And P And P <th< th=""><th>ORF1</th><th>727</th><th>960</th><th></th><th>77</th><th>8 3</th><th>6.08</th><th>hypothetical protein</th></th<>	ORF1	727	960		77	8 3	6.08	hypothetical protein	
CALA P.2 P.2 P.4 P.4 <td>ORF2</td> <td>942</td> <td>1205</td> <td>т </td> <td>117</td> <td>12.8</td> <td>11.44</td> <td>hypothetical protein</td>	ORF2	942	1205	т 	117	12.8	11.44	hypothetical protein	
CACS C173 LA CACS C123 Opposite al protein CREV 200 240 + 179 18.4 11.00 hypothetical protein CREV 2010 3240 + 139 9.82 hypothetical protein CREV 2010 329 + 139 4.7 4.50 hypothetical protein CREV 303 370 + 120 1.1.0 6.89 hypothetical protein CREV 3780 370 + 120 1.3.1 6.55 hypothetical protein CREVI 4483 4.68 + 750 6.6 5.45 hypothetical protein CREVI 452 4.68 + 750 1.8.3 5.90 hypothetical protein CREVI 452 4.68 4.7 1.8.9 5.90 hypothetical protein CREVI 570 1.70 4.7 8.7 6.6 5.8 hypothetical protein CREVI 573	ORF2	1770	2062	+	04	12.8	10.25	hypothetical protein	
OACH OACH CA SA Mypothetical protein ORFA S00 S07 4 S0 S07	ORF3	2063	2003	+	75	0.7	11.00	hypothetical protein	
0.8.65 2.0. 2.80 2.80 7 1.70 1.8.3 5.8.3 0.100000000000000000000000000000000000	ORF4	2003	2290	+	170	10.4	0.28	hypothetical protein	
OKNC S200 Robin P Robin P Robin P Robin P 0KRP S00 S120 + S9 4.7 4.50 Nypohetical protein 0KRP S37 S720 + 61 7.3 12.43 Nypohetical protein 0KR1 S48 + S9 6.6 5.45 Nypohetical protein 0KR1 S48 + S9 0.3 6.55 Nypohetical protein 0KR14 4484 477 i S7 0.8 Nypohetical protein 0KR15 S68 472 + 18 1.4 S1 Nypohetical protein 0KR16 S71 7.08 A72 + 139 1.5.7 4.98 Nypohetical protein 0KR16 S73 7.70 S7 1.3 4.6 7.8 Nypohetical protein 0KR16 S73 7.70 S7 4.7 3.7 Nypohetical protein 0KR17	ORF3	2301	2040	+	24	2.0	9.28	hypothetical protein	
CALP SHO SHO <td>ORF0</td> <td>2903</td> <td>3007</td> <td>+</td> <td>34</td> <td>3.9</td> <td>9.82</td> <td>hypothetical protein</td>	ORF0	2903	3007	+	34	3.9	9.82	hypothetical protein	
Order Jobs Jobs Jobs Jobs Jobs Jobs Jobs ORFI JS70 JS70 + 17.2 8.7 10.26 hypothetical protein ORFI JS89 J148 + 59 6.6 5.45 hypothetical protein ORFI J448 H 95 10.3 6.55 hypothetical protein ORFI J432 468 H 78 8.3 8.29 hypothetical protein ORFI J432 468 H 78 1.3 0.3 Pypothetical protein ORFI S70 712 H 130 1.3 0.3 pypothetical protein ORFI 639 712 H 130 1.5 4.8 hypothetical protein ORFI 639 770 H 132 7.8 hypothetical protein ORF1 531 788 H 122 7.8 H H 124 H H H	ORF7	2208	3129	+	122	4.7	4.30	hypothetical protein	
OACE SAGE SAGE <th< td=""><td>ORFO</td><td>3208</td><td>3370</td><td>+</td><td>75</td><td>9.7</td><td>10.26</td><td>hypothetical protein</td></th<>	ORFO	3208	3370	+	75	9.7	10.26	hypothetical protein	
OACH SYA SYA <thsya< th=""> <thsya< th=""></thsya<></thsya<>	ORF9	2797	3/90	+	/5	8.7	10.20	hypothetical protein	
OACH 1 1399 139 0.30 1,43 10.plotticial protein ORF12 448 4455 + 95 10.3 6.55 hypothetical protein ORF13 4432 4684 4977 1.0.8 9.30 hypothetical protein ORF14 554 5472 + 138 14.4 5.13 hypothetical protein ORF16 5541 7200 + 139 13.3 9.63 patative DNA-bubical protein ORF17 5849 6712 1 199 15.7 4.98 hypothetical protein ORF18 6713 7.80 + 197 2.0.0 5.88 hypothetical protein ORF20 7733 + 67 7.8 9.76 hypothetical protein ORF21 7707 1.74 4.74 5.38 putative DNA primase ORF24 977 1.974 4.94 10.1 1.1.1 1.1.2 hypothetical protein ORF24 1137 1130 </td <td>ORF10</td> <td>2060</td> <td>3972</td> <td>+</td> <td>50</td> <td>7.3</td> <td>5 45</td> <td>hypothetical protein</td>	ORF10	2060	3972	+	50	7.3	5 45	hypothetical protein	
OHC1 HTM HTM HTM HTM HTM HTM HTMM ORF13 4424 4874 477 + 97 10.8 9.90 hypothetical protein ORF14 6454 4970 + 97 10.8 9.90 hypothetical protein ORF16 5410 900 + 119 13.3 7.89 hypothetical protein ORF17 5849 6712 + 287 31.3 9.63 hypothetical protein ORF19 6819 720 + 179 20.0 5.88 hypothetical protein ORF20 7330 738 + 4 4 2 5.75 hypothetical protein ORF21 1730 7330 + 4 2 5.75 hypothetical protein ORF24 1731 1720 + 42 3.13 5.81 hypothetical protein ORF24 1731 1744 4 3.13 5.81 hypothetical pro	ORF11	3909	4148	+	59	0.0	5.45	hypothetical protein	
ORP14 648.4 647.2 78 6.3 6.29 10plometical protein ORP14 648.4 477.1 - 78 53 5.20 hypothetical protein ORP15 5056 572 - 138 14.4 5.13 bypothetical protein ORP16 584 6702 - 137 3.13 9.63 pathetical protein ORP16 6841 6712 - 179 2.0.0 5.88 hypothetical protein ORP10 733 7.88 + 41 4.2 5.75 hypothetical protein ORF20 713 7.84 41 4.2 5.75 hypothetical protein ORF20 713 7.84 41 4.2 5.75 hypothetical protein ORF20 713 1733 1.4 4.2 5.35 hypothetical protein ORF20 1737 1737 4 206 2.31 5.21 hypothetical protein ORF20 1737	ORF12	4148	4455	+	95	10.5	8.35	hypothetical protein	
Okr I USA USA <thusa< th=""> <thusa< t=""></thusa<></thusa<>	ORF15	4452	4008	+	/8	8.5	0.50	hypothetical protein	
ORCHI 5306 54/2 + 138 14.4 5.13 PryDimetrical protein ORFIL 5540 5702 + 139 13.3 7.89 hypothetical protein ORFI1 5541 6712 + 139 15.7 4.98 hypothetical protein ORF19 6781 730 730 + 179 20.00 5.84 hypothetical protein ORF19 7313 738 + 67 7.8 9.76 hypothetical protein ORF21 7050 8530 + 422 47.4 5.38 putative DNA hymase ORF24 9775 10377 1 4 266 2.3 5.11 hypothetical protein ORF25 1132 1163 1.54 9.8 ATP-dependent DNA hypothetical protein ORF26 1132 1163 1.54 9.8 1.54 hypothetical protein ORF26 1121 hypothetical protein 1.54 1.66 1.40 1.61 <td>ORF14</td> <td>4684</td> <td>49//</td> <td>+</td> <td>97</td> <td>10.8</td> <td>9.50</td> <td>hypothetical protein</td>	ORF14	4684	49//	+	97	10.8	9.50	hypothetical protein	
Okr I S341 S300 + 119 1.3.3 2.89 Pypometrical protein ORFI7 584 6712 1.4 139 15.7 4.98 hypothetical protein ORF18 6710 7.30 7.4 179 20.0 5.88 hypothetical protein ORF10 580 7.33 7.38 4 41 4.20 5.75 hypothetical protein ORF21 7.30 7.38 4 41 4.20 5.75 hypothetical protein ORF24 9.76 1 22.4 7.4 5.38 putative DNA helicase ORF25 1037 1132 4 2.7 3.10 8.98 ATP dependent DNA helicase ORF26 1132 11605 4 9.1 1.1.1 1.1.2 hypothetical protein ORF27 1132 1162 4 9.1 1.1.3 9.5 putative DNA hejmease ORF26 1132 1162 4 9.1 1.1.1 1.1.2 <td>ORF15</td> <td>5056</td> <td>54/2</td> <td>+</td> <td>138</td> <td>14.4</td> <td>5.13</td> <td>hypothetical protein</td>	ORF15	5056	54/2	+	138	14.4	5.13	hypothetical protein	
ORCH SPA D1.3 NP.3 PLAD DURLING ORF1B 671 710 + 139 1.5.7 4.88 hypothetical protein ORF19 6981 7520 + 179 2.0.0 5.88 hypothetical protein ORF20 763 733 + 67 7.8 9.76 hypothetical protein ORF21 767 + 74 3.10 8.91 putative DNA primase ORF24 775 10377 + 266 22.3 5.21 hypothetical protein ORF26 1121 1605 + 9.8 8.98 APP-dependent DNA ligase ORF26 1121 1605 + 9.1 11.1 11.12 hypothetical protein ORF26 1191 1434 + 807 9.8 hypothetical protein ORF26 1191 1434 + 807 9.8 hypothetical protein ORF26 11912 1665 + 13	ORF16	5541	5900	+	119	13.3	7.89	nypotnetical protein	
OACH 16 674 7.10 + 1.39 1.5.7 4.98 phypothetical protein ORF1P 681 720 + 1.70 2.00 5.88 hypothetical protein ORF1P 730 733 + 6.7 7.8 9.76 hypothetical protein ORF21 8700 7.33 + 6.7 7.8 9.76 hypothetical protein ORF23 8707 1.4 2.2 7.4 5.38 putative DNA helcase ORF24 9757 1.037 + 2.06 2.3 5.21 hypothetical protein ORF25 1037 1.404 1.41 1.12 hypothetical protein ORF26 1132 1.065 + 1.03 1.13 9.85 hypothetical protein ORF27 1439 1.452 + 1.06 1.44 9.84 hypothetical protein ORF30 1137 1.452 + 1.03 3.5.3 5.87 hypothetical protein	ORF17	5849	6/12	+	287	31.3	9.63	putative DNA-binding protein	
Okr 19 6881 7.5.0 1.7.9 20.0 5.88 hypothetical protein ORPL20 7530 733 + 67 7.8 9.76 hypothetical protein ORP121 730 733 + 67 7.8 9.76 hypothetical protein ORP23 770 8409 976 + 422 47.4 5.38 putative DNA helicase ORP24 9757 10377 4 420 2.3 5.21 hypothetical protein ORP25 1037 1132 + 315 5.1 8.98 ATP-dependent DNA ligase ORP26 1132 11605 + 94 1.1 1.12 hypothetical protein ORP27 1162 1163 94 313 5.65 putative DNA polymerase ORP30 1475 1650 9 9.8 5.65 putative DNA chapdemetras ORP31 1475 1652 + 164 9.67 putative DNA chapdemetra	ORF18	6/91	7210	+	139	15.7	4.98	hypothetical protein	
ORF20 733 733 + 41 4.2 5.75 hypothetical protein ORF21 730 773 + 670 78 976 hypothetical protein ORF21 776 839 + 274 310 891 putative DNA helicase ORF24 9767 1377 + 206 22.3 5.21 hypothetical protein ORF26 1321 11605 + 94 11.1 11.12 hypothetical protein ORF26 1321 1432 + 807 91.8 5.65 putative DNA polymerase ORF26 1349 1554 4 36.8 5.42 hypothetical protein ORF30 1574 1669 + 313 35.3 5.87 putative DNA ophymerase ORF31 1574 1669 + 313 35.3 5.87 putative DNA ophymerase ORF31 1574 1669 + 36.4 4.4 16.4 9.7 hy	ORF19	6981	7520	+	179	20.0	5.88	hypothetical protein	
Oder 1 7.50 7.58 9.76 hypothetical protein ORF22 7706 8530 + 67 3.81 putative DNA primase ORF23 899 9767 + 422 47.4 5.38 putative DNA helicase ORF24 9757 1037 + 206 2.3 5.21 hypothetical protein ORF26 1132 11605 + 916 1.12 hypothetical protein ORF27 1160 1192 + 106 12.4 7.83 hypothetical protein ORF28 1199 14342 + 807 91.8 5.65 putative DNA polymerase ORF30 1757 1655 + 131.3 9.54 hypothetical protein ORF31 1757 1655 + 131.3 5.37 S-3' econuclease ORF31 1752 1685 + 348 0.4 9.47 hypothetical protein ORF31 1712 1685 + 348<	ORF20	7513	7638	+	41	4.2	5.75	hypothetical protein	
ORP22 7706 8590 + 274 31.0 891 putative DNA primase ORF24 975 10377 + 420 47.4 5.38 putative DNA helicase ORF24 9757 10377 + 420 62.3 5.21 hypothetical protein ORF25 1037 11324 + 315 5.1 8.98 ATP-dependent DNA ligase ORF26 1131 11605 + 94 11.1 11.12 hypothetical protein ORF27 11602 11924 + 06 12.4 7.83 hypothetical protein ORF29 1433 1450 + 013 1.3 9.85 hypothetical protein ORF30 1712 18168 4 349 36.8 5.42 hypothetical protein ORF31 1712 1816 4 343 5.3 S67 putative DNA ohymorase ORF33 1712 1816 4 343 5.4 Nopothetical pro	ORF21	7530	7733	+	67	7.8	9.76	hypothetical protein	
ORP24 8499 976" 4 422 47.4 5.38 putter DNA helicase ORP24 9757 10377 + 206 22.3 5.21 hypothetical protein ORP25 1037 11324 + 315 5.15 8.98 ATP-dependent DNA ligase ORP26 1130 11605 + 94 11.1 11.12 hypothetical protein ORP27 11602 1132 + 106 12.4 7.83 hypothetical protein ORP30 11439 14432 + 807 91.8 5.65 putative DNA helicase ORF30 1479 14339 1450 + 103 11.3 9.85 hypothetical protein ORF31 1575 1574 1685 + 313 5.3 5.87 5'.3' conuclease ORF34 1678 1685 + 344 0.44 9.17 hypothetical protein ORF34 1876 1870 16.63 5.90	ORF22	7706	8530	+	274	31.0	8.91	putative DNA primase	
ORP24 975 1037 + 206 22.3 5.21 hypothetical protein ORF25 11321 11321 + 315 35.1 8.98 ATP-dependent DNA ligase ORF25 11321 11605 + 94 11.1 11.12 hypothetical protein ORF26 11321 14630 + 106 12.4 7.83 hypothetical protein ORF26 1433 14630 + 103 1.13 9.85 hypothetical protein ORF30 1754 16655 + 313 35.3 5.87 5'-3' conuclease ORF31 1574 1665 + 313 35.3 5.87 bypothetical protein ORF33 1712 18168 + 348 40.4 9.17 bypothetical protein ORF34 1875 1816 54 5.3 5.87 bypothetical protein ORF35 18175 2162 + 157 18.1 6.72 DNA-dependen	ORF23	8499	9767	+	422	47.4	5.38	putative DNA helicase	
OHCP2 1037 1132 + 315 5.1 8.98 AIP-dependent DNA ligase ORF26 11321 1160 + 94 11.1 11.12 hypothetical protein ORF26 11919 14342 + 807 91.8 5.65 putative DNA polymerase ORF28 14919 14342 + 807 91.8 5.65 putative DNA polymerase ORF30 14705 15734 + 349 36.8 5.42 hypothetical protein ORF31 16754 1660 16.4 9.67 putative DNA endounclease VII ORF33 1722 1818 + 313 35.3 5.87 9.47 econdease ORF34 1877 1818 4.4 40.4 9.17 hypothetical protein ORF35 1842 18706 + 142 6.59 hypothetical protein ORF36 18715 2160 4 157 18.1 6.51 hypothetical protein OR	ORF24	9757	10377	+	206	22.3	5.21	hypothetical protein	
ORP27 11.1 11.12 hypothetical protein ORF27 11602 1192 + 106 12.4 7.83 hypothetical protein ORF28 1139 1433 4 807 91.8 5.65 putative DNA polymerase ORF29 1439 14650 + 103 11.3 9.85 hypothetical protein ORF30 1705 15754 + 349 36.8 5.42 hypothetical protein ORF31 15754 16695 + 313 35.3 5.87 5'-3' econuclease ORF32 16685 1712 14168 40.4 9.17 hypothetical protein ORF34 1878 1852 + 124 14.2 6.59 hypothetical protein ORF35 18715 21162 + 815 91.8 6.72 DNA-dependent RNA polymerase ORF36 18715 2160 5.4 6.55 10.71 hypothetical protein ORF37 2139 <td< td=""><td>ORF25</td><td>10377</td><td>11324</td><td>+</td><td>315</td><td>35.1</td><td>8.98</td><td>ATP-dependent DNA ligase</td></td<>	ORF25	10377	11324	+	315	35.1	8.98	ATP-dependent DNA ligase	
ORF27 I102 I1922 I I06 I2.4 7.83 hypothetical protein ORF28 I191 I432 I 807 91.8 5.65 putative DNA polymerase ORF30 I4705 I5754 I 03 11.3 9.85 hypothetical protein ORF30 I4705 I5754 I 349 36.8 5.42 hypothetical protein ORF31 15754 I 313 35.3 5.87 5'-3' exonuclease ORF33 I712 I8168 I 146 I6.4 9.67 putative DNA endonuclease VII ORF34 I817 I8162 I I I46 6.3 508 hypothetical protein ORF35 I851 I161 I 81 6.57 DNA-dependent RNA oplymerase ORF37 I2150 I2161 I 83 9.4 10.71 hypothetical protein ORF38 I2010 I2315 I I I I I	ORF26	11321	11605	+	94	11.1	11.12	hypothetical protein	
ORF2s 11919 14342 + 807 91.8 5.65 putative DNA polymerase ORF29 14339 1460 + 103 11.3 9.85 hypothetical protein ORF30 15754 6665 + 313 35.3 5.87 5'-3' econuclease ORF30 15754 6665 + 313 35.3 5.87 5'-3' econuclease ORF33 1712 18168 + 348 40.4 9.17 hypothetical protein ORF34 18175 1852 + 124 14.2 6.59 hypothetical protein ORF35 18515 1163 4 815 91.8 6.72 hypothetical protein ORF37 12150 1616 + 815 91.8 6.72 hypothetical protein ORF38 2101 22.01 14 83 9.4 10.71 hypothetical protein ORF34 2152 150 151 151 152 hypothetical pr	ORF27	11602	11922	+	106	12.4	7.83	hypothetical protein	
ORF29 I4339 I4650 + 103 11.3 9.85 hypothetical protein ORF30 1470 1574 + 349 36.8 5.42 hypothetical protein ORF31 1665 + 313 35.3 5.87 5'-3' exonuclease ORF32 1665 1712 8168 + 348 40.4 9.17 hypothetical protein ORF34 18178 1852 + 124 14.2 6.59 hypothetical protein ORF35 1852 1102 + 815 9.18 6.72 DNA-dependent RNA polymerase ORF36 1210 2160 + 815 9.4 10.71 hypothetical protein ORF37 2130 2161 + 83 9.4 10.71 hypothetical protein ORF38 2161 2274 81 98 10.5 11.03 hypothetical protein ORF40 2232 22466 + 76 8.5 11.03	ORF28	11919	14342	+	807	91.8	5.65	putative DNA polymerase	
ORF30 14705 15754 + 349 36.8 5.42 hypothetical protein ORF31 15754 16695 + 313 35.3 5.87 5'-3' exonuclease ORF32 16685 17125 + 146 16.4 9.67 putative DNA endonuclease VII ORF33 18718 18552 + 124 14.2 6.59 hypothetical protein ORF34 18718 18552 + 124 14.2 6.59 hypothetical protein ORF35 18542 18706 + 54 6.3 5.08 hypothetical protein ORF37 21350 21601 + 815 91.8 6.72 DNA-dependent RNA polymerase ORF38 21601 22074 + 157 18.1 6.65 hypothetical protein ORF40 2219 2215 + 98 10.5 9.77 hypothetical protein ORF41 2236 2246 + 76 8.5 <	ORF29	14339	14650	+	103	11.3	9.85	hypothetical protein	
ORF31 15754 16695 + 113 35.3 5.87 5'-3' exonuclease ORF32 16685 17125 + 146 16.4 9.67 putative DNA endonuclease VII ORF33 17122 18168 + 348 40.4 9.17 hypothetical protein ORF34 18718 18552 + 124 14.2 6.59 hypothetical protein ORF35 18542 18706 + 54 6.3 5.08 hypothetical protein ORF36 18715 21162 + 815 91.8 6.72 DNA-dependent RNA polymerase ORF37 21350 21601 + 83 9.4 10.71 hypothetical protein ORF34 21315 + 98 10.5 9.77 hypothetical protein ORF41 22327 2359 + 56.2 5.00 head-tail connector protein ORF42 2363 2481 + 335 7.77 5666 capsid pro	ORF30	14705	15754	+	349	36.8	5.42	hypothetical protein	
ORF32 16685 17125 + 146 16.4 9.67 putative DNA endonuclease VII ORF33 17122 18168 + 348 40.4 9.17 hypothetical protein ORF34 18178 18552 + 124 14.2 6.59 hypothetical protein ORF35 1842 18706 + 54 6.3 5.08 hypothetical protein ORF36 18715 211601 + 815 91.8 6.72 DNA-dependent RNA polymerase ORF37 21301 1401 + 157 18.1 6.65 hypothetical protein ORF38 2101 22074 + 157 18.1 6.65 hypothetical protein ORF37 2315 + 98 10.5 9.77 hypothetical protein ORF40 22362 22466 + 76 8.5 11.03 hypothetical protein ORF41 2358 2481 + 322 32.2 5.37	ORF31	15754	16695	+	313	35.3	5.87	5'-3' exonuclease	
ORF33 17122 18168 + 348 40.4 9.17 hypothetical protein ORF34 18178 1852 + 124 14.2 6.59 hypothetical protein ORF35 18542 18706 + 54 6.3 5.08 hypothetical protein ORF36 18715 21162 + 815 91.8 6.72 DNA-dependent RNA polymerase ORF37 21350 21001 + 83 9.4 10.71 hypothetical protein ORF38 2101 22074 + 157 18.1 6.65 hypothetical protein ORF39 22019 2215 + 98 10.5 9.77 hypothetical protein ORF40 2236 2466 + 76 8.5 11.03 hypothetical protein ORF41 2327 23859 + 510 56.2 500 head-tail connector protein ORF42 2366 24831 + 335 37.7	ORF32	16685	17125	+	146	16.4	9.67	putative DNA endonuclease VII	
ORF34 18178 1852 + 124 14.2 6.59 hypothetical protein ORF35 18542 18706 + 54 6.3 5.08 hypothetical protein ORF36 18715 21162 + 815 91.8 6.72 DNA-dependent RNA polymerase ORF37 21350 21601 + 83 9.4 10.71 hypothetical protein ORF38 21601 22074 4 157 18.1 6.65 hypothetical protein ORF39 22019 22315 4 98 10.5 9.77 hypothetical protein ORF40 2232 22466 + 76 8.5 11.03 hypothetical protein ORF41 2327 2889 4 322 33.2 5.07 scafolding protein ORF42 2864 28906 4 826 92.0 5.99 tail tubular protein A ORF43 2859 2627 184 18.8 8.6 Inte	ORF33	17122	18168	+	348	40.4	9.17	hypothetical protein	
ORF35185418706+546.35.08hypothetical proteinORF361871521162+81591.86.72DNA-dependent RNA polymeraseORF372135021601+839.410.71hypothetical proteinORF382160122074+15718.16.65hypothetical proteinORF392201922315+9810.59.77hypothetical proteinORF40223222466+768.511.03hypothetical proteinORF4122322385324831+31056.25.00head-tail connector proteinORF422386324831+32233.25.37scaffolding proteinORF442596926523+18421.26.92tail tubular protein AORF4425606482692.05.99tail tubular protein BORF44290629006+82692.05.99tail tubular proteinORF4429513247+18118.88.86Internalvirion proteinORF4429513247+193144.06.23Internalvirion proteinORF453702383637025.16Internalvirion proteinORF4632053644+1337144.06.23Internalvirion proteinORF47383740133.27.71putativat alifber proteinORF	ORF34	18178	18552	+	124	14.2	6.59	hypothetical protein	
ORF36 18715 21162 + 815 91.8 6.72 DNA-dependent RNA polymerase ORF37 21350 21601 + 83 9.4 10.71 hypothetical protein ORF38 21601 22074 + 157 18.1 6.65 hypothetical protein ORF39 22019 22315 + 98 10.5 9.77 hypothetical protein ORF40 2236 22466 + 76 8.5 11.03 hypothetical protein ORF41 2327 23859 + 56.2 5.00 head-tail connector protein ORF42 23863 2481 + 322 33.2 5.37 scafolding protein ORF43 2484 25891 + 335 37.7 5.66 capsid protein A ORF44 2562 29006 + 826 92.0 5.99 tail tubular protein A ORF44 2501 2524 + 181 18.8 8.6 I	ORF35	18542	18706	+	54	6.3	5.08	hypothetical protein	
ORF37 21350 21601 + 83 9.4 10.71 hypothetical protein ORF38 21601 2074 + 157 18.1 6.65 hypothetical protein ORF39 22019 2215 + 98 10.5 9.77 hypothetical protein ORF40 22236 22466 + 76 8.5 11.03 hypothetical protein ORF41 2327 23859 + 510 56.2 5.00 head-tail connector protein ORF42 23863 24831 + 322 33.2 5.37 scaffolding protein ORF43 24884 25891 + 335 37.7 5.66 capsid protein ORF44 25969 26523 + 184 21.2 6.92 tail tubular protein A ORF45 2650 2906 + 826 92.0 5.99 tail tubular protein A ORF47 2951 3247 + 898 98.2 5.16 <td>ORF36</td> <td>18715</td> <td>21162</td> <td>+</td> <td>815</td> <td>91.8</td> <td>6.72</td> <td>DNA-dependent RNA polymerase</td>	ORF36	18715	21162	+	815	91.8	6.72	DNA-dependent RNA polymerase	
ORF382160122074+15718.16.65hypothetical proteinORF392201922315+9810.59.77hypothetical proteinORF402223622466+768.511.03hypothetical proteinORF41223723859+51056.25.00head-tail connector proteinORF422386324831+32233.25.37scaffolding proteinORF43248425891+33537.75.66capsid protein AORF442596926523+18421.26.92tail tubular protein AORF452652629006+82692.05.99tail tubular protein BORF462900629551+18118.88.86Internalvirion proteinORF472955132247+89898.25.16Internalvirion proteinORF483225136264+1337144.06.23Internalvirion proteinORF503702137479+15216.88.00putative tail fiber proteinORF513848638986+20122.65.65putative tail fiber proteinORF533898639291+10111.64.76putative DNA maturase AORF543930041105+6617.08.93Holin	ORF37	21350	21601	+	83	9.4	10.71	hypothetical protein	
ORF39 22019 22315 + 98 10.5 9.77 hypothetical protein ORF40 2236 22466 + 76 8.5 11.03 hypothetical protein ORF41 2237 23859 + 510 56.2 5.00 head-tail connector protein ORF42 23863 24831 + 322 33.2 5.37 scaffolding protein ORF43 24884 25891 + 335 37.7 5.66 capsid protein ORF44 25969 26523 + 184 21.2 6.92 tail tubular protein A ORF45 26526 2906 + 826 92.0 5.99 tail tubular protein B ORF44 2906 29551 + 181 18.8 8.86 Internalviron protein ORF45 36264 37021 + 898 98.2 5.16 Internalviron protein ORF45 37021 37479 + 1337 144.0	ORF38	21601	22074	+	157	18.1	6.65	hypothetical protein	
ORF40 2236 2246 + 76 8.5 11.03 hypothetical protein ORF41 2327 23859 + 510 56.2 5.00 head-tail connector protein ORF42 23863 24831 + 322 33.2 5.37 scaffolding protein ORF43 24884 25891 + 335 37.7 5.66 capsid protein ORF44 25969 26523 + 184 21.2 6.92 tail tubular protein A ORF45 2656 29006 + 826 92.0 5.99 tail tubular protein A ORF46 29050 29551 + 181 18.8 8.86 Internalvirion protein ORF47 29551 32247 + 898 98.2 5.16 Internalvirion protein ORF48 32251 36264 + 1337 144.0 6.23 Internalvirion protein ORF49 36265 37021 + 251 28.4	ORF39	22019	22315	+	98	10.5	9.77	hypothetical protein	
ORF41 2327 23859 + 510 56.2 5.00 head-tail connector protein ORF42 23863 24831 + 322 33.2 5.37 scaffolding protein ORF43 24884 25891 + 335 37.7 5.66 capsid protein ORF44 25969 26523 + 184 21.2 6.92 tail tubular protein A ORF45 26526 29006 + 826 92.0 5.99 tail tubular protein B ORF46 2906 29551 + 181 18.8 8.86 Internalvirion protein ORF47 29551 32247 + 898 98.2 5.16 Internalvirion protein ORF48 32251 36264 + 1337 144.0 6.23 Internalvirion protein ORF50 37021 37479 + 251 28.4 4.56 putative tail fiber protein ORF51 37472 38377 + 301 33.2 <td>ORF40</td> <td>22236</td> <td>22466</td> <td>+</td> <td>76</td> <td>8.5</td> <td>11.03</td> <td colspan="2">hypothetical protein</td>	ORF40	22236	22466	+	76	8.5	11.03	hypothetical protein	
ORF42 23863 24831 + 322 33.2 5.37 scaffolding protein ORF43 24884 25891 + 335 37.7 5.66 capsid protein ORF44 25969 26523 + 184 21.2 6.92 tail tubular protein A ORF45 26526 2906 + 826 92.0 5.99 tail tubular protein B ORF46 29006 29551 + 181 18.8 8.86 Internalvirion protein ORF47 29551 32247 + 898 98.2 5.16 Internalvirion protein ORF48 32251 36264 + 1337 144.0 6.23 Internalvirion protein ORF49 36266 37021 + 251 28.4 4.56 putative tail fiber protein ORF50 37021 37479 + 152 16.8 8.00 putative tail fiber protein ORF51 37472 38377 + 301 33.2 </td <td>ORF41</td> <td>22327</td> <td>23859</td> <td>+</td> <td>510</td> <td>56.2</td> <td>5.00</td> <td>head-tail connector protein</td>	ORF41	22327	23859	+	510	56.2	5.00	head-tail connector protein	
ORF43 24884 25891 + 335 37.7 5.66 capsid protein ORF44 25969 26523 + 184 21.2 6.92 tail tubular protein A ORF45 26526 29006 + 826 92.0 5.99 tail tubular protein B ORF46 2906 2951 + 181 18.8 8.86 Internalvirion protein ORF47 29551 32247 + 898 98.2 5.16 Internalvirion protein ORF48 3251 36264 + 1337 144.0 6.23 Internalvirion protein ORF49 36266 37021 + 251 28.4 4.56 putative tail fiber protein ORF50 37021 37479 + 152 16.8 8.00 putative tail fiber protein ORF51 37472 38377 + 301 33.2 7.71 putative tail fiber protein ORF53 38986 9291 + 101 1	ORF42	23863	24831	+	322	33.2	5.37	scaffolding protein	
ORF44 25969 26523 + 184 21.2 6.92 tail tubular protein A ORF45 26526 29006 + 826 92.0 5.99 tail tubular protein B ORF46 29006 29551 + 181 18.8 8.86 Internalvirion protein ORF47 29551 32247 + 898 98.2 5.16 Internalvirion protein ORF48 32251 36264 + 1337 144.0 6.23 Internalvirion protein ORF49 36266 37021 + 251 28.4 4.56 putative tail fiber protein ORF50 37021 37479 + 152 16.8 8.00 putative tail fiber protein ORF51 37472 38377 + 301 33.2 7.71 putative tail fiber protein ORF53 38986 39291 + 101 11.6 4.76 putative DNA maturase A ORF54 39300 41105 + 601	ORF43	24884	25891	+	335	37.7	5.66	capsid protein	
ORF45 26526 29006 + 826 92.0 5.99 tail tubular protein B ORF46 29006 29551 + 181 18.8 8.86 Internalvirion protein ORF47 2951 32247 + 898 98.2 5.16 Internalvirion protein ORF48 32251 36264 + 1337 144.0 6.23 Internalvirion protein ORF49 36266 37021 + 251 28.4 4.56 putative tail fiber protein ORF50 37021 37479 + 152 16.8 8.00 putative tail fiber protein ORF51 37472 38377 + 301 33.2 7.71 putative tail fiber protein ORF53 38986 39291 + 101 11.6 4.76 putative DNA maturase A ORF54 39300 41102 + 601 67.9 7.21 putative DNA maturase B ORF55 41102 41302 + 666	ORF44	25969	26523	+	184	21.2	6.92	tail tubular protein A	
ORF46 29006 29551 + 181 18.8 8.86 Internalvirion protein ORF47 29551 32247 + 898 98.2 5.16 Internalvirion protein ORF48 32251 36264 + 1337 144.0 6.23 Internalvirion protein ORF49 36266 37021 + 251 28.4 4.56 putative tail fiber protein ORF50 37021 37479 + 152 16.8 8.00 putative tail fiber protein ORF51 37472 88377 + 301 33.2 7.71 putative tail fiber protein ORF52 38381 38986 + 201 22.6 5.65 putative tail fiber protein ORF53 38986 39291 + 101 11.6 4.76 putative DNA maturase A ORF54 39300 41105 + 661 7.0 8.93 Holin	ORF45	26526	29006	+	826	92.0	5.99	tail tubular protein B	
ORF47 29551 32247 + 898 98.2 5.16 Internalvirion protein ORF48 32251 36264 + 1337 144.0 6.23 Internalvirion protein ORF49 36266 37021 + 251 28.4 4.56 putative tail fiber protein ORF50 37021 37479 + 152 16.8 8.00 putative tail fiber protein ORF51 37472 38377 + 301 33.2 7.71 putative tail fiber protein ORF52 38381 38986 + 201 22.6 5.65 putative tail fiber protein ORF53 38986 39291 + 101 11.6 4.76 putative DNA maturase A ORF54 39300 41105 + 661 7.0 8.93 Holin	ORF46	29006	29551	+	181	18.8	8.86	Internalvirion protein	
ORF48 32251 36264 + 1337 144.0 6.23 Internalvirion protein ORF49 36266 37021 + 251 28.4 4.56 putative tail fiber protein ORF50 37021 37479 + 152 16.8 8.00 putative tail fiber protein ORF51 37472 38377 + 301 33.2 7.71 putative tail fiber protein ORF52 38381 38986 + 201 22.6 5.65 putative tail fiber protein ORF53 38986 39291 + 101 11.6 4.76 putative DNA maturase A ORF54 39300 41105 + 601 67.9 7.21 putative DNA maturase B ORF55 41102 41302 + 666 7.0 8.93 Holin	ORF47	29551	32247	+	898	98.2	5.16	Internalvirion protein	
ORF49 36266 37021 + 251 28.4 4.56 putative tail fiber protein ORF50 37021 37479 + 152 16.8 8.00 putative tail fiber protein ORF51 37472 38377 + 301 33.2 7.71 putative tail fiber protein ORF52 38381 3896 + 201 22.6 5.65 putative tail fiber protein ORF53 38986 39291 + 101 11.6 4.76 putative DNA maturase A ORF54 39300 41105 + 601 67.9 7.21 putative DNA maturase B ORF55 41102 41302 + 66 7.0 8.93 Holin	ORF48	32251	36264	+	1337	144.0	6.23	Internalvirion protein	
ORF50 37021 37479 + 152 16.8 8.00 putative tail fiber protein ORF51 37472 38377 + 301 33.2 7.71 putative tail fiber protein ORF52 38381 38986 + 201 22.6 5.65 putative tail fiber protein ORF53 38986 39291 + 101 11.6 4.76 putative DNA maturase A ORF54 39300 41105 + 601 67.9 7.21 putative DNA maturase B ORF55 41102 41302 + 66 7.0 8.93 Holin	ORF49	36266	37021	+	251	28.4	4.56	putative tail fiber protein	
ORF51 37472 38377 + 301 33.2 7.71 putative tail fiber protein ORF52 38381 38986 + 201 22.6 5.65 putative tail fiber protein ORF53 38986 39291 + 101 11.6 4.76 putative DNA maturase A ORF54 39300 41105 + 601 67.9 7.21 putative DNA maturase B ORF55 41102 41302 + 66 7.0 8.93 Holin	ORF50	37021	37479	+	152	16.8	8.00	putative tail fiber protein	
ORF52 38381 38986 + 201 22.6 5.65 putative tail fiber protein ORF53 38986 39291 + 101 11.6 4.76 putative DNA maturase A ORF54 39300 41105 + 601 67.9 7.21 putative DNA maturase B ORF55 41102 41302 + 66 7.0 8.93 Holin	ORF51	37472	38377	+	301	33.2	7.71	putative tail fiber protein	
ORF53 38986 39291 + 101 11.6 4.76 putative DNA maturase A ORF54 39300 41105 + 601 67.9 7.21 putative DNA maturase B ORF55 41102 41302 + 66 7.0 8.93 Holin	ORF52	38381	38986	+	201	22.6	5.65	putative tail fiber protein	
ORF54 39300 41105 + 601 67.9 7.21 putative DNA maturase B ORF55 41102 41302 + 66 7.0 8.93 Holin	ORF53	38986	39291	+	101	11.6	4.76	putative DNA maturase A	
ORF55 41102 41302 + 66 7.0 8.93 Holin Continued <td>ORF54</td> <td>39300</td> <td>41105</td> <td>+</td> <td>601</td> <td>67.9</td> <td>7.21</td> <td>putative DNA maturase B</td>	ORF54	39300	41105	+	601	67.9	7.21	putative DNA maturase B	
Continued	ORF55	41102	41302	+	66	7.0	8.93	Holin	
	Continu	ued							

ORF	Start	Stop	Direction	No. of residues	Mol. mass (kDa)	Calculated isoelectric point	Putative function
ORF56	41299	41781	+	160	17.4	8.77	Endolysin
ORF57	41739	42068	+	109	12.0	9.87	Rz protein
ORF58	41956	42156	+	66	6.9	4.75	Rz1 protein
ORF59	42158	42472	+	104	10.5	5.65	putative structural protein
ORF60	42522	42716	+	64	6.9	5.22	putative structural protein

Table 2. Predicted ORFs and genes in the PAXYB1 genome.

Figure 3. Schematic genomic alignment of the phage PAXYB1 with other two homologous phages. Early, early middle, middle and late clusters of these phages were separated by the dotted lines at the bottom. Homologous ORFs or genes are present, and the percentages of amino acid identities are shown with different colours. Predicted promoters are shown as red bars on the PAXYB1, phiKMV and MPK6 genomes.

shift in infectivity range²⁰. Vitiello's study also showed that only one amino acid substitution in a capsid protein of lambdaArgo phage strongly enhanced phage survival in the mouse circulatory system⁴⁰. Differences in the tail fiber proteins of PAXYB1 with other phiKMV-like phages may lead to differences in killing susceptible strains or the ability to escape immune defence.

To date, the proteomic characterization of phiKMV-like viruses has not revealed any toxic gene products present in these bacteriophages including PAXYB1^{21,24,28}. PhiKMV-like phages are good candidates in phage therapy. Numerous early studies demonstrated the therapeutic potential of phiKMV-like viruses in various animal infection models^{18,20,29}, and no adverse side effects have yet been reported. For example, LUZ19 could infect clinical P. aeruginosa both in vitro and in vivo26. In addition, Henry's results showed that the bacteriophages isolated directly from the targeted host were the most efficient in vivo, supporting a personalized approach favouring an optimal treatment²⁶. Merabishvili et al. evaluated the safety and efficacy of a bacteriophage cocktail (BFC-1, including PhiKMV-like phages) in the treatment of burn wound infections in a controlled clinical trial, and BFC-1 is active against the P. aeruginosa and Staphylococcus aureus strains in their model⁴¹. Alves' studies suggest that the use of phage cocktails (including one phiKMV-like phage DL62) against P. aeruginosa could provide practical alternatives to antibiotic treatments for combating biofilm-related infections and in particular the devastating effects of biofilm-related CF infections⁴². Hence, further knowledge of the gene products of PhiKMV-like phages and their targets in bacteria are also extremely significant and helpful in antibacterial agent discovery and identifying potential toxic genes. Although the PAXYB1 phage has a very similar genome sequence with other phiKMV-like phages, it may have different characteristics, particularly with the three predicted particle proteins that were not previously identified and may reveal more details of the PAXYB1 structure and different interaction with host bacteria. Detecting the functions of unknown PAXYB1 genes and their interaction with the host strain are necessary before applying it to phage therapy.

Materials and Methods

Bacterial strains and culture conditions. The bacterial strains used in this study are listed in Table 1. Twenty clinical isolates of *P. aeruginosa* were isolated from clinical samples of patients in the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China. All clinical strains were antibiotic resistant. Fourteen out of the 20 isolates were resistant to at least 2 of the anti-*pseudomonal* antibiotic classes tested, and the other 6 isolates were multidrug resistant. All strains were grown in Luria–Bertani (LB) medium at 37 °C.

Isolation and propagation of bacteriophages. *P. aeruginosa* strain PAO1 was used as a host for phage isolation from wastewater in Nanjing. Sewage samples were filtered using 0.22 µm pore-size filters (Millipore,

Figure 4. Phylogenetic tree based on RNAP and whole genome sequence comparisons of selected phages. RNAP (**A**) and whole genome sequence comparisons (**B**) were compared using the ClustalW program, and the phylogenetic tree was generated using the neighbour-joining method with 1000 bootstrap replicates. PAXYB1 in brief is "B1" in these phylogenetic trees.

Figure 5. PAXYB1 virion structural proteins. The structural proteins of purified PAXYB1 particles were separated by SDS-PAGE and stained with silver. The positions of the PAXYB1 structural proteins are indicated on the right. Molecular mass markers are shown on the left.

USA) to remove bacteria. One hundred microlitres of the filtrate was added to 5 ml of *P. aeruginosa* culture in early-log-phase at 37 °C for 24 h with constant shaking to enrich the phages. The culture was then centrifuged at 10,000 g for 20 min at 4 °C. Bacteriophages in the supernatant were tested for plaque formation using the double-layer agar plate method⁴³. We picked a single isolated plaque on the double-layer plate to start the second

PAXYB1 protein	Predicted function	Mol. mass (kDa)	No. of peptides	No. of unique peptides	Sequence coverage (%)	Protein bands	$\begin{array}{l} \text{Previous identification} \\ \text{in } \phi \text{KMV} \end{array}$	Previous identification in LKD16	Previous identification in M32
ORF16	hypothetical protein	13.3	4	4	37.82	PB16	-	-	-
ORF39	hypothetical protein	10.5	38	7	81.63	PB16	+	+	+
ORF41	head-tail connector protein	56.2	89	26	53.33	PB7	+	+	+
ORF42	scaffolding protein	33.2	3	3	13.04	PB9	+	-	-
ORF43	capsid protein	37.7	670	33	85.07	PB8	+	+	+
ORF44	tail tubular protein A	21.2	12	6	32.61	PB13	+	+	+
ORF45	tail tubular protein B	92.0	82	36	46.97	PB4	+	+	+
ORF46	Internalvirion protein	18.8	21	8	44.20	PB14	-	+	+
ORF47	Internalvirion protein	98.2	147	49	52.00	PB4	+	+	+
ORF48	Internalvirion protein	144.0	159	61	47.57	PB1	+	+	+
ORF49	putative tail fiber protein	28.4	38	13	52.59	PB11	+	+	+
ORF50	putative tail fiber protein	16.8	5	2	21.71	PB15	-	-	-
ORF51	putative tail fiber protein	33.2	40	9	28.90	PB9	+	+	+
ORF52	putative tail fiber protein	22.6	25	9	48.76	PB12	-	+	+
ORF57	Rz protein	12.0	2	2	12.84	PB16	-	-	-
ORF59	putative structural protein	10.5	93	6	83.65	PB16	+	+	+
ORF60	putative structural protein	6.9	8	3	43.75	PB17	+	+	+

Table 3. Mass spectrometry data for PAXYB1. The proteins detected by MS are listed with their predicted functions and molecular mass. Molecular mass was calculated from the gene sequence. The number of identified peptides and unique peptides in each protein and the corresponding protein sequence coverage are also indicated.

(and subscreams) round of any lifestion. The infection evaluates an ested until the pleasance home componence

(and subsequent) round of amplification. The infection cycle was repeated until the plaques were homogeneous (approximately 10 cycles). The phages were then amplified and stored at 4 °C.

Host range analysis. The host range of PAXYB1 was tested against 20 clinical isolates of *P. aeruginosa* using the following method. Briefly, 100μ l of overnight bacterial cultures was mixed with 3 ml of molten top agar and overlaid on LB plates. Then, 10μ l of phage suspensions (approximately 10^{10} pfu/ml) was dropped onto the plates and allowed to air dry. Following overnight incubation at 37 °C, the plates were then examined for plaque formation to establish bacterial sensitivity to the phage. *P. aeruginosa* PAO1 and *E. coli* MG1655 were used as the positive and negative controls, respectively. All experiments were conducted according to the standard institutional guidelines of Nanjing Medical University (Nanjing, China). The study was approved by the research and ethics committee of the Second Affiliated Hospital of Nanjing Medical University, and informed consents were obtained from all the patients.

Purification of phage PAXYB1. Purification of the phage PAXYB1 was performed as described previously with slight modifications²⁹. Briefly, *P. aeruginosa* PAO1 culture at the early-log-phase ($OD_{600} = 1.0$) was infected by the PAXYB1 phage at 37 °C for 3 h with shaking. The cell debris was removed by centrifugation (14,000 g, 30 min, 4 °C). The supernatant passed through 0.22-µm-pore-size filters, yielding a crude extract of phage. Then, the phage crude extract was concentrated by ultracentrifugation, and the pellet containing the phage was suspended in SM buffer (5.8 g/L NaCl, 2 g/L MgSO₄·7H₂O, 50 ml/L 1 M pH7.5 TrisHCl). The concentrated suspension was further purified by cesium chloride gradient centrifugation. The phage zone was collected and ultracentrifuged to remove CsCl. Finally, the pellet was resuspended in SM buffer to yield the highly purified phage.

Electron microscopy. The highly purified phage was spotted onto a carbon-coated copper grid and negatively stained with 2% (w/v) phosphotungstic acid. The micrographs were taken under FEI Tecnai G2 Spirit Bio TWIN transmission electron microscope at 80 kV.

Thermostability. For testing PAXYB1 thermostability, the phage samples (approximately 10¹⁰ pfu/ml) were incubated at 37 °C, 45 °C, 50 °C, 55 °C, 60 °C and 65 °C for 30 min, respectively, and then tittered using the double-layer agar plate method to determine the phage survival rates.

One-step growth curve. The one-step growth experiment was performed as described previously with slight modification⁴⁴. In brief, *P. aeruginosa* PAO1 was grown in LB medium until the early-log-phase $(1 \times 10^8 \text{ CFU/ml})$. Phage PAXYB1 was added to the PAO1 culture at a multiplicity of infection of 10 and allowed to adsorb for 10 min at 37 °C. Then, the mixture was centrifuged at 12,000 rpm for 1 min to remove un-adsorbed phages. After washing twice with fresh LB medium, the pellet of infected cells was resuspended in 50 ml of LB medium, and the culture was continuously incubated at 37 °C. Using the double-layer-agar plate method, we determined the free bacteriophage count at each time point. The latency period and burst period were obtained

directly from these one-step growth curves. The burst size was calculated by dividing the phage titres at the plateau phase by the initial number of infective bacterial cells.

Phage adsorption assay. The kinetics of phage PAXYB1 adsorption were assessed as described previously with slight modification⁴⁵. The kinetics of phage PAXYB1 adsorption were determined by infecting *Paeruginosa* PAO1 in LB broth at a multiplicity of infection of 0.01. Samples were taken at 1 min intervals, and titres were determined after the removal of cells by filtration of each sample through a 0.22 μ m filter. The filtrates were diluted and spotted on a bacterial lawn of PAO1 to determine the titre of free phages in the culture.

Bacteriophage *in vitro* lysis kinetics. *In vitro* lysis kinetics for PAXYB1were performed as described previously with slight modification⁴⁶. Exponentially growing cultures of strain PAO1 were diluted with LB to an OD600 of 0.05. We added PAXYB1 phage suspension to obtain a multiplicity of infection of 0.001 and added an equal volume of LB medium to the control samples. The OD600 was recorded at 15 min intervals over a period of 6 hours.

Extraction and sequencing of the PAXYB1 genome. The purified phage sample was treated with DNase I (New England Biolabs) and RNaseA (Tiangen Biotech) for 2 h at 37 °C to digest the exogenous DNA and RNA. The preparation was then treated with proteinase K (Tiangen Biotech) for 15 min at 55 °C. The phage genome DNA was further prepared with a TIANamp Bacteria DNA Kit (Tiangen Biotech). Restriction enzyme digestions of the genome DNA were performed according to the manufacturer's instructions (Fermentas). DNA fragments were purified from agarose gels using a Gel Extraction Kit (Omega). The PAXYB1 genomic DNA was sequenced using an Illumina HiSeq. 2500 sequencer, and reads were assembled into a whole genome using SOAPdenovov2.04 software and GapCloserv1.12.

PAXYB1 genome analysis. Putative open reading frames (ORFs) were predicted using artemis software (http://www.sanger.ac.uk/science/tools/artemis), with a threshold of 30 amino acids (aa) as a minimum for the length of protein. Function annotation was performed using the BLAST tools at NCBI (http://blast.ncbi.nlm.nih. gov/Blast.cgi) against the non-redundant protein sequences database. Transfer RNAs (tRNAs) were identified using tRNAscan-SE (v1.23, http://lowelab.ucsc.edu/tRNAscan-SE), and ribosome RNAs (rRNAs) were determined using RNAmmer (v1.2, http://www.cbs.dtu.dk/services/RNAmmer/). The ExPASy Compute pI/Mw tool was employed to calculate molecular masses and isoelectric points. Prokaryotic promoters were predicted using the BDGP prediction program⁴⁷ (http://www.fruitfly.org/seq_tools/promoter.html). The whole viral nucleotide sequence similarities between phages were determined using megablast at NCBI. The global alignment of putative amino acid sequences was performed using the EMBOSS Needle tool at EMBL-EBI (European Molecular Biology Laboratory-European Bioinformatics Institute). Phylogenetic analyses between the genomes of related phages were performed with MEGA using the Neighbour-Joining algorithm.

Structural protein analysis of PAXYB1. The highly purified phage sample was subjected to sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) using 12% acrylamide concentration. The gels were stained with silver as described by Shevchenko *et al.*⁴⁸. For protein identification by liquid chromatography electrospray ionization with tandem mass spectrometry (LC-ESI MS/MS), the phage particles were digested with trypsin, and the trypticpeptides were analyzed by Q Exactive mass spectrometer (Thermo Scientific, USA). The corresponding ORFs were searched using the MASCOT engine (Matrix Science, London, UK; version 2.2) against the protein sequence library of PAXYB1.

Nucleotide sequence accession number. The nucleotide sequence of the phage PAXYB1 genome has been deposited in GenBank under accession number KY618819.

References

- 1. Bodey, G. P., Bolivar, R., Fainstein, V. & Jadeja, L. Infections caused by Pseudomonas aeruginosa. *Rev. Infect. Dis.* 5, 279–313 (1983).
- Hoiby, N. Recent advances in the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. BMC Med. 9, 32, https://doi. org/10.1186/1741-7015-9-32 (2011).
- Pabary, R. et al. Antipseudomonal Bacteriophage Reduces Infective Burden and Inflammatory Response in Murine Lung. Antimicrob Agents Chemother. 60, 744–751 (2015).
- Sillankorva, S., Oliverira, R., Viveira, M. J., Sutherland, I. & Azeredo, J. Pseudomonas Fluorescens infection by bacteriophage PhiSI: the influence of temperature host growth phase and media. *FEMS Microbiol Lett.* 241, 13–20 (2004).
- 5. Bonfiglio, G. et al. Antibiotic resistance in Pseudomonas aeruginosa: an Italian survey. J Antimicrob Chemother. 20, 263–226 (1998).
- Merabishvili, M. Bacteriophages for the treatment of Pseudomonas aeruginosa infections. J Appl Microbiol. 111, 1e7 (2011).
 Debarbieux, L. et al. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis. 201, 1096–1104 (2010).
- 8. Alemayehu, D. et al. Bacteriophages phiMR299-2 and phiNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis lung airway cells. *mBio.* **3**, e00029e12 (2012).
- 9. Fukuda, K. *et al.* Pseudomonas aeruginosa keratitis in mice: effects of topical bacteriophage KPP12 administration. *PloS One.* 7, e47742 (2012).
- Hagens, S., Habel, A., von Ahsen, U., von Gabain, A. & Blasi, U. Therapy of experimental Pseudomonas infections with a nonreplicating genetically modified phage. *Antimicrob. Agents Chemother.* 48, 3817–3822 (2004).
- 11. Watanabe, R. *et al.* Efficacy of bacteriophage therapy against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. *Antimicrob. Agents Chemother.* **51**, 446–452 (2007).
- 12. Rose, T. et al. Experimental phage therapy of burn wound infection; difficult first steps. Int J Burn Trauma. 4, 66-73 (2014).
- Wright, A., Hawkins, C. H., Anggard, E. E. & Harper, D. R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic resistant Pseudomonas aeruginosa: a preliminary report of efficacy. *Clin Otolaryngol.* 34, 349–357 (2009).

- 14. Soothill, J., Hawkins, C., Anggard, E. & Harper, D. Therapeutic use of bacteriophages. Lancet Infect. Dis. 4, 544-545 (2004).
- 15. Chan, B. K., Abedon, S. T. & Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol. 8, 769–783 (2013).
 - 16. Weinbauer, M. G. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 28, 127-181 (2004).
 - Pires, D. P., Vilas Boas, D., Sillankorva, S. & Azeredo, J. Phage Therapy: a Step Forward in the Treatment of Pseudomonas aeruginosa Infections. J Virol. 89, 7449–7756 (2015).
 - Cao, Z. et al. Isolation and characterization of a "phiKMV-like" bacteriophage and its therapeutic effect on mink hemorrhagic pneumonia. PloS One. 10, e0116571 (2015).
 - Krylov, V. et al. Modular Approach to Select Bacteriophages Targeting Pseudomonas aeruginosa for Their Application to Children Suffering With Cystic Fibrosis. Front Microbiol. 7, 1631, https://doi.org/10.3389/fmicb.2016.01631 (2016).
 - Ceyssens, P. J. et al. Phenotypic and genotypic variations within a single bacteriophage species. Virol. J. 8, 134, https://doi. org/10.1186/1743-422X-8-134 (2011).
 - Karumidze, N. et al. Characterization of lytic Pseudomonas aeruginosa bacteriophages via biological properties and genomic sequences. Appl Microbiol Biotechnol. 94, 1609–1617 (2012).
 - Santos, T. M. et al. Isolation and characterization of two bacteriophages with strong *in vitro* antimicrobial activity against Pseudomonas aeruginosa isolated from dogs with ocular infections. Am J Vet Res. 72, 1079–1086 (2011).
 - Sun, W. J. et al. A novel bacteriophage KSL-1 of 2-Keto-gluconic acid producer Pseudomonas fluorescens K1005: isolation, characterization and its remedial action. BMC Microbiol. 12, 127, https://doi.org/10.1186/1471-2180-12-127 (2012).
 - 24. Ceyssens, P. J. *et al.* Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: Establishment of the φ KMV subgroup within the T7 supergroup. *J. Bacteriol.* **188**, 6924–6931 (2006).
 - Chevallereau, A. et al. Next-Generation "-omics" Approaches Reveal a Massive Alteration of Host RNA Metabolism during Bacteriophage Infection of Pseudomonas aeruginosa. PLoS Genet. 12, es1006134, https://doi.org/10.1371/journal.pgen. 1006134. eCollection (2016).
 - Henry, M., Lavigne, R. & Debarbieux, L. Predicting In Vivo Efficacy of Therapeutic Bacteriophages Used To Treat Pulmonary Infections. Antimicrobial Agents and Chemotherapy. 57, 5961–5968 (2013).
 - Lavigne, R. et al. The genome of bacteriophage phiKMV, a T7-like virus infecting Pseudomonas aeruginosa. Virology. 312, 49–59 (2003).
 - 28. Lavigne, R. et al. The structural proteome of Pseudomonas aeruginosa bacteriophage (KMV. Microbiology. 152, 529-534 (2006).
 - 29. Heo, Y. J. et al. Antibacterial Efficacy of Phages against Pseudomonas aeruginosa Infections in Mice and Drosophila melanogaster. Antimicrob Agents Chemother. 53, 2469–2474 (2009).
 - 30. Lavigne, R. *et al.* A Multifaceted Study of Pseudomonas aeruginosa Shutdown by Virulent Podovirus LUZ19. *MBio.* **4**, e00061–13, https://doi.org/10.1128/mBio.00061-13 (2013).
 - Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands the resistance reservoir and ecological net work of the phage metagenome. *Nature*. 499, 219–222 (2013).
 - Ouhammouch, M., Adelman, K., Harvey, S. R., Orsini, G. & Brody, E. N. Bacteriophage T4 MotA and AsiA proteins suffice to direct Escherichia coli RNA polymerase to initiate transcription at T4 middle promoters. Proc Natl Acad Sci USA 92, 1451–1455 (1995).
 - Colland, F., Orsini, G., Brody, E. N., Buc, H. & Kolb, A. The bacteriophage T4 AsiA protein: a molecular switch for sigma 70-dependent promoters. *Mol Microbiol.* 27, 819-829 (1998).
 - 34. Wei, P. & Stewart, C. R. Genes that protect against the host-killing activity of the E3 protein of Bacillus subtilis bacteriophage SPO1. *J Bacteriol.* 177, 2933–2937 (1995).
 - Rybniker, J., Plum, G., Robinson, N., Small, P. L. & Hartmann, P. Identification of three cytotoxic early proteins of mycobacteriophage L5 leading to growth inhibition in Mycobacterium smegmatis. *Microbiology.* 154, 2304–2314 (2008).
 - Zhao, X. *et al.* Global Transcriptomic Analysis of Interactions between Pseudomonas aeruginosa and Bacteriophage PaP3. *Sci Rep.* 6, 19237, https://doi.org/10.1038/srep19237 (2016).
 - Zhao, X. et al. Transcriptomic and Metabolomic Analysis Revealed Multifaceted Effects of Phage Protein Gp70.1 on Pseudomonas aeruginosa. Front Microbiol. 7, 1519 (2016).
 - Roucourt, B. & Lavigne, R. The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. *Environ Microbiol.* 11, 2789–2805 (2009).
 - Briers, Y., Peeters, L. M., Volckaert, G. & Lavigne, R. The lysis cassette of bacteriophage φKMV encodes a signal-arrest-release endolysin and a pinholin. *Bacteriophage*. 1, 25–30 (2011).
 - Vitiello, C. L., Merril, C. R. & Adhya, S. An amino acid substitution in a capsid protein enhances phage survival in mouse circulatory system more than a 1000-fold. Virus Res. 114, 101–103 (2005).
 - Merabishvili, M. et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One. 4, e4944, https://doi.org/10.1371/journal.pone.0004944 (2009).
 - 42. Alves, D. R. et al. A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. *Microb Biotechnol.* 9, 61–74 (2016).
 - 43. Ellis, E. L. & Delbruck, M. The growth of bacteriophage. J Gen Physiol. 22, 365e84 (1939).
 - 44. Yang, M. et al. Therapeutic effect of the YH6 phage in a murine hemorrhagic pneumonia model. Res Microbiol. 166, 633-643 (2015).
 - 45. Kropinski, A. M. Measurement of the rate of attachment of bacteriophage to cells. *Methods Mol Biol.* **501**, 151–155 (2009).
 - Maura, D. *et al.* Intestinal colonization by entero aggregative Escherichiacoli supports long-term bacteriophage replication in mice. *Environ. Microbiol.* 14, 1844–1854 (2012).
 - Reese, M. G. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput. Chem. 26, 51–56 (2001).
 - Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem. 68, 850–858 (1996).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81501797) and the Natural Science Foundation of Jiangsu Province (BK20151558).

Author Contributions

X.Y.Y. and X.Q.L. designed the study. X.Y.Y., Y.X. and Y.G. performed the experiments. X.Y.Y. and X.Q.L. analyzed the data and wrote the manuscript. Y.F.Z. provided the clinical isolates of *P. aeruginosa*. All authors gave final approval of the version to be published.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-13363-7.

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017