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Discrete Modeling of Amoeboid 
Locomotion and Chemotaxis 
in Dictyostelium discoideum by 
Tracking Pseudopodium Growth 
Direction
Zahra Eidi

Dictyostelium discoideum amoeba is a well-established model organism for studying the crawling 
locomotion of eukaryotic cells. These amoebae extend pseudopodium - a temporary actin-based 
protrusion of their body membrane to probe the medium and crawl through it. Experiments show 
highly-ordered patterns in the growth direction of these pseudopodia, which results in persistence 
cell motility. Here, we propose a discrete model for studying and investigating the cell locomotion 
based on the experimental evidences. According to our model, Dictyostelium selects its pseudopodium 
growth direction based on a second-order Markov chain process, in the absence of external cues. 
Consequently, compared to a random walk process, our model indicates stronger growth in the mean-
square displacement of cells, which is consistent with empirical findings. In the presence of external 
chemical stimulants, cells tend to align with the gradient of chemoattractant molecules. To quantify 
this tendency, we define a coupling coefficient between the pseudopodium extension direction and the 
gradient of an external stimulant, which depends on the local stimulant concentration and its gradient. 
Additionally, we generalize the model to weak-coupling regime by utilizing perturbation methods.

Amoeboid movement is the most common method of locomotion in eukaryotic cells1. This structured movement 
is widely seen in unicellular organisms with amorphous structures, e.g. in leukocyte crawling within interstitial 
tissues2. A model organism for eukaryotic cellular motility research is Dictyostelium discoideum. Dictyostelium is 
a free-living soil amoeba, feeding on bacteria. When the nutrients are available, Dictyostelium lives as a single-cell 
amoeba with nearly round spherical shape with average diameter of 10 μm. When the food runs out, as a survival 
strategy, the cells start to signal by releasing cyclic Adenosine Mono Phosphate (cAMP) in to the environment to 
attract other cells3. The nearby cells respond to this signal both by relaying the signal and moving up the cAMP 
gradient. This directed movement in response to extracellular chemical stimulants is called Chemotaxis. The 
chemotaxis process prompt self-accelerating processes results in aggregation4–6. The aggregation process leads 
to form a multicellular organism whose shape evolves in time. Finally, the process forms a structure consists of a 
stalk and a fruiting body including spores which are capable of long-term survival.

In order to probe the medium and move in the environment, the amoeba cells grow pseudopodium, a tem-
porary actin-based protrusion of their membrane. Based on the experiments the cell extends pseudopodia in 
two types: (1) splitting on certain angles with respect to the existing pseudopodium, (2) growing protrusions 
occasionally at the rear side of the cell, called de novo7. The amoeba is propelled by growing successively splitting 
pseudopodia in a particular direction, while a random reorientation is generated by extending de novo pseudo-
podium8–10. Before starved cells sense their neighbors and begin to cooperate with them, the locomotion of the 
cells can be modeled as persistent random walk9–13. It is assumed that the mechanism of persistent movement in 
Dictyostelium discoideum depends on the ratio of splitting and de novo pseudopodia. External chemical stimu-
lants may bias the position and direction of pseudopod extension. For example, in the presence of cAMP concen-
tration the cells tend to align their movement with the stimulant gradient10.
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Having a theoretical comprehension of the cell’s directed random walk is of high importance from phenom-
enological point of view. The mathematical modelling of cell movement goes back to Patlak14 (1950s), E. Keller 
and L. Segel15 (1970s). The model is composed of a set of coupled differential equations for density of cells and 
concentration of chemoattractants. The study of the cells migration statistics via pursuing the tracers has been 
developed in recent years. The studies cover experimental and theoretical modeling of cell movement both in 
the absence and presence of external chemoattractants. The experiments include tracking the cell’s centroid11–13 
or pseudopodia growth direction9,10. From theoretical point of view there are two main approaches to deal with 
this subject: writing a Langevin equation for the cell’s velocity vector which is represented by an angle and a 
modulus and writing a Fokker-Planck equation for the cell’s position. In the homogenous medium most of these 
works9–13,16–18 share this consequence that the cells go through persistent movement on short time scales and 
an ordinary diffusive behavior on long time scales. However, complex dynamics with anomalous diffusion has 
been also reported for the spontaneous movement of Dictyostelium discoideum19,20. Same anomalies were also 
observed in the mean square displacement of wild-type epithelial canine kidney cells21 as well as Hydra cells22. 
The experiments also show that speed control and reorientation cycles of the cell are synchronized and negatively 
correlated23. Recently, more complex models of Dictyostelium trajectories, quantifying the persistence degree in 
random amoeboid motion based on Hurst exponent of Brownian motion has been proposed24.

In an inhomogeneous medium, although it is the gradient of cAMP that conducts the movement of the indi-
viduals (Chemotaxis), the absolute value of cAMP concentration also plays a key role (Chemokinesis). Indeed, the 
cell’s motility depends on some presently-unknown combination of local cAMP concentration and its steepness. 
There are evidences that indicates the cells undergo a motion with multiplicative noise18. Chemotactic motion 
of these cells is the subject of research of variant insights ranging from corresponding biochemical inter-cellular 
pathways25 to cell-substrate adhesive drag forces26.

The aim of the present work is to make a simple discrete model based on the experimental observations for 
Dictyostelium migration, first in a uniform environment and then in the presence of external signaling. A few 
points regarding the wild type of cell movements are observed9:

	 1.	 Pseudopodia are extended perpendicular to the surface curvature at the place where they emerge27.
	 2.	 Two types of pseudopodia may be formed: frequent splitting of an existing pseudopod, or the occasional 

extension of a de novo pseudopod at regions devoid of recent pseudopod activity7.
	 3.	 The angle between two split-split pseudopodia is bimodally distributed with peaks of about 55 degrees to 

the right or left relative to the previous pseudopod.
	 4.	 De novo pseudopodia are extended with equal probability in nearly random directions.
	 5.	 A pseudopod can extend to the right (R, positive angle) or to the left (L, negative angle) relative to the pre-

vious pseudopod. The alternating RL + LR occur about 3 times more often than the consecutive RR + LL.
	 6.	 The pseudopodia do not bend towards the gradient and still are extended perpendicular to the local cell 

surface curvature10.

Here, considering the above observations as axioms of the macroscopic dynamics of the cell locomotion, we 
propose a stochastic model for the movement. We describe the model as a “second order Markov chain” for the 
direction of movement, meaning that the subsequent direction depends not only on the present direction, as in 
a standard Markov process, but also on the previous direction. Coupling the centroid’s movement to the ordered 
pseudopod growth process, we show that in the absence of external signaling the model leads to undirected 
motion. Afterwards, by combining the rules of cell’s motility with its inclination towards the gradient of external 
stimulants concentration, we see that the model result in biased movement. The results matches fairly well with 
the corresponding experiments. This method might help shed light on the question that what are the functional 
quantities in collective behavior of cells which undergo chemotaxis during the aggregation process.

Methods
It is a widely held view that the mechanism of persistent movement in Dictyostelium discoideum likely depends on 
pseudopodia extension series. We are about to construct a minimal model based on the aforementioned axioms 
that would be capable of explaining the experimental data. Let us suppose that a pseudopodium can extend only 
along six equally divided allowed directions with respect to a fixed axis (see Fig. 1). Thus, the space of states is 
equal to

π
=

−
| ∈{ }S n n( 1)

3
{1, 2, 3, 4, 5, 6}

(1)

In the following, we imitate the cell movement both in homogeneous and inhomogeneous medium by referring 
to these directions.

Movement in Homogeneous Medium.  Based on the number 5 of aforementioned observation, indi-
cated in the introduction, there are some statistical correlations between the growth direction of two successive 
pseudopodia. Indeed, the probability of splitting a pseudopodium in the same direction (turning to left or right) 
as the previous pseudopodium differs from the probability for a step back. In this case, the stochastic variable of 
pseudopodium growth direction, θt, is not a Markov chain but a Markovian of second degree. That is because 
its probability distribution at time t not only depends on its value at t − 1 but also depends on its value at t − 2. 
However, by applying a trick the stochastic variable can reduce to a Markov chain. One can test that the pair of 
consequent growing pseudopods Xt = (θt, θt−1) is Markovian28. We assume that growing pseudopodia in a row is 
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not allowed. Thus, the range of Xt is a discrete set that consists of a 30 possible states of allowed pair angles and the 
transition probability P(0)(Xt+1|Xt) is a 30 × 30 matrix.

The transition matrix reads as

| = |+ + +P X X P n m n m( ) (( , ) ( , )) (2)t t t t t t
(0)

1
(0)

1 1

= |P n m n m(( , ) ( , )), (3)(0)
2 2 1 1

in which the angle of first and second component of each pairs are indicated by n and m (n, m ∈ S), respectively. 
Note that mt+1 = nt, as both of them address to θt. We assume that the process is time-homogeneous. Thus the 
equality in Eq. 3, is straightforward. The zero superscript in P(0) denotes the transition probabilities in the absence 
of the chemoattractant concentration gradient. Now, after restoring the Markov character, the model can be 
treated normally by defining the transition probabilities between different states.

Let us assume that in every time step there is only one growing pseudopodium. The pseudopodium growth 
direction in every time step is a stochastic variable, θt ∈ S. The angle θt+1 on the next step will be in one of the 
below forms with respect to θt (see Fig. 1):

•	 makes a turn of π/3 to the right in the currently active front area of the cell (splitting to the right),
•	 makes a turn of π/3 to the left in the currently active front area of the cell (splitting to the left),
•	 makes a turn of +2π/3, −2π/3 or π in the currently inactive rear side of the cell (De novo).

There are four scenarios for proceeding every two subsequent steps, See Fig. 2. Every scenario represents the 
corresponding entries in the transition matrix P(0)(Xt+1|Xt):

	(A)	 Two subsequent splittings, Fig. 2A.
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where p is the probability of making a de novo pseudopodium in each step and α and β are the probabilities 
of consecutive and alternative splitting, respectively.

	(B)	 Splitting at the side of previous pseudopod at first step and then growing protrusion at the rear side at the 
second step, Fig. 2B.
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	(C)	 Extending pseudopodium at the rear side (with respect to the position of previous pseudopodium) and 
then splitting at the side of the current one, Fig. 2C.
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	(D)	 Growing pseudopod on both steps randomly, at least with 2π/3 deviation clockwise or counter-clockwise, 
with respect to the previous step, Fig. 2D.

Figure 1.  Schematics of the space of states including different possibilities for extending a pseudopodium 
relative to a given axis, x̂. Solid arrow shows the cell’s decision among all other possible alternatives which are 
shown in dash arrows.
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The entire transition matrix is demonstrated in Supporting Information, Appendix A. In general, there are five 
nonzero entries in each row. Thus, the matrix P(0) is sparse.

In the transition matrix P(0) (see Supporting Information, Appendix A for details) all the entries are 
non-negative and each row adds up to unity. Clearly, the matrix P(0) has the eigenvalue 1, because ∑ == P 1j i j1

30
,
(0) . 

This relation in matrix notation can be written as P(0)1 = 1, where 1 is a column vector whose entries are all 1. P(0) 
has also a left eigenvector ω0 corresponding to eigenvalue 1. ω0 is called a stationary or invariant distribution and 
can be obtained as

ω − = .P( ) 0 (8)0
(0)

where  is the unite matrix of size 30. We solve Eq. 8, to find ω0 as a 30 × 1 vector whose entries are invariant prob-
abilities of every possible pairs of subsequent pseudopodia directions. Then, we rearrange the entries in a 6 × 6 
array, in which both horizontal and vertical values are in the space of states. Clearly, in the new arrangement all 
the diagonal entries are zero, as we assumed that growing pseudopodia in a row is prohibited. ω0 is a symmetric 
matrix as it is the invariant distribution of extending pseudopodium along discrete directions in a homogeneous 
medium.
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Rearranged form of ω0 in colored matrix is depicted in Fig. 3. In this figure the blue arrows indicate the change in 
direction relative to the previous direction. Obviously, the probability of choosing each of six possible directions 
of S in a homogeneous environment is 1/6, that is why the summation of elements of ω0 both in a row and in a 

Figure 2.  Schematics of the model, showing different possibilities for two successive movement (A) splitting-
splitting, (B) splitting- de novo, (C) de novo- splitting, and (D) de novo- de novo. Solid arrow shows the cell’s 
decision among all other possible alternatives which are shown in dash arrows.
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column gives 1/6. Another notable point in an invariant distribution is disappearing of α and β on longtimes (see 
Fig. 3).

As stated before, we assume that the persistence of cell movement is based on the ratio of splitting versus de 
novo pseudopodia. Thus, it is necessary to couple the cell’s centroid movement to the direction of growing pseu-
dopodium. Let us assume that every extended pseudopodium leads to movement of the whole cell body and 
besides, the cell moves along the same direction of the extended pseudopodium. We define an orthonormal basis 
with the unit vectors x̂ and ŷ on the surface that the cells are crawling on it. The position of each cell is character-
ized in Cartesian coordinates by → = +ˆ ˆr xx yy. In reality not all of the extended pseudopodia are followed by the 
cell body displacement. Indeed, only ~60% of these protrusions contribute to cell movement. But the size of 
proceeded length differs from step to step between ~0.25 μm to ~10 μm, depend on the previous state of the cell9. 
Here for simplicity, we assume that all the extended pseudopodia lead to the whole body displacement but with a 
fixed step size which is equal to 6 μm. The time resolution of the simulations, i.e. the time steps, are equal to 
20 seconds. Figure 4 illustrates the trajectories of 7 independent tracers in the absence of chemical stimulants 
concentration gradients. As we expect spreading out of the cells on the surface is isotropic.

Chemotactic Movement.  In the absence of chemical gradient, the system is entirely homogenous and iso-
tropic. One of the consequences of this fact is that the corresponding transition matrix P(0) would be invariant 

Figure 3.  Rearranged invariant distribution of the transition matrix. The entries are stationary probability for 
transition between different directions. The blue arrows indicate the change in direction relative to the previous 
direction, e.g. the (1, 2) element of the diagram indicates the probability of a π/3 change in direction regardless 
of the current direction. Based on the observations9, we set P~1/7. Notably, disappearing of α and β (α + β = 1) 
on long times remarks that short memory of this Markov chain of second order cannot affect the future of the 
process on large scales.

Figure 4.  The trajectories of 7 cells during 15 min in a homogeneous medium. The black dot indicates the 
common origin of the trajectories.
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under the index translation, i.e. → + +P Pi j i j,
(0)

1, 1
(0) . However, in the presence of cAMP concentration gradient the 

index translation symmetry breaks down. Experiments show that even in such an inhomogeneous medium the 
pseudopodia do not bend towards the gradient and still are extended perpendicular to the local cell surface cur-
vature27. But the gradient of cAMP induces a small bias in the direction of pseudopod extension, without signifi-
cantly affecting parameters such as pseudopod frequency or size29. This fact suggests that the system still has the 
parity transformation, i.e. the mirror symmetry with respect to the gradient axis. Let us assume that the state of 
growing pseudopodia in the presence of external cues are still given by S in the relation (1). It is plausible to 
assume that the chemotactic movement of the cells are additive to their random movement. Thus the transition 
matrix between different states in the inhomogeneous medium P, is superposition of transition matrix in the 
homogeneous medium, P(0) and an additional matrix which corresponds to the cell’s attempt to get aligned with 
the preferred spatial direction, i.e. the gradient of cAMP. Clearly, the additional matrix has to depend on concen-
tration gradient of the chemoattractant. Besides, every entry of this matrix should be sensitive to the angle 
between the prospective direction of growing pseudopodium and the gradient of cAMP. We opt the inner product 
between these two vectors as our theoretical counterpart in this case. As the parity symmetry implies, one should 
discard the probability of protruding along the opposite direction of the current direction at the cell’s posterior in 
the next step. The only restriction on the additional term is that the sum of each row should be zero. Clearly, with 
all the above characteristics the condition is going to automatically fulfill. Let us assume that ŷ is the direction of 
the spatial gradient of cAMP and n̂j represents the probable direction of expanding pseudopodium in the next 
step, then

ε= + ⋅ˆ ˆP P y n , (9)ij ij j
(0)

where ε ε= ∇C C( , ) is the function which gives the coupling between cell’s overall orientation and the gradient 
of chemoattractant and depends on both concentration of cAMP and its gradient. We refer it as the coupling 
coefficient. Dimensional analysis suggests that this function in this linear approximation would be equal to 
ε γ= ∇L C

C
, where L is the typical size of a cell (~10 μm) and γ is a numerical constant, called coupling parameter, 

that cannot be merely determined by the dimensional analysis method. Now one can find the stationary state for 
the cell’s chemotactic movement in this field. Owing to the size of the transition matrix P(0), finding an analytical 
solution for the stationary state of the system may be difficult, if possible. Here, applying perturbation methods, 
we solve the problem for the system in weak-coupling regime (see Supporting Information, Appendix B for 
details). As every individual probability, Pij, must be between 0 and 1, i.e. ε∀ ≤ + ⋅ ≤ˆ ˆi j P y n, 0 1ij j

(0) , the maxi-
mum valid value for applying the perturbation method is ε = 0.043. By weak-coupling regime, we refer to the 
inhomogeneous fields of cAMP concentration for which ε ≤ 0.043. Figure 5 depicts the trajectories of 10 inde-
pendent tracers in the presence of chemical stimulants concentration gradients, where the coupling coefficient 
between pseudopodium extension direction and gradient of external stimulant is equal to ε = 0.04. Clearly, there 
is an upward drift in line with the gradient of stimulant concentration.

Results
In Fig. 4 we show the trajectories of 7 independent tracers in a homogeneous medium. It is well-known11 that the 
relation

τ τ= − − τ−r t v t( ) 2 [ (1 exp )] (10)t2 2 2 /

governs the mean square displacement 〈r2〉 of a random motion with persistence. Where v is a typical velocity of 
the tracer and τ is its persistence time. The mean squared displacement (MSD) is calculated as

Figure 5.  The tracks of 10 cells during 15 min in an inhomogeneous medium for which the coupling constant is 
equal to ε = 0.04. The black dot indicates the common initial point of the stochastic movement of the cells.

http://B
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∑= − = −
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n n0
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2

where N is the number of realizations to be averaged, rn(0) is the initial position of each tracer and rn(t) is the posi-
tion of each individual in determined time t. Here, N = 10000 and the reference position of each cell is the origin 
i.e., rn(0) = 0. Figure 6(a) shows the plot of the function D = 〈r2(t)〉/4t with respect to time, which give information 
of diffusive behavior in a typical 2–dimensional random walk process over time. On long times the function is 
equal to diffusion coefficient of the tracers. The graph shows a dramatic increase in the first 5 minutes and reaches 
approximately to a plateau near 80 μm2/min within 30 minutes. In Fig. 6(b) the mean square displacement of the 
process in Log-Log scale has been illustrated. The crossover between the ballistic and diffusive regimes is clearly 
visible on the plot. Fitting the MSD to Eq. 10, yields the values v = 11.64 ± 0.25 μm/min and τ = 1.00 ± 0.35 min 
for the speed and the persistence time respectively, which is in close agreement with the experiment9.

In the presence of constant gradient of chemoattractant cAMP, the cells start to co-orient their movements 
with the gradient direction. Let us assume that the angle between prospective pseudopodium and concentra-
tion gradient of cAMP is φ. The population average of this angle 〈cos φ(t)〉 is a proper quantity to measure the 
cell’s biased orientation in comparison with its random orientation in a homogeneous medium. As depicted in 
Fig. 7(a), even for a small value of coupling constant, there is a considerable tendency to move forward along the 
cAMP concentration gradient. Notably, 〈cos φ〉 reaches to a steady amount rather soon even for small values of ε. 
It is worth to mention that this amount is equal to zero in the homogeneous medium (See Fig. 3).

Figure 6.  (a) Diffusion coefficient, D = 〈r2(t)〉/4t, plotted as a function of t. For a random walk, diffusion 
coefficient would give rise to a line with zero slope on long times. (b) Log-log plot of the mean-squared 
displacement in respect to time. The transition between ballistic and diffusive regimes occurs after around 
5 minutes. The number of realizations is N = 10000.

Figure 7.  (a) 〈cos φ〉 plotted as a function of t for different values of coupling constants ε, φ is the angle between 
prospective pseudopodium and concentration gradient of cAMP. (b) Chemotaxis Index (CI) plotted as a 
function of the coupling coefficient ε. CI is a measure of how much a process does get biased in comparison 
with random motion. Still, the process includes randomness which can be indicated by the standard deviation 
of CI.
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As an important illustration of the general features of chemotactic movement, we consider the Chemotaxis 
Index quantity, Fig. 7(b). Chemotaxis Index measures the chemotactic movement of a cell towards the chemical 
gradient with respect to its entire movement. One can calculate chemotactic index as the time average of 〈cos φ〉. 
It is apparent from the left-hand plot of Fig. 7(b) that chemotaxis index linearly increases with coupling constant 
for the allowed values of ε. As the range of ε considered here is low, thermal agitation still can affect the cell’s 
movement. To get a feeling of the influence of random thermal agitation one can measure the standard deviation 
of the chemotaxis index for different values of coupling constant, the right-hand plot of Fig. 7(b). Evidently, the 
chemotactic movement get comparable with diffusive propagation of the cells only near ε = 0.04. As a physical 
analogue, one may think of the low drift velocity of an ion induced by a weak electric field while the ion experi-
ences countless collisions with fixed atoms in a circuit.

Discussion
In recent years, analyzing the locomotion of various eukaryotic cells have been of interest8–10,12,13,16–21. All of these 
studies share this outcome that the experimental results deviate from the Ornstein-Uhlenbeck model of persistent 
random walk. Dieterich et al.21 report superdiffiusive behavior in the movement of the crawler cells. Therefore, 
they suggest that the fractional Klein-Kramers equation governs the cell’s motility. However, Li et al.13 did not 
observe any apparent intrinsic scale invariance in cell trajectories, which is the essential feature of a typical Lévy 
walk. There are also theoretical studies which shows that as far as the linear diffusion equation (even anomalous) 
meets both time- and space-translational invariance, like what the cells experience in homogeneous medium, the 
variance of movement is an at most linear function of time30. Hence, it seems that super-diffusive interpretation 
of the cell movement is a consequence of short duration of the related experiment and if one be patient enough, 
can meet the long time diffusive behavior of these cells. Hasstert8, Li et al.13 and Cooper et al.31 have addressed 
the same problem by presenting stochastic descriptions that reproduces the so- called zig-zag trajectories of the 
cells. Haastert8 proposes a model for the persistent random walk based on the observed angular frequencies of 
pseudopod extensions. By applying Monte Carlo simulations, he shows that the critical elements of this stochastic 
process are the ratio of persistent splitting pseudopodia relative to random de novo pseudopodia, the Left/Right 
alternation, the angle between pseudopodia and the variance of this angle. However, in his simulations, as the 
direction of the simulated de novo and splitting pseudopodia are random, there is always a limited probability 
that a simulated pseudopodium in de novo type would be recognized in experiments as splitting pseudopodium 
and vice versa.

Incorporating the principal elements of Haastert’s model8, we proposed a discrete model to revisit the question 
of directed motion of eukaryotic cells. Indeed, discretizing the possible angles along which one pseudopodium 
can extend, prevents shuffling of the simulated splitting and de novo pseudopodia. Based on our model, the cell 
selects its pseudopodium growth direction based on a second order Markov chain in the absence of external cues. 
Making the process second order, which is supported by the experiments9, has no effect on the stationary state of 
the cell’s migration. Indeed, the short memory of this process vanishes on the cell’s long time diffusive behavior 
(See Fig. 3). Nevertheless, it can postpone the cross over between ballistic and diffusive regimes (See Fig. 1). Thus, 
to describe the persistent behavior of the cells there is no need to attribute fat tail distributions to spatial steps.

Andrew et al.7 and Bosgraaf et al.9 define splitting pseudopods as pseudopods that originate from, or are 
formed in the domain of, an existing pseudopod. Thus, correct attribution of the membrane protrusions depends 
on defining the boundary between a pseudopod and the rest of the cell, and the correct experimental detection 
of this boundary. Based on experimental observation, the detected angle between two split-split pseudopodia 
has a bimodal distribution with peaks of about 55 degrees to the right or left relative to the previous pseudopod. 
However, distinction between splitting and de novo pseudopodia at the tails of this distribution is more challeng-
ing. Indeed, although cells shape change as they move, their shapes remain relatively smooth and the pseudopods 
grow perpendicular to the membrane. Therefore, a larger angular difference generally implies a larger spatial 
distance between the tips of two successive pseudopodia. That is, it is more likely that a fraction of de novo 
pseudopods have been detected as splitting pseudopods at this region. Hence, the tails of the distribution may 
be lighter than it is. To build the space of state, we assume that splitting at the side of previous pseudopodium 
occurs at discrete angles - with approximately π/3 radians turn- in the anterior part of the current active area 
of cell. Apparently, the main part of simplification has been applied in considering discrete states for extending 
de novo pseudopodia. However, as this type of pseudopodia rarely occur (growing a splitting pseudopodium is 
seven times more probable than a de novo pseudopodium9), one may consider this simplification something 
like a mean-field approximation. The statistical features of the model for the cell’s centroid motility are in well 
agreement with the corresponding measured experimental and also simulated quantities (with considering all 
the complexities of non-discrete states). This may suggest that the model can describe the locomotion of the 
wild-type cells with statistically regular shape fairly well. The reported speed and persistence time for a typical 
wild type cell during 15 minutes are v = 10.4 ± 2.1 μm/min and τ = 3.4 ± 0.5 min, respectively9. By applying our 
discrete model, one obtains v = 11.64 ± 0.25 μm/min and τ = 1.00 ± 0.35 min for these quantities along one hour 
of simulation. It is seen that within the error bars the measured speed matches well with the experiment. However, 
the predicted persistence time somehow differs from that of experiment. A possible explanation for this might be 
that these tracers have to alter their direction at least π/3 in two successive steps. The discrete model provides a 
framework to develop a suitable computational schemes which is generalizable to chemotactic movement as well.

In the presence of external stimulants, the cell tends to align itself with the gradient of the chemoattractant 
cAMP7,10. This suggests that the tendency and random locomotion of the cell “add up” to propel the cell toward 
the gradient. In this case both the absolute value of chemoattractant concentration and its gradient incorporate to 
motivate the cells to crawl through an inhomogeneous field at the same time. In most of the previous studies, 
these processes has been dealt separately10,16,17. Haastert10 extracts the probabilities as well as the gradient induced 
bias in chemotactic motion from experiments and performs Monte Carlo simulations to quantify Chemotaxis 
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index of a population of individuals with respect to cAMP steepness in the environment. His measured 
Chemotaxis index is in close agreement with experimental data, however as the model for chemotaxis is firmly 
based on the ordered extension of pseudopodia in the absence of chemoattractants, the above-mentioned diffi-
culties with Monte Carlo simulation are still relevant. Our model is also built on pseudopod extension-based 
description which is previously developed by Haastert10, but with fewer parameters. We also include the depend-
ency of the chemotactic response to the gradient of cAMP and its local concentration in our model. Previously, 
this sensitivity has been investigated in some experiments32,33. By applying information theory techniques, Fuller 
et al.32 show that for shallow gradients and small local concentrations, the extra cellular fluctuations limit the 
chemotactic response. In addition, for steep gradients and high local concentrations the observed chemotactic 
response is lower than what one may predict from a simple ligand-receptor binding process. Inspiring by these 
observations, we assume that the chemotactic response of the cell to its chemical environment is proportional to 
the ratio of the steepness ∇C and absolute value of concentration field C (See Eq. 9 and its underneath statement). 
The parameter with which this proportionality get adjusted is coupling parameter γ. This parameter is a phenom-
enological variable that have to measure experimentally. Indeed, Eq. 9 suggests a practical procedure to determine 
coupling coefficient ε values from the transition probabilities quantified from the corresponding experiments for 
variant pairs of C and ∇C. This is a fundamental issue for future research which requires carrying out more 
experiments. Investigating the dynamical properties of the cells in weak-coupling regime in a broader sense 
might pave our way toward gaining a better insight of systems in which responsiveness of the cells to the external 
field is weak, e.g. in the ‘back of the wave’ problem.

Here, taking the advantage of perturbation methods, we have studied the cell’s migration in weak coupling 
regime, where ε ≤ 0.043. The approach is not extendable to the strong coupling regime where the coupling coef-
ficient ε is higher. Thus, developing new approaches to study this regime needs more effort and is beyond the aim 
of this paper.

In summary, we have studied the amoeboid locomotion and chemotaxis in Dictyostelium discoideum by track-
ing pseudopodium growth direction. We have applied Markov chain of second order to describe the behavior 
of eukaryotic locomotion in homogenous medium. According to the model, short memory of the second order 
Markov chain vanishes on the cell’s stationary state and hence leads to a smooth transition from persistent ran-
dom walk to purely diffusive behavior for squared displacement. The chemotactic response of the cell in inho-
mogeneous medium depends both on the local background concentration and its gradient. Coupling coefficient 
ε measures this dependency for different possible pairs of them. Utilizing perturbation method, we showed that 
for the cells which undergo chemotaxis under influence of weak coupling, there is a linear dependence between 
chemotaxis index and coupling coefficient ε. Our method might help shed light on dealing with the phenomenon 
of cell aggregation from a theoretical point of view.
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