
1Scientific Reports | 7: 12237  | DOI:10.1038/s41598-017-12559-1

www.nature.com/scientificreports

The neural representation of 
personally familiar and unfamiliar 
faces in the distributed system for 
face perception
Matteo Visconti di Oleggio Castello 1, Yaroslav O. Halchenko 1, J. Swaroop Guntupalli   1,  
Jason D. Gors1 & M. Ida Gobbini 1,2

Personally familiar faces are processed more robustly and efficiently than unfamiliar faces. The human 
face processing system comprises a core system that analyzes the visual appearance of faces and an 
extended system for the retrieval of person-knowledge and other nonvisual information. We applied 
multivariate pattern analysis to fMRI data to investigate aspects of familiarity that are shared by all 
familiar identities and information that distinguishes specific face identities from each other. Both 
identity-independent familiarity information and face identity could be decoded in an overlapping 
set of areas in the core and extended systems. Representational similarity analysis revealed a clear 
distinction between the two systems and a subdivision of the core system into ventral, dorsal and 
anterior components. This study provides evidence that activity in the extended system carries 
information about both individual identities and personal familiarity, while clarifying and extending the 
organization of the core system for face perception.

A wide and distributed network of brain areas underlies face processing. The model by Haxby and colleagues1–3 
posited a division between a core system involved in the processing the visual appearance of faces—compris-
ing the Occipital Face Area (OFA), the Fusiform Face Area (FFA), and the posterior Superior Temporal Sulcus 
(pSTS)—and an extended system, comprising parietal, frontal, and subcortical areas, involved in inferring 
socially relevant information from faces, such as direction of attention, intentions, emotions, and retrieval of 
person knowledge1–4.

The definition of the core system has been extended to include areas in the anterior fusiform gyrus (the ante-
rior temporal face area, ATFA5,6), the anterior superior temporal sulcus (aSTS-FA7–9), and the inferior frontal 
gyrus (IFG-FA7,10–12). For example, in a recent fMRI neural decoding study with visually familiar faces11, we 
showed that the representation of face identity is progressively disentangled from image-specific features along 
the ventral visual pathway. While early visual cortex and the OFA represented head view independently of the 
identity of the face, we recorded an intermediate level of representation in the FFA in which identity was emerging 
but was still entangled with head view. The human face processing pathway culminated in the right ATFA and 
IFG-FA where we recorded a view-invariant representation of face identity.

While both unfamiliar and familiar faces effectively activate the core system7,8,11,13,14, familiar faces activate 
the extended system more strongly than unfamiliar faces2,13,15–17. Personally familiar faces recruit Theory of Mind 
(ToM) areas such as the medial prefrontal cortex (MPFC) and the temporo-parietal junction (TPJ), because they 
are more strongly associated with person knowledge2,16,18; they activate the precuneus and the anterior temporal 
cortices, suggesting retrieval of long-term episodic memories; they modulate the activity in the amygdala and 
insula, suggesting an increased emotion processing2,13,18. Because the core and extended systems have been mostly 
studied separately, we lack a clear understanding of how personal familiarity, consolidated through repeated 
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interactions, affects the representations in the core system, and how core and extended systems interact to create 
the known behavioral advantages for personally familiar faces.

The behavioral literature on face processing19–25 suggests that, despite the subjective impression of efficient 
or “expert” perception of natural faces26, only familiar faces are detected and recognized more robustly and 
efficiently, in stark contrast with the surprisingly inefficient identification of unfamiliar faces. Recognition of 
personally familiar faces is highly accurate even when images are severely degraded, while recognition of unfa-
miliar faces is markedly impaired by variation in head position or lighting, even with good image quality24,25,27–29. 
Detection of personally familiar faces is facilitated even in conditions of reduced attentional resources and with-
out awareness19.

The representations of familiar and unfamiliar faces may differ in multiple ways. Familiar identities could 
have more robust, individually-specific representations, which are learned and consolidated over the course of 
personal interactions. Alternatively, familiar face representations could be enhanced with attributes that are sim-
ilar across many personally familiar faces. For example, personally familiar faces (especially those used in the 
present and our previous experiments that are faces of close relatives of personal friends) are associated with 
person-knowledge and emotional attachment that lead to social interactions that are different from the inter-
actions with strangers, and these attributes may be shared across many familiar—one may be more open and 
unguarded with family and personal friends18.

Here we applied multivariate pattern analyses (MVPA30,31), including MVP classification (MVPC) and 
representational similarity analysis (RSA32) with two goals in mind. First, we wanted to dissociate familiarity 
information from identity information in the core and extended systems. Second, we wanted to investigate the 
relationships among core and extended face processing areas by examining the similarities of their representa-
tional spaces using second-order representational geometry32–34.

We first derived independent neural measures of identification and familiarity. To prevent any effect of famili-
arity information in identity decoding, we performed identity classification separately for familiar and unfamiliar 
faces. To control for the effect of identity-specific visual information in familiarity decoding, we trained classifiers 
to distinguish familiar from unfamiliar faces, and tested them on left-out identities. The results replicated the 
distinction between the representations of personally familiar and unfamiliar faces in the extended system that 
was previously revealed only with univariate analysis2, showing that this effect captured factors that were common 
across familiar faces and invariant across identities.

To unravel the representational structure of the face processing network, we investigated the relationships 
among the areas of the core and extended systems uncovered by the classification analyses. Using the approach 
used by Guntupalli and colleagues34 (see also Kriegeskorte and colleagues33), we studied the similarities between 
representational geometries32 in different face-processing areas (second-order representational geometry). This 
analysis revealed clear distinctions between the core system and the extended system, supporting the model by 
Haxby and colleagues1–3. In addition, the results support the extension of the core system to more anterior areas, 
such as the ATFA, the aSTS-FA and IFG-FA5–7,11,35, and reveal a finer subdivision of this system into ventral, dor-
sal, and anterior components.

Results
In this experiment, we investigated the face processing network while thirty-three participants performed an 
oddball-detection task with faces of friends and strangers (see Fig. 1). We first investigated which areas responded 
more strongly to familiar faces than unfamiliar ones with a standard GLM analysis. Because familiarity infor-
mation (whether a face is a familiar one) is necessarily confounded with identity information (who that person 
is), we next used MVPC to dissociate which areas of the core and extended system encode identity-independent 
familiarity information (familiar vs. unfamiliar classification across identities), and which parts of the network 
encode identity information. We performed two classification analyses using different cross-validation schemes to 
control for the effect of identity on the representation of general familiarity and to control for the effect of famili-
arity on the representation of identity. For the familiarity classification, we employed a leave-two-identities-out 
cross-validation scheme, where the classifier was trained on six faces (three familiar, three unfamiliar) to distin-
guish between familiar and unfamiliar faces, and tested on two left-out identities. This cross-validation scheme 
reduced the effect of identity information (see Supplementary Figures 1 and 2). For the identity classification, 
we decoded the four familiar faces and the four unfamiliar faces separately to eliminate the effect of familiarity 
information in the classification of identity information. Finally, we investigated the network structure derived 
from the similarities of representations to investigate relationships among areas in the core and extended system.

Univariate analyses.  In the univariate analysis contrasting Familiar > Unfamiliar we found significant acti-
vation in bilateral MTG/STS extending along the full length of the right STS. Additionally, we found significant 
clusters in the bilateral precuneus and bilateral MPFC, as well as in the right IFG. Familiar faces also evoked 
stronger responses in the left mid fusiform gyrus and the right anterior fusiform gyrus near the locations of the 
FFA36,37 and ATFA5. For the contrast Unfamiliar > Familiar we found only one significant cluster in the right infe-
rior parietal lobule encroaching on the TPJ. Figure 2 shows the resulting statistical maps projected on the surface.

Multivariate analyses.  Familiarity Classification.  The results of searchlight MVPC of identity-independent 
familiarity largely overlapped with the univariate maps, showing significant classification in the bilateral MTG/
STS, mid and anterior right fusiform gyrus, right IFG, TPJ, precuneus, and MPFC (Fig. 3). Surprisingly, small 
patches of cortex in early visual cortex also showed significant MVPC of identity-independent familiarity. We fur-
ther investigated MVPC in early visual cortex with additional analyses on probabilistic ROI masks38, and found 
statistically significant decoding performance in V2 and V3 (see Supplementary Methods and Supplementary 
Figure 7). Since testing was performed on left-out familiar and unfamiliar identities, and all pictures were taken 
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with the same equipment and settings, it is unlikely that this result was due simply to low-level features that dis-
tinguished familiar from unfamiliar faces. To test this further, we extracted features from the layers C1 and C2 of 
the HMAX model39,40 and performed the same classification analysis, and found that decoding performance was 
not statistically significant (accuracy with C1 features 52%, p = 0.67; accuracy with C2 features 49%, p = 0.96; see 
Supplementary Methods and Supplementary Figure 8).

The results from the familiarity classification showed some correspondence with the univariate analysis, but 
the two maps were not completely overlapping. The scatterplot between the voxel-wise z-values for univariate 
GLM and the familiarity decoding MVPA results (Fig. 4A) shows large spread, highlighting that the multivariate 
classification leveraged additional information other than magnitude differences between the two conditions. 
In addition, as can be seen in Fig. 4B, the leave-two-identities-out cross-validation scheme effectively controlled 
for visual identity information in early visual cortex, which was necessarily conflated in the univariate contrast.

Identity Classification.  The identity classification analysis showed that identity could be decoded in many of the 
same areas as identity-independent familiarity (Fig. 5). Significant classification was found in the MPFC and pre-
cuneus, and in the bilateral MTG/STS, TPJ, and IFG. The area in the precuneus with significant identity classifica-
tion, however, was quite dorsal, whereas that for significant familiarity classification was ventral and included the 
posterior cingulate. Identity classification was significant in bilateral visual cortex starting in EV and extending to 
occipital, posterior, and mid fusiform cortices. Although MVPC of familiar identities showed a weak trend towards 
higher accuracies than for unfamiliar identities in the IFG and MTG/STS (Supplementary Figures 4, 5, and 6),  
these differences were not significant despite the large number of subjects.

ROI Analysis and Second-order Representational Geometry.  We investigated the relationships among the areas 
uncovered by the classification analysis as a second-order, inter-areal representational geometry. We selected 30 
spherical ROIs (see Methods for how they were selected, Fig. 6 for their location, and Supplementary Table 1 for 
their MNI coordinates) and computed a cross-validated representational dissimilarity matrix (RDM)41 in each 
ROI. We then constructed a distance matrix quantifying the similarity of these RDMs between all pairs of ROIs. 
Then, we computed a Multi Dimensional Scaling (MDS) solution to visualize the geometry of this inter-ROI 
matrix. Figure 7 shows the results of the projection of a 3D MDS plot on the first two dimensions. Supplementary 
Figure 10 shows the distance matrices, Supplementary Figures 11 and 12, and Supplementary Videos 1 and 2 
show the full MDS solution.

The first two dimensions of the MDS solution captured relationships among areas in the ventral portion of 
the core system in the first dimension, and relationships among areas in the dorsal and anterior parts of the core 

Figure 1.  Slow event-related fMRI design. During each trial, images were presented in sequences of three 
pictures of the same identity (normal trial) or two different identities (oddball trials) in front-view or 30-degree 
profile views. Subjects engaged in an oddball-detection task to ensure that they paid attention to each stimulus.
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system and areas in the extended system in the second dimension. The first dimension showed a progression 
from EV areas to the posterior, mid, and anterior fusiform areas. Extended system areas were all at the distant 
end of the first dimension, as were the areas in the dorsal part of the core system (MTG/STS) and the IFG. The 
second dimension captured distinctions among these extended and core system areas, with the precuneus areas 
clustered together at one end, the MPFC and TPJ in the middle, and the dorsal and anterior core system areas at 
the other end.

We replicated this second-order RSA on an independent fMRI dataset collected while different subjects 
watched a full-length audiovisual movie, Raiders of the Lost Ark34,42. This naturalistic stimulus contained a rich 
variety of dynamic faces that rapidly became familiar while the plot unfolded. The inter-ROI similarity matrix and 
MDS plot replicated the results based on representational geometry for the eight faces in the experiment (Fig. 7). 
The results tend to be more clearly defined for the movie data, probably due to the the dynamic videos, the larger 
data set, and hyperalignment of the data. Contributions from scene context, language, music, and narrative struc-
ture might also play a role43,44. The first two dimensions of the MDS solution cleanly captured distinctions in the 
ventral core system in the first dimension and in the extended, dorsal core, and anterior core systems in the second 
dimension, with remarkably similar placement of ROIs on each of these dimensions between task data and movie 
data; the distance matrices obtained from the two datasets were very similar (RV-coefficient45,46 = 0.755 [0.7254, 
0.7612]; Spearman r = 0.48 [0.34, 0.49]; see Supplementary Methods and Supplementary Figures 12 and 13).

We quantified the similarity of the within-system RDMs by running a linear mixed-effect model on the cor-
relation values and contrasting within-systems correlations with between-systems correlations. We found a clear 
distinction between the core and extended systems in terms of similarity of representational geometries. For 
the task data, the correlations within the extended system were significantly higher than the between-system 
correlations (estimate of the contrast “Within Extended > Between” 0.0993 [0.0875, 0.1111] 95% confi-
dence interval, t-value = 16.36), while the correlations within the core system were not significantly different 
from the between-system correlations (estimate of the contrast “Within Core > Between” 0.0044 [−0.0043, 

Figure 2.  Cluster-corrected (p < 0.05) z-values for the univariate contrast Familiar > Unfamiliar. 
Abbreviations: IPL: inferior parietal lobule; mFus: middle fusiform gyrus; aFus: anterior fusiform gyrus; TPJ: 
temporo-parietal junction; MTG/STS: middle temporal gyrus/superior temporal sulcus; Precun: precuneus; 
MPFC: medial prefrontal cortex; IFG: inferior frontal gyrus.
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0.0130], t-value = 1.00). For the movie data, both contrasts were significant: within-core vs. between 0.0678 
[0.0619, 0.0738], t-value = 22.47; and within-extended vs. between 0.1479 [0.1398, 0.1565], t-value = 35.07. 
Supplementary Tables 2 and 3 show the full parameter estimates for both models, while Supplementary Tables 4 
and 5 report additional statistics on the subsystems.

Discussion
In this experiment we investigated how familiar and unfamiliar faces are represented in the distributed neural sys-
tem for face perception. We distinguished between familiarity information, abstracted from the visual appearance 
of the faces, and the identification of individual faces, controlling for the added information of personal familiar-
ity. These analyses revealed an extensive network of areas that carry information about face familiarity and iden-
tity, replicating with a larger sample size previous studies that used univariate analyses, and also providing more 
details about the type of information present in those areas. We then analyzed the second-order representational 
geometry of this extensive network, revealing a clear distinction between the core and the extended systems for 
face perception and a new subdivision of the areas in the core system.

The results from the second-order representational analysis suggest that the core system for face perception 
can be separated into ventral, dorsal, and anterior subsystems, extending the existing neural models of face per-
ception1,2,7. The ventral core system consists of fusiform areas extending from the occipital lobe to the anterior 
ventral temporal lobe. The dorsal system extends from the posterior MTG/STS to anterior lateral temporal cortex. 
The representations in the dorsal core system did not appear to have strong similarities with those in the ventral 
core system, consistent with the functional distinction between dorsal and ventral areas suggested by others8,48. 
Based on the results reported here, we propose that the anterior areas in the fusiform gyrus, the anterior MTG/
STS, and the IFG may be the convergence of the ventral and dorsal pathways in which representations of faces 
become invariant to facial attributes such as head position9,11 and perhaps other social attributes. For example, 
the right anterior STS plays a role in the representation of the dangerousness of animals49 and may play a role 

Figure 3.  Searchlight maps for the Familiarity classification projected onto the surface. Maps were thresholded 
at a z-TFCE score of 1.65, corresponding to p < 0.05 one-tailed (corrected for multiple comparisons). 
Abbreviations: mFus: middle fusiform gyrus; aFus: anterior fusiform gyrus; TPJ: temporo-parietal junction; 
MTG/STS: middle temporal gyrus/superior temporal sulcus; Precun: precuneus; MPFC: medial prefrontal 
cortex; IFG: inferior frontal gyrus.
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in the representation of social impressions, such as trustworthiness and aggressiveness50. The hierarchy of areas 
proposed in this work provides a testable model for future studies aimed at further characterizing the transforma-
tions operating on the representation of faces, from retinotopic input to higher order areas.

Using MVPC, we teased apart neural responses due to factors that are shared by familiar faces from factors 
that are specific to familiar and unfamiliar identities. While standard univariate analyses necessarily conflate 
identity information with familiarity information, we used different cross-validation schemes in the MVPC to 
separate familiarity information from identity information. To separate identity-independent familiarity infor-
mation from identity-specific visual information, we used a cross-validation scheme in MVPC of face famil-
iarity in which we tested the classifier on identities that were not included in the training data. To investigate 
identity-specific information that was independent of familiarity, we tested MVPC of familiar and unfamiliar 
identities separately.

We found reliable decoding of identity-independent familiarity in extended system areas that showed 
stronger responses to familiar faces in univariate analyses, such as theory of mind areas (precuneus, TPJ, and 
MPFC), consistent with previous reports2,13. Univariate and multivariate analyses were complementary in that 
they tested different properties of the BOLD response (differences in mean activations vs. patterns): the two 
resulting maps showed some but not complete correspondence, highlighting that multivariate analyses leveraged 
additional information other than magnitude differences. In addition, MVPC of familiarity was designed to test 
for a familiarity effect that was not specific to familiar individuals, revealing that this network does carry such 
identity-independent information about the familiarity of faces. Both the univariate and MVPC results expand 
the areas reported previously to include additional areas that are components of the dorsal and anterior core sys-
tem for face perception in the MTG/STS, anterior fusiform cortex, and IFG. We suspect that our relatively large 
sample size made it possible to identify this more extensive network.

In this experiment subjects had to perform an oddball-detection task to ensure that they paid attention to the 
stimuli. It is possible that some of the decoding results for familiarity might be attributed to differences in atten-
tional demands between personally familiar and unfamiliar faces, but it is hard to predict the direction of an effect 
of attention. Behavioral evidence suggests that personally familiar faces are processed faster20–23,51, and require 
fewer attentional resources19. On the other hand, we also have shown that familiar faces, relative to unfamiliar 
faces, slow down shifts of attention away from the face, suggesting they hold attention52. We found reduced BOLD 
activation to personally familiar faces only in the IPL53,54, while areas of the core and extended systems showed 
stronger responses. If the stronger response to familiar faces in core and extended system areas were due to spon-
taneous attention, one would also expect a stronger response in the IPL and other attention-related cortical areas, 
which we did not find.

Unexpectedly, we found significant decoding of familiarity information in early visual cortex while con-
trolling for identity information. Additional ROI decoding analyses in early visual areas revealed that familiarity 
information could be decoded in V2 and V3 (see Supplementary Material). Low-level image differences did not 

Figure 4.  (A) Comparison of the univariate analysis of familiarity with the MVPA familiarity decoding. The 
x-axis shows z-values from the univariate contrast Familiar > Unfamiliar. The y-axis shows the z-values of the 
Familiarity classification across identities. Colors depict voxel position in Posterior-to-Anterior (Blue-to-Red) 
direction. Some but not complete correspondence exists between the two maps, showing that the multivariate 
analyses leveraged additional information other than magnitude differences. (B) Comparison of cross-
validation schemes for the familiarity decoding. The x-axis shows z-values from the familiarity classification 
using the leave-2-identities-out scheme, as reported in the main MVPC analysis. The y-axis shows the same 
classification using a common leave-one-run-out scheme. The leave-two-identities-out scheme successfully 
controls for identity visual information, as can be seen by the overall lower z-values for voxels belonging to the 
occipital cortex.
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seem to explain this finding: familiar and unfamiliar faces were indistinguishable using features extracted from 
the HMAX model39,40. Recent studies have shown that feedback information from higher-order visual areas to 
early visual cortex carries fine-grained information about the category of the stimuli being observed55,56, suggest-
ing that feedback processes might have contributed to the significant familiarity decoding in early visual areas. 
However, future studies with paradigms designed to address the nature of these feedback processes are needed to 
further test this possibility.

In addition to identity-independent familiarity, the same network carries information about specific iden-
tities. We tested for this type of information with separate MVPC analyses of four familiar identities and four 
unfamiliar identities. By not including familiar and unfamiliar identities in the same analysis, we could test for 
identity-specific neural patterns that were not dependent on familiarity. Again, this network was more extensive 
than that reported in previous studies11,57–63 (most probably due to the larger number of subjects and, perhaps, 
the inclusion of personally familiar faces). Importantly, this network included the IFG, consistent with previous 
work11,12, and extended into the MTG/STS, TPJ, precuneus, and MPFC.

Identity decoding was also found in early visual cortex and the posterior ventral core system, likely reflecting 
to some extent image-specific information. In a recent experiment11 we showed that view-dependent representa-
tion of faces was the dominant factor in early visual cortex and the OFA. We did not find a significant difference in 
MVPC of familiar identities as compared to MVPC of unfamiliar identities, despite the large number of subjects 
in this study. There was a nonsignificant trend towards higher MVPC accuracies for familiar identities in the 
IFG and MTG/STS, but more work explicitly designed to investigate view-invariant representations of identity is 
needed to establish whether these trends are real.

Conclusions
Our results revealed new structure in the distributed system for face perception, suggesting that the core system 
can be subdivided into ventral, dorsal, and anterior components based on differences of representations. The 

Figure 5.  Searchlight maps for the Identity classification. The classification was run separately for familiar and 
unfamiliar identities (4-way), and the resulting maps were averaged. Maps were thresholded at a z-TFCE score 
of 1.65, corresponding to p < 0.05 one-tailed (corrected for multiple comparisons). Abbreviations: OccFus: 
occipital fusiform gyrus; pFus: posterior fusiform gyrus; mFus: middle fusiform gyrus; TPJ: temporo-parietal 
Junction; MTG/STS: middle temporal gyrus/superior temporal sulcus; dPrecun: dorsal precuneus; MPFC: 
medial prefrontal cortex; IFG: inferior frontal gyrus.
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anterior portion of the core system may be the point at which the ventral and dorsal pathways converge to gener-
ate view-independent representations of identity and of socially-relevant visual information, such as direction of 
attention. Identity-independent information about familiarity could be decoded in extended system areas such 
as the TPJ, precuneus, and MPFC, as well as in dorsal and anterior core system areas such as the MTG/STS, 
anterior fusiform cortex, and IFG. In sum, these results reveal new information about how face perception, one 
of the most highly developed and socially relevant visual functions, is realized in an extensive distributed system 
involving cortical fields in occipital, temporal, parietal, and prefrontal cortices.

Materials and Methods
Participants.  Thirty-three young adults participated in the experiment (mean age 23 y.o. +/− 3.33 SD, 13 
males). They were recruited from the Dartmouth College community and all had normal or corrected-to-normal 
vision. Prior to the imaging study we took pictures of four friends for each participant to use as familiar stimuli. 
Some of these friends also were study participants (pictures of 76 individuals were taken as familiar stimuli). 
Photos of unfamiliar individuals were collected at the University of Vermont (Burlington) using the same camera 
and lighting conditions. All individuals signed written informed consent to use their pictures for research and in 
publications. Prior to participation in the fMRI study, subjects were screened for MRI compliance and provided 
informed consent. The study was approved by the Committee for the Protection of Human Subjects at Dartmouth 
College and was conducted according to the principles of the Declaration of Helsinki. Participants received mon-
etary compensation for their time.

Stimuli.  The stimuli for the fMRI experiment were pictures portraying different familiar and unfamiliar iden-
tities: four friends’ faces, four unknown faces, and the subject’s own face. For each identity we used three images 
with different head orientations: frontal view and 30-degree profiles to the left and right with gaze towards the 
camera. All photos on both sites (Dartmouth College and University of Vermont) were taken using the same 
consumer-grade digital camera in a dedicated photo-studio room with black background and uniform lighting.

Each familiar face was matched with an unfamiliar individual face, similar in age, gender and ethnicity. 
Twenty-seven images (9 individuals, 3 head positions) were used in the experimental design per each subject. 

Figure 6.  Spherical ROIs used to analyze the similarity of representational geometries. Top row shows left 
sagittal slices; middle row shows right sagittal slices; bottom row shows axial slices. Regions are color coded 
according to the system they belong to. Grey dotted lines between ROIs indicates that they were contiguous but 
not overlapping (see Methods for details).
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Figure 7.  Similarity of neural representations in ROIs derived from familiarity and identity decoding. Top 
panel and middle panel show the first two dimensions of 3D MDS solutions based on the task data (A) and 
the hyperaligned movie data34,42 (B) (see Methods section for more details). The color of the labels indicates 
the system to which the ROI belongs to (see Fig. 6 for their location and Supplementary Table 1 for the MNI 
coordinates). With both datasets the MDS solution shows the hierarchy from early visual cortex to ventral core 
system (first dimension, x-axis), as well as a segregation between the precuneus, theory of mind areas, and areas 
of the anterior and dorsal core system (second dimension, y-axis). Panel (C) shows the proposed division of 
the core system into dorsal, ventral, and anterior portions. This division builds upon existing models of face 
processing1,7, which suggest a progression from early visual areas to separate dorsal and ventral streams, while 
extending these models with the finding that both streams converge to the IFG. Representation of identity and 
gaze in the anterior core areas are disentangled from variations in head view11,47.
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Stimuli were presented to the subjects in the MRI scanner using a projection screen positioned at the rear of the 
scanner and viewed through a mirror mounted on the head coil.

The original high-resolution digital images were cropped to include the face from the top of the head to 
the neck visible under the chin, centered on the face. Images were scaled to 400×400 pixels. Images subtended 
approximately 10×10 degrees of visual angle.

Procedure.  The stimuli were presented using a slow event-related design while subjects were engaged in a 
simple oddball task (Fig. 1). A typical trial consisted of three different images of the same individual, each pre-
sented for 500 ms with no gap. On catch trials, one of the three images was of a different individual. The order of 
head orientations within trials was randomized. The task was included to make sure that subjects paid attention 
to the identity of the faces. Before entering the scanner, subjects had a short practice session with each condition 
(one trial for each of 9 identities, one blank trial, and one catch trial) to be familiarized with the design and the 
stimuli.

The order of the events was pseudo-randomized to approximate a first-order counterbalancing of conditions64. 
A functional run comprised 48 trials: four trials for each of the nine individuals (four familiar, four unfamiliar 
and self), four blank trials, four oddball and four buffer trials (three at the beginning and one at the end). The 
buffer trials were added to optimize the trial order and were discarded from the analysis. Each run had 10 seconds 
of fixation at the beginning (to stabilize the hemodynamic response) and at the end (to collect the response to the 
last trials). Each session consisted of 11 functional runs, resulting in 396 non-oddball trials (44 for each of the 
nine identities).

Image acquisition.  Brain images were acquired using a 3T Philips Achieva Intera scanner with a 32-channel 
head coil. Functional imaging used gradient-echo echo-planar-imaging with SENSE reduction factor of 2. The MR 
parameters were TE/TR = 35/2000 ms, Flip angle = 90°, in-plane resolution = 3 × 3 mm, matrix size of 80 × 80 
and FOV = 240 × 240 mm. 35 axial slices were acquired with no gap covering the entire brain except the most 
dorsal portion (Supplementary Figure 9). Slices were acquired in the Philips-specific interleaved order (slice step 
of 6, i.e., ceiled square root of total number of slices). Each of the 11 functional runs included 154 dynamic scans 
with 4 dummy scans for a total time of 316 seconds per run. After the functional runs a single high-resolution 
T1-weighted (TE/TR = 3.7/8.2 ms) anatomical scan was acquired with a 3D-TFE sequence. The voxel resolution 
was 0.938 × 0.938 × 1.0 mm with a bounding box matrix of 256 × 256 × 160 (FOV = 240 × 240 × 160 mm).

Image preprocessing.  All preprocessing steps were run using a Nipype workflow (version 0.11.0; FSL ver-
sion 5.0.9)65,66, which also used functions from SciPy67 and NumPy68. We modified the preprocessing pipeline 
fmri_ants_openfmri.py and adapted it for our analyses. The modified version is available at https://www.github.
com/mvdoc/famface. All the preprocessing analyses were run on a computing cluster running Debian Jessie with 
tools provided by the NeuroDebian repository69.

Preprocessing Steps.  We used a standard FSL preprocessing pipeline (FEAT) as implemented in Nipype (nipype.
preprocess.create_featreg_preproc), using a FWHM smoothing of 6 mm, a highpass filter at 60 s cutoff, and the 
first volume of the first run as a reference for EPI alignment. After motion correction, the BOLD time-series were 
masked with a dilated gray-matter mask, smoothed, and then high-pass filtered. The preprocessed data were then 
used for a GLM and MVPA analysis, with additional preprocessing steps as described in the following sections.

Template Registration.  Each subject’s data (functional or second-level betas) were resliced into the MNI tem-
plate with 2 mm isotropic voxel size. First, a reference volume was created by computing a median temporal SNR 
volume across functional runs. Then, we computed an affine transformation registering this median tSNR volume 
to the subject’s anatomical scan using FSL’s FLIRT tool70, and the transformation was improved using the BBR 
cost function. A second non-linear transformation registering the subject’s anatomical image to the MNI tem-
plate was computed using ANTs71 with default parameters. The affine and nonlinear transformations were then 
combined to reslice the reference volume and all the functional volumes and second-level betas into the MNI 
template. Results from this registration pipeline were visually inspected for each subject.

MVPA Preprocessing.  First, we resliced the bold time-series into the MNI template using a combination of 
linear and nonlinear transformations (see Template Registration section). Then, we extracted beta parameters 
associated with each condition for each run using PyMVPA’s fit_event_hrf_model72 function based on NiPy’s 
functionality73. Additional nuisance regressors comprised motion estimates, artifacts (volumes were marked as 
artifact if their intensity exceeded three standard deviations of the normalized intensity), and noise estimates. To 
obtain noise estimates we used the CompCor method74. In brief, we performed a GLM on the BOLD timeseries 
in the voxels belonging to each subject’s white-matter mask projected in MNI space. The regressors of this GLM 
were the motion estimates and volumes marked as artifacts. We then performed PCA on the residuals, and took 
the first 5 components as noise estimates.

Univariate analyses.  The first-level and second-level analyses (fixed effect) for each subject were performed 
in the subject’s individual space, and the results were then projected into a standard template (FSL’s MNI152, 
2 mm isotropic, see details in the Template Registration section). These analyses followed a standard FSL pipeline 
as implemented in Nipype (nipype.estimate.create_modelfit_workflow and nipype.estimate.create_fixed_effects_
flow). A standard GLM analysis was performed separately for each run to extract beta values associated with each 
condition and the planned contrasts. Additional nuisance regressors comprised motion estimates, artifacts (vol-
umes were marked as artifact if their intensity exceeded three standard deviations of the normalized intensity), 
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and first-order derivatives. A second-level analysis was performed to obtain per-subject statistical maps associ-
ated with each condition and contrast using FSL’s FLAMEO (fixed-effect model). The statistical maps were then 
resliced into the MNI152 template (see details above), and a third-level analysis was performed across subjects 
using FSL’s FLAMEO (mixed-effect model). The resulting z-stat maps were then corrected for multiple compar-
isons using FSL’s cluster routine, with a voxel z-threshold set at 2.3, and cluster p-value of p = 0.05. The Nipype 
pipeline we used for third-level analysis can be found at https://www.github.com/mvdoc/famface.

Multivariate analyses.  Classification methods.  MVPC was implemented in Python using PyMVPA72 
(http://www.pymvpa.org). GLM betas were estimated within each run for each condition (see MVPA 
Preprocessing section). For all analyses we kept only the betas for the four familiar and the four unfamiliar identi-
ties, discarding trials where subjects saw their own face, or responded to an oddball presentation. The betas were 
then z-scored within each run (separately for each voxel) and used as features for classification. We used Linear 
C-SVM as a classifier, as implemented in LIBSVM75. The C parameter was set to the PyMVPA default, which 
scales it according to the mean norm of the training data.

Cross-validation.  We used a leave-one-out (LOO) scheme for cross-validation. The splitting unit was depend-
ent on the type of classification (familiarity or identity). For familiarity classification, we cross-validated across 
pairs of identities. We trained the classifier on three familiar and three unfamiliar identities, and tested on 
the left-out identities. This resulted in 16 cross-validation splits that allowed us to control for identity infor-
mation (see Figure 4B, and Supplementary Figures 1 and 2 for a comparison of leave-one-run-out and 
leave-two-identities-out cross-validation schemes). For identity classification, we cross-validated across runs, 
resulting in a leave-one-run-out scheme (11 splits). To remove the effect of familiarity on classification of face 
identity, we performed identity classification independently for familiar and unfamiliar identities, and averaged 
the resulting accuracy maps.

Searchlight.  We used sphere searchlights76 to extract local features for classification. We selected a 5-voxel radius 
(10 mm), and moved the searchlight sphere across the voxels belonging to a union mask in which at least 26 sub-
jects (~80%, arbitrarily chosen) had fMRI coverage (see Supplementary Figure 9), as well as selecting only gray- 
and white-matter voxels in the cerebrum. For each center voxel in this mask, we selected nearby voxels contained 
in a sphere, and used them as features for classification. The classifier’s accuracy was stored in the central voxel, 
and the process was repeated for every voxel.

Statistical assessment.  To determine statistical significance for the MVPC analyses, we performed permutation 
testing77 coupled with Threshold-Free Cluster Enhancement (TFCE)78, as implemented in CoSMoMVPA79. For 
each subject and each classification analysis, we computed a null distribution by randomly permuting the labels 
and performing classification. For identity classification analysis, we randomly shuffled the identity labels within 
each run, and performed classification. This procedure was repeated 20 times for each subject. For familiarity 
analysis, we randomly permuted the familiarity labels across the entire experiment. This was repeated exhaus-
tively, resulting in 35 permutations (see Supplementary Materials for a short proof that only 35 unique permu-
tations are possible in this case). To create a null distribution of TFCE values for each voxel, permutation maps 
were randomly sampled and averaged across subjects, and this process was repeated 10,000 times. Note that we 
selected a smaller number of permutations than suggested77 (100 per subject) because of the large number of 
subjects we had: with 33 subjects, the number of possible average maps for identity classification was 2033 and for 
familiarity classification was 3533.

Similarity of neural representations within ROIs.  We defined ROIs based on the searchlight results for both the 
familiarity and identity classification. Thirty spherical ROIs were centered on voxels selected manually at or near 
peak values, with a 10 mm radius (five voxels). Voxels belonging to more than one ROI were assigned to the ROI 
with the closest center (Euclidean distance), resulting in some contiguous but not overlapping ROIs (see Fig. 6). 
On average, ROIs contained 412 voxels at a 2 mm isotropic resolution (SD: 73 voxels).

For each ROI we computed a cross-validated representational dissimilarity matrix (RDM)41 between the eight 
identities (four familiar faces, four unfamiliar faces). First, we z-scored the beta estimates within each run, which 
were computed as described in the MVPA Preprocessing section. Then, we divided all runs into two partitions of 
six and five runs, and averaged the beta values within each partition. The data between these two partitions were 
correlated (Pearson correlation) to obtain an 8x8 matrix of dissimilarities between pairs of identities. Note that 
because correlations were computed between data from two different partitions, the diagonal could be different 
from one. This process was repeated for every possible combination of runs, yielding 462 RDMs that were aver-
aged to obtain a final RDM for each ROI and each subject. The final RDMs were made symmetrical by averaging 
them with their transpose. All averaging operations were performed on Fisher-transformed (r-to-z) correlation 
values, then mapped back to correlation using the inverse transformation.

We used these final RDMs to compute pairwise distances between ROIs for each subject individually 
using correlation distance. The resulting 33 distance matrices (one for each subject) were averaged to obtain a 
group-level distance matrix. This distance matrix was used to compute a three-dimensional MDS solution, using 
classical MDS as implemented in R (cmdscale) interfaced in Python using rpy280.

To investigate the reproducibility of the network formed by the ROIs defined above, we computed 
between-subject correlation distances across these ROIs using hyperaligned data from a different study, in which 
eleven participants watched Raiders of the Lost Ark34,42. Since data were functionally aligned with hyperalign-
ment34,42, we performed a between-subject analysis instead of a within-subject analysis, where distances between 
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pairwise ROIs were computed across subjects, replicating the approach in Guntupalli et al.34. Additional details 
on the experimental paradigm and scanning parameters can be found in the Supplementary Material.

Because data were in two different resolutions of the same template (task: MNI 2 mm; movie: MNI 3 mm), 
center coordinates of the spherical ROIs were recalculated assigning the closest voxel in MNI 3 mm using 
Euclidean distance. The median displacement was 1.41 mm (min: 1 mm, max: 1.73 mm). As described above, 
spherical ROIs were drawn around these center voxels using a radius of 9 mm (3 voxels) to account for the differ-
ent voxel size. Overlapping voxels were assigned to the ROI with the closest center, resulting in possibly contigu-
ous but not overlapping ROIs. On average ROIs contained 100 voxels (SD: 20 voxels).

The movie data were masked selecting only white- and gray-matter voxels, and divided into two parts for 
cross-validation. For each of the two parts, whole-brain searchlight hyperalignment parameters were derived 
from one part of the movie, and the second part was projected into the common model space in functional 
alignment34,42. The aligned data were z-scored, and timepoint-by-timepoint RDMs were computed in each ROI 
for each subject individually, yielding a 1322 × 1322 RDM within each ROI (1336 × 1336 for the second fold of 
hyperalignment). Following the analysis in Guntupalli et al.34 we estimated a distance matrix between ROIs while 
cross-validating across subjects. For each pair of ROIs, the correlation between their RDMs was computed for all 
55 pairs of subjects, and averaged to compute the cross-validated correlation between those ROIs. This process 
resulted in two 30×30 cross-validated distance matrices (one for each hyperalignment fold), which were made 
symmetrical by averaging them with their transpose, and finally averaged together to obtain one final 30x30 
matrix. All averaging operations were computed on Fisher-transformed (r-to-z) correlation values, then mapped 
back to correlation using the inverse transformation. Finally, a dissimilarity index (D) was computed for each pair 
of ROIs to normalize the correlation according to the maximum possible correlation within each ROI34:

= −
⋅⋅
⋅D r

r r
1

(1)
ROI ROI

ROI ROI

ROI ROI
1 2

1 2

1 2

The final matrix containing dissimilarity indices was then used to compute an MDS solution as described 
previously.

In order to quantify differences in representational geometries between areas of the core and extended sys-
tems, we divided the pairwise distances between ROIs in the upper triangular RDM into within-system and 
between-system cells, and converted them back to correlations (by subtracting them from 1). Then, we ran a 
Linear Mixed-Effect Model on the correlations using lme481, fitting a linear model of the form

β β β= + + +r C E z , (2)i j i j i j i, 0 1 , 2 ,

where = …i N1 indicates either the subjects for task data (N = 33) or the pairwise subjects for hyperaligned 
movie data (N = 55); = …j 1 465 indicates the index of the pairwise correlations between ROIs, Ci,j and Ei,j indi-
cate whether ri,j is a within-system correlation for the core or extended system respectively, β0, β1, β2 are 
fixed-effects parameters, and zi are the subject-level random effects. Using this model, β1 corresponds to the 
contrast “Within Core > Between”, and β2 to the contrast “Within Extended > Between”. After fitting, we per-
formed parametric bootstrapping to obtain 95% bootstrapped confidence intervals on the model parameters.

Visualization.  Volumetric results were visualized using Nilearn82, and projected on template surfaces using 
AFNI and SUMA83,84.

Data and code availability.  Non-thresholded statistical maps can be found on neurovault.org85 at the 
following URL: http://neurovault.org/collections/NEUNABLT. All data can be found at http://datasets.datalad.
org/?dir=/labs/gobbini/famface/data. The code used for the analyses is available at the following github reposi-
tory: https://www.github.com/mvdoc/famface.
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