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The number of key carcinogenic 
events can be predicted from 
cancer incidence
Aleksey V. Belikov   

The widely accepted multiple-hit hypothesis of carcinogenesis states that cancers arise after several 
successive events. However, no consensus has been reached on the quantity and nature of these 
events, although “driver” mutations or epimutations are considered the most probable candidates. By 
using the largest publicly available cancer incidence statistics (20 million cases), I show that incidence 
of 20 most prevalent cancer types in relation to patients’ age closely follows the Erlang probability 
distribution (R2 = 0.9734–0.9999). The Erlang distribution describes the probability y of k independent 
random events occurring by the time x, but not earlier or later, with events happening on average every 
b time intervals. This fits well with the multiple-hit hypothesis and potentially allows to predict the 
number k of key carcinogenic events and the average time interval b between them, for each cancer 
type. Moreover, the amplitude parameter A likely predicts the maximal populational susceptibility to 
a given type of cancer. These parameters are estimated for 20 most common cancer types and provide 
numerical reference points for experimental research on cancer development.

The value of cancer incidence and mortality curves for inferring information about the underlying carcinogenic 
processes has long been recognized1. It has been the basis for the influential multiple-hit hypothesis of can-
cer development, which proposed that cancer appears after several consecutive mutations2–4. That prediction 
was based on the assumption that cancer mortality increases proportionally to the n-th power of age. However, 
already at that time it was known that many cancers display deceleration of mortality growth at an advanced age, 
which could not be explained by the power law. Many complicated equations based on multiple assumptions and 
empirically estimated parameters have since been proposed, attempting to model the limited growth of cancerous 
cells5–7. However, current data unequivocally show that cancer incidence not only ceases to increase with age but, 
for at least some cancers, decreases8,9. This behaviour cannot be explained by growth equations and has been puz-
zling biologists and clinicians for considerable time. The depletion of susceptible population, decreased exposure 
to carcinogens and conversion of cells to the proliferation-arrested, senescent phenotype have been put forward 
as some of the possible explanations, but none have been convincingly demonstrated (see Discussion in ref.9).

Here I propose that cancer incidence by age is, in fact, a statistical distribution of probabilities that a required 
number of carcinogenic events occurs by the given age, but not earlier or later. Of 16 tested continuous distribu-
tions, the best fit is observed for the gamma distribution and its special case – the Erlang distribution. Notably, 
these two distributions describe the probability of several independent random events occurring precisely by the 
given time. This takes the multiple-hit hypothesis to a new level and allows to estimate the number of key carcino-
genic events and the average time interval between them, for each cancer type. Moreover, the amplitude parame-
ter of generalized probability distributions likely predicts the maximal populational susceptibility to a given type 
of cancer. The Erlang distribution exhibits the excellent fit to incidence of each of 20 most prevalent cancer types, 
with the average R2 of 0.995. The estimated parameters suggest high heterogeneity in the carcinogenesis process 
and populational susceptibility amongst cancer types and provide reference points for experimental research.

Results
The probability density function (PDF) is used to specify the probability of a random variable falling within a par-
ticular range of values. This probability is given by the integral of this variable’s PDF over that range. In the context 
of cancer incidence, such integral would specify the probability of a patient’s age at a cancer diagnosis falling 
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within a particular age group. It can be seen that such PDF integrates to 1, because once a cancer is diagnosed, 
the patient must belong to one and only to one of the age groups. For the purpose of elucidating the underlying 
nature of cancer, this incidence PDF should be calculated with the assumption of indefinite 100% survival of 
the population, to exclude the confounding influence of mortality from a given cancer type, other cancer types, 
other diseases and other causes, and thus can be called mortality-independent incidence. It is important to note 
that it does not specify the probability to be diagnosed with cancer at a particular age (for those who survived to 
that age), because such function would not integrate to 1 (not every person is to develop cancer during his life-
time, especially a particular type of cancer). However, the latter probability can be derived from the former after 
multiplying by the maximal populational susceptibility to a given type of cancer. This parameter estimates what 
fraction of the population would develop a given type of cancer if the population would live indefinitely (reflect-
ing age- and mortality-independent incidence). For an individual person, this parameter describes the maximal 
probability to develop a given type of cancer during his lifetime or, in other words, the probability of having a sus-
ceptible genotype and living in a permissive environment. Thus, the probability to be diagnosed with a particular 
cancer type at a particular age (for those who survived to that age) is the product of the maximal probability to be 
diagnosed with this cancer type at all during lifetime and the mortality-independent probability of the age at the 
cancer diagnosis falling within this age group.

How can the probability to be diagnosed with cancer at a particular age (for those who survived to that age) 
be calculated from empirical data? It is logical to suggest that the number of newly diagnosed (during the year 
of observation) cancer cases in a particular age group normalized by the total number of living people in that 
age group would reflect this probability. In epidemiological terms, it is the crude incidence rate of a particular 
age group. Such accounting for the number of survivors until a particular age is very important to focus on true 
incidence of a given type of cancer without confounding influence of mortality from various causes. Because each 
person is counted only once in each age group (at his actual age during the year of observation), there is no need 
to normalize by the length of age intervals to derive PDF (an incidence rate for the “50 to 60 y.o.” age group would 
be approximately equal to an incidence rate for the single “55 y.o.” age). Likewise, when the data are pooled from 
several consecutive years of observation, each person that is counted several times in the denominator also has 
proportionally more years to develop cancer, so no adjustment is needed as well.

To test the probability hypothesis, the latest publicly available USA cancer incidence data were downloaded 
from the CDC WONDER database (see Methods for details and Supplementary Data 1–50 for original down-
loads). The PDFs for the general forms of the following continuous probability distributions were tested for fit 
with least squares non-weighted nonlinear regression analysis: beta, Cauchy, extreme value, Fisher F, gamma, 
Gompertz, chi-square, Levy, logistic, Maxwell, normal, Rayleigh, Student t, Wald and Weibull (see Methods for 
details and Supplementary Data 21 for the original project file). Only the extreme value, gamma, logistic, normal 
and Weibull distributions provided acceptable fits for most of cancer types. Whilst the gamma distribution has 
only a marginal advantage in the goodness of fit amongst five selected distributions when incidence for dif-
ferent genders and years of observation is combined (see Supplementary Table S1 for R2 and Supplementary 
Table S2 for standard deviation of the residuals), it shows systematically superior fits when gender-specific 
cancers are evaluated separately for each observation year (Fig. 1, see Supplementary Tables S3 and S4 for R2, 
Supplementary Fig. S1 for the residual plots, Supplementary Tables S5 and S6 for the standard deviation of the 
residuals, Supplementary Tables S7 and S8 for the Akaike Information Criterion, and Supplementary Data 50 
for the original project file). Interestingly, the gamma distribution has been used before to estimate confidence 
intervals for age-adjusted cancer rates10–12.

Most importantly, the gamma distribution and the Erlang distribution derived from it are the only classical 
continuous probability distributions that describe the cumulative waiting time for k successive random events, 
with the Erlang distribution differing only in counting events as integer numbers. Because these properties suit 
excellently to describe the waiting time for real discrete random events such as mutations, the Erlang distribution 
provides the opportunity to get unique insights into the carcinogenesis process. I propose that the shape param-
eter k of the Erlang distribution indicates the average number of key carcinogenic events that need to occur in 
order for a cancer to develop to a stage that can be detected during clinical screening. The scale parameter b indi-
cates the average time interval (in years) between such events. Finally, the amplitude parameter A divided by 1000 
estimates the maximal susceptibility (in percent) of a given population to a given type of cancer. This is because 
the area under the PDF curve is always unity, the maximal area under the cancer incidence curve is 100,000 (cases 
per 100,000 people), and A is used to convert probability into incidence.

To obtain these parameter values, the Erlang distribution was fitted individually to incidence of each of 20 
most prevalent cancer types (Fig. 2, Table 1, see Methods for details and Supplementary Data 21 for the original 
project file). The goodness of fit varied from 0.9734, for thyroid cancer, to 0.9999, for pancreatic and oesophageal 
cancers, with the average of 0.9953. The predicted number of carcinogenic events varied from 4, for melanoma 
and brain cancer, to 41, for prostate cancer. The predicted average time between the events varied from 2 years, for 
prostate cancer, to 81 years, for melanoma. The predicted maximal populational susceptibility varied from 1%, for 
oesophageal, hepatic and laryngeal cancers, to 100%, for melanoma. Overall, the data predict high heterogeneity 
in carcinogenesis patterns.

To evaluate reproducibility and robustness of parameter estimation, the gamma distribution was fitted to inci-
dence of prostate cancer separately for each observation year (Fig. 1, Table 2, see Supplementary Data 50 for the 
original project file). The gamma distribution was selected instead of the Erlang distribution to show precise esti-
mates for the number of carcinogenic events. Prostate cancer was selected due to the highest incidence, the highly 
efficient screening procedure, the highest estimated number of carcinogenic events and the dramatic variation in 
incidence between the years of observation. Whilst the maximal populational susceptibility dropped from 32% 
in 1999 to 17% in 2012 (by 47%), which is explained largely by the official 2008 and 2011/2012 recommendations 
against screening13–15, the average time between events varied from 1.6 to 2.0 years (±11%) and the estimated 
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number of carcinogenic events varied from 38 to 45 (±8%). The upward trend in the number of carcinogenic 
events may be readily explained by the detection of cancer at later stages in the absence of early screening13–15. 
The variation before the 2008 recommendation was only from 38 to 41 events (±3.8%). Such robustness in the 
estimation of the number of carcinogenic events for a given cancer type highlights its fundamental nature and 
thus lends further support to the multiple-hit hypothesis of carcinogenesis.

Discussion
I have shown that cancer incidence by age is best approximated by the Erlang distribution. In most general sense, 
the Erlang distribution is the sum of k independent exponentially distributed random variables, each of which 
has the mean of b. As in the case of cancer incidence by age the argument x corresponds to time, and the expo-
nential distribution describes the time between events in a Poisson process, i.e. a process in which events occur 
independently at a constant average rate, the Erlang distribution describes the cumulative waiting time for k 
successive random events. Therefore, the only assumption that is required for a mechanistic interpretation is 
that key carcinogenic events occur independently at a constant average rate. This assumption does not appear 
unreasonable, as mutations in individual genes are indeed random events that occur independently of each other 
usually at a constant average rate defined by the levels of gamma and UV radiation, reactive oxygen species and 
carcinogenic substances, and the rates of DNA replication and repair. While these parameters may vary during 

Figure 1.  Comparison of different statistical distributions with actual distributions of prostate and breast 
cancer incidence by age. Dots indicate actual data for 5-year age intervals, curves indicate PDFs fitted to the 
data. The middle age of each age group is plotted. Different colours indicate different years of observation, from 
1999 to 2012. The fitting procedure was identical for all distributions. The normal distribution did not converge 
for prostate cancer. Prostate and breast cancers were selected due to being the highest-incidence gender-specific 
cancer types.
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the adult lifespan, they do not appear to substantially change in a monotonic and unidirectional fashion, and 
instead fluctuate around an average.

The DNA replication rate may increase during uncontrolled tumour growth. However, it happens at the 
last stage (terminal clonal expansion) after most, if not all, key mutations have occurred16. The key mutations 
may accumulate silently. Indeed, accumulation of mutations and realization of their potential are two differ-
ent processes that may occur relatively independently. Mutations can stay dormant for a long time, as exempli-
fied by latent driver mutations that exert their effects only upon the occurrence of another mutation or other 
favourable condition17. Another possibility is that a mutation can occur in a gene responsible for DNA replica-
tion, DNA repair or antioxidant activity, thus increasing the overall mutation rate. However, mutations in such 
“mutator” genes are found in only about 15–20% of tumour samples18,19, and thus are not an essential feature 

Figure 2.  The Erlang distribution approximates cancer incidence by age for 20 most prevalent cancer types. 
Dots indicate actual data for 5-year age intervals, curves indicate the PDF of the Erlang distribution fitted to the 
data (see Table 1 for R2 and estimated parameters). The middle age of each age group is plotted. Cancer types are 
arranged in the order of decreasing incidence.



www.nature.com/scientificreports/

5SCIentIfIC ReporTs | 7: 12170  | DOI:10.1038/s41598-017-12448-7

of carcinogenesis20 and cannot have a major influence on cancer incidence statistics. In fact, given the excellent 
fit of the Erlang distribution to the actual data, this assumption of mutation randomness can be viewed as the 
prediction, i.e. that previous mutations do not substantially affect the appearance rate of subsequent mutations.

The progression from one carcinogenesis stage to the other is usually assumed to be mediated by “driver” 
mutations in crucial genes, which give the mutated cell some growth advantage, apoptosis resistance or other 

Cancer type

k b A/1000 R2

Number of 
carcinogenic 
events ± s.e.m.

Average time 
between events, 
years ± s.e.m.

Maximal 
populational 
susceptibility, 
%  ± s.e.m.

Goodness 
of fit

Prostate 41 ± 1 1.83 ± 0.00 26.40 ± 0.18 0.9992

Lung and bronchus 30 ± 2 2.75 ± 0.01 16.44 ± 0.24 0.9981

Colon and rectum 10 ± 1 13.75 ± 0.17 66.93 ± 3.80 0.9991

Breast 9 ± 1 10.71 ± 0.09 20.44 ± 0.46 0.9981

Bladder 21 ± 1 4.59 ± 0.02 9.93 ± 0.17 0.9995

Non-Hodgkin lymphomas 8 ± 1 19.26 ± 0.58 31.21 ± 3.90 0.9964

Uterus 20 ± 1 3.67 ± 0.02 3.77 ± 0.05 0.9954

Pancreas 15 ± 1 7.07 ± 0.01 7.15 ± 0.06 0.9999

Melanoma 4 ± 1 81.01 ± 7.38 100 0.9954

Leukaemias 8 ± 2 23.56 ± 1.09 49.57 ± 10.93 0.9957

Kidney 15 ± 1 5.75 ± 0.04 3.69 ± 0.07 0.9971

Ovary 8 ± 1 13.66 ± 0.12 5.40 ± 0.13 0.9989

Stomach 11 ± 1 11.51 ± 0.15 7.25 ± 0.42 0.9986

Oral cavity 13 ± 1 6.32 ± 0.03 2.29 ± 0.03 0.9983

Myeloma 16 ± 1 6.14 ± 0.03 2.67 ± 0.06 0.9992

Oesophagus 20 ± 0 4.25 ± 0.00 1.27 ± 0.00 0.9999

Liver 13 ± 2 6.67 ± 0.11 1.45 ± 0.07 0.9863

Brain 4 ± 1 76.69 ± 13.77 26.34 ± 14.52 0.9777

Thyroid 5 ± 0 14.67 ± 0.24 1.52 ± 0.04 0.9734

Larynx 24 ± 1 3.15 ± 0.01 0.71 ± 0.01 0.9989

Table 1.  Estimated carcinogenesis parameters for 20 most prevalent cancer types. The parameters are 
determined for the Erlang distribution fitted to actual cancer incidence data (see Fig. 2). Cancer types are listed 
in the order of decreasing incidence.

Year of 
observation

k b A/1000 R2

Number of 
carcinogenic 
events ± s.e.m.

Average time between 
events, years ± s.e.m.

Maximal populational 
susceptibility, 
% ± s.e.m.

Goodness 
of fit

1999 40.72 ± 1.28 1.876 ± 0.063 31.79 ± 0.48 0.9992

2000 39.56 ± 1.28 1.931 ± 0.067 32.23 ± 0.50 0.9992

2001 40.59 ± 1.16 1.873 ± 0.057 32.00 ± 0.43 0.9993

2002 38.82 ± 0.99 1.955 ± 0.053 31.57 ± 0.38 0.9994

2003 38.37 ± 1.25 1.981 ± 0.069 28.82 ± 0.45 0.9991

2004 38.10 ± 1.41 1.992 ± 0.079 27.94 ± 0.49 0.9988

2005 38.67 ± 1.29 1.959 ± 0.070 27.33 ± 0.43 0.9990

2006 39.85 ± 1.21 1.886 ± 0.061 28.30 ± 0.39 0.9991

2007 40.14 ± 1.46 1.863 ± 0.072 28.67 ± 0.47 0.9987

2008 41.56 ± 1.58 1.784 ± 0.072 25.49 ± 0.43 0.9984

2009 42.91 ± 1.79 1.711 ± 0.075 23.35 ± 0.42 0.9979

2010 44.39 ± 2.16 1.651 ± 0.084 21.62 ± 0.45 0.9971

2011 44.97 ± 2.48 1.623 ± 0.094 21.14 ± 0. 50 0.9962

2012 44.19 ± 2.32 1.648 ± 0.090 16.84 ± 0.38 0.9964

Table 2.  Robustness of carcinogenesis parameter estimation for prostate cancer. The parameters are determined 
for the gamma distribution fitted to actual cancer incidence data (see Fig. 1). The gamma distribution was 
selected instead of the Erlang distribution to show precise estimates for the number of carcinogenic events. 
Prostate cancer was selected due to the highest incidence, the highly efficient screening procedure, the highest 
estimated number of carcinogenic events and the dramatic variation in incidence between the years of 
observation.
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oncogenic properties, as opposed to inconsequential “passenger” mutations21. Many algorithms have been sug-
gested for identification of driver mutations22, indicating that no universally accepted criteria exist. Moreover, 
whilst hundreds of potential driver mutations have been identified in various tumours, they need not be all pres-
ent in the same tumour specimen, as many of them are redundant or even mutually exclusive, e.g. when the 
affected proteins are components of the same signalling pathway23. Thus, each tumour is expected to have only a 
sample of all possible driver mutations. Another aspect to consider is that while one mutation is usually sufficient 
to activate an oncogene, two mutations are typically required to inactivate both alleles of a tumour suppressor 
gene. Therefore, the number of carcinogenetic events predicted by the Erlang distribution should be translated 
not into the number of mutated driver genes, but rather into the number of driver mutations.

When cancer drivers are searched for in tumour genomes, most studies focus on nonsynonymous point muta-
tions24. This gives relatively low numbers of driver mutations, in the range from one to eight (Fig. 3 in ref.24). 
However, it has been recently shown that synonymous25 and noncoding26 mutations also can act as carcinogenesis 
drivers. Moreover, there are many more types of genetic alterations that can possibly contribute to cancer progres-
sion. They include indels27, homozygous deletions28, inversions29, tandem duplications30, amplifications31, intra- 
and inter-chromosomal translocations32 (often resulting in gene fusions33), as well as chromosomal arm-level and 
whole-level copy-number alterations34, and chromothripsis35. Additionally, epigenetic alterations (epimutations) 
are a whole new level of potential cancer drivers36,37.

It is likely that many of these alterations contribute to progression of each cancer type. Moreover, different 
cancer types and subtypes require different proportions of these alterations38, e.g. some cancers are driven mostly 
by point mutations, some by amplifications, yet some by gene fusions. Interestingly, the total number of important 
alterations per tumour ranged from 0 to 40 (Fig. 2c in ref.38), which corresponds to the range of event numbers 
predicted by the Erlang distribution. Therefore, the number of carcinogenic events per tumour predicted by the 
current theory is most likely the sum of driver alterations of several different types. Astonishingly, the recent 
massive omics study of 333 primary prostate carcinomas by The Cancer Genome Atlas Research Network has 
found only a single or no alterations in up to 26% of tumour samples19. In extreme case, this may mean that the 
true nature of carcinogenesis drivers is still not known.

Most data that were used in this study represent combined cancer cases, e.g. acute and chronic, lymphocytic, 
myeloid and monocytic leukaemias were combined into Leukaemias. The resulting curve is necessary different in 
shape, position and amplitude from the curves of individual leukaemia subtypes. Hence, the estimated parame-
ters are also different and reflect only the average. When the exact number of carcinogenic alterations is required, 
it is necessary to analyse the data for a particular cancer subtype and also for a particular gender and race. Such 
data are readily accessible at the CDC WONDER portal.

Another factor that influences the results is the stage at which cancer is diagnosed. Cancer types that are 
diagnosed at early stages, e.g. due to highly developed screening programs, will likely undergo fewer carcinogenic 
transformations by the time of the first diagnosis than cancers that are difficult to diagnose early. Thus, the current 
theory predicts the average number of carcinogenic events that happen by the time of diagnosis and not by the 
time of appearance of the first malignant cell or the time of full cancer development. Therefore, improvements in 
diagnostics will likely lead to decreases in the estimated numbers of carcinogenic events. A curious counterexam-
ple with abandonment of efficient screening that led to an increase in the number of carcinogenic events has been 
provided in the Results section.

Overall, the theory and methodology presented here allow to generate testable predictions about the carcino-
genesis process in any cancer subtype for which reliable incidence statistics is available. Thus, they may help to 
define the subtype-specific cancer drivers, by providing numerical reference points. Also, the estimated maximal 
populational susceptibility may help to predict the allele frequencies of driver genes. Finally, these findings pro-
vide additional support to the multiple-hit theory of carcinogenesis.

Methods
Data acquisition.  United States Cancer Statistics Public Information Data: Incidence 1999–2012 were down-
loaded via Centers for Disease Control and Prevention Wide-ranging OnLine Data for Epidemiologic Research 
(CDC WONDER) online database (http://wonder.cdc.gov/cancer-v2012.HTML). The United States Cancer 
Statistics (USCS) are the official federal statistics on cancer incidence from registries having high-quality data for 50 
states and the District of Columbia. Data are provided by The Centers for Disease Control and Prevention National 
Program of Cancer Registries (NPCR) and The National Cancer Institute Surveillance, Epidemiology and End 
Results (SEER) program. Results were grouped by 5-year Age Groups, Crude Rates were selected as output, and all 
other settings were kept at default values. Crude Rates are expressed as the number of cases reported each calendar 
year per 100,000 population. A single person with more than one primary cancer verified by a medical doctor is 
counted as a case report for each type of primary cancer reported. The population estimates for the denominators 
of incidence rates are a slight modification of the annual time series of July 1 county population estimates (by age, 
sex, race, and Hispanic origin) aggregated to the state or metropolitan area level and produced by the Population 
Estimates Program of the U.S. Bureau of the Census (Census Bureau) with support from the National Cancer 
Institute (NCI) through an interagency agreement. These estimates are considered to reflect the average population 
of a defined geographic area for a calendar year. The data were downloaded separately for each cancer type, upon 
its selection in the Leading Cancer Sites tab. The original txt downloads are available as Supplementary Data 1–20. 
For the parameter estimation robustness test, the data for prostate and breast cancers were additionally downloaded 
separately for each year of observation. These txt downloads are available as Supplementary Data 22–49.

Data selection and analysis.  For analysis, the data were imported into GraphPad Prism 5. The following age 
groups were selected: “15–19 years”, “20–24 years”, “25–29 years”, “30–34 years”, “35–39 years”, “40–44 years”, “45–
49 years”, “50–54 years”, “55–59 years”, “60–64 years “, “65–69 years”, “70–74 years”, “75–79 years” and “80–84 years”.  
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Prior age groups were excluded due to unreliably low incidence rates, and “85+ years” was excluded due to the 
undefined age interval. The middle age of each age group was used as the x value, e.g. 17.5 for the “15–19 years” 
age group. Data were analysed with Nonlinear regression. The following User-defined equations were created for 
the statistical distributions:

Extreme value:
Y = A*(exp(−((x−t)/b)))*(exp(−exp(−((x−t)/b))))/b
Gamma:
Y = A*(x^(k−1))*(exp(−x/b))/((b^k)*gamma(k))
Logistic:
Y = A*(exp((x−t)/b))/(b*((1 + exp((x−t)/b))^2))
Normal:
Y = A*(exp(−0.5*(((x−t)/b)^2)))/(b*((2*pi)^0.5))
Weibull:
Y = A*(k/(b^k))*(x^(k−1))*exp(−((x/b)^k))

The parameter A was constrained to “Must be between zero and 100000.0”, parameter t to “Must be between 
zero and 150.0”, parameters b and k to “Must be greater than 0.0”. “Initial values, to be fit” for all parameters were 
set to 1.0. All other settings were kept at default values, e.g. Least squares fit and No weighting.

For the Erlang distribution, the parameter k for each cancer type was estimated by the fitting of the Gamma 
distribution, rounded to the nearest integer and used as “Constant equal to” in the second round of the Gamma 
distribution fitting, which provided the final results.

The original pzfx project file with data, analyses and graphs is available as Supplementary Data 21. The pzfx 
project file for the parameter estimation robustness test is available as Supplementary Data 50.
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