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Spatiotemporal dynamics in 
excitable homogeneous random 
networks composed of periodically 
self-sustained oscillation
Yu Qian1, Fei Liu1, Keli Yang1, Ge Zhang2, Chenggui Yao3 & Jun Ma2,4

The collective behaviors of networks are often dependent on the network connections and bifurcation 
parameters, also the local kinetics plays an important role in contributing the consensus of coupled 
oscillators. In this paper, we systematically investigate the influence of network structures and system 
parameters on the spatiotemporal dynamics in excitable homogeneous random networks (EHRNs) 
composed of periodically self-sustained oscillation (PSO). By using the dominant phase-advanced 
driving (DPAD) method, the one-dimensional (1D) Winfree loop is exposed as the oscillation source 
supporting the PSO, and the accurate wave propagation pathways from the oscillation source to the 
whole network are uncovered. Then, an order parameter is introduced to quantitatively study the 
influence of network structures and system parameters on the spatiotemporal dynamics of PSO in 
EHRNs. Distinct results induced by the network structures and the system parameters are observed. 
Importantly, the corresponding mechanisms are revealed. PSO influenced by the network structures 
are induced not only by the change of average path length (APL) of network, but also by the invasion of 
1D Winfree loop from the outside linking nodes. Moreover, PSO influenced by the system parameters 
are determined by the excitation threshold and the minimum 1D Winfree loop. Finally, we confirmed 
that the excitation threshold and the minimum 1D Winfree loop determined PSO will degenerate as the 
system size is expanded.

Neuron is the basic unit in neuronal networks and brain systems. The dynamical behaviors of electrical activities 
in neurons are much complex and have been extensively investigated in the past decades. With the change of 
intrinsic parameters or external environment, single neuron can present multiple modes of electrical activities, 
such as quiescent, spiking, bursting, even chaotic states, readers can find possible guidance from the review in 
Refs 5,6. Moreover, the neuronal networks and brain systems can exhibit persistent electrical oscillations at differ-
ent levels7–16. For example, Bazhenov et al. studied the self-sustained rhythmic activity in the thalamic reticular 
nucleus mediated by depolarizing GABAA receptor potentials7. Buzsáki et al. reviewed the neuronal oscillations 
in cortical networks9. Bartos et al. summarized the synaptic mechanisms of synchronized gamma oscillations in 
inhibitory interneuron networks10. Guerriera et al. revealed the robust network oscillations during mammalian 
respiratory rhythm generation driven by synaptic dynamics15. Recent experimental studies have shown that these 
rhythmic activities are related to some specific and important physiological functions in vivo17–22. For example, 
Palva et al. found that distinct gamma-band can evoke responses to speech and non-speech sounds in humans17. 
Ward et al. summarized the correlation between synchronous neural oscillations and cognitive processes18. 
Bollimunta et al. revealed the neuronal mechanisms of cortical alpha oscillations in awake-behaving macaques19. 
Kay et al. discovered a beta oscillation network in the rat olfactory system during a 2-alternative choice odor 
discrimination task20. Burke et al. reported the synchronous and asynchronous theta and gamma activities dur-
ing episodic memory formation21. Jensen et al. disclosed that temporal coding organized by coupled alpha and 
gamma oscillations can prioritize visual processing22.
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Theoretically, several famous neuron models, such as the Hodgkin-Huxley neuron model23, the Morris-Lecar 
neuron model24, the Hindmarch-Rose neuron model25, and the Chay neuron model26, have been set up to simu-
late the neuronal dynamics. Researchers carefully regulate the bifurcation parameters to reproduce the multiple 
modes of electrical activities in single neuron. Some researchers even suggest that the present neuron models 
should be improved to include more system parameters and the effect of modulation from astrocyte should also 
be considered. For example, Tang et al. constructed a minimal neuron-astrocyte network model by connecting 
a neurons chain and an astrocytes chain, and the role of astrocyte on seizure-like discharges was discussed27. Lv 
et al. argued that magnetic flux can be used to model the effect of electromagnetic induction and radiation in 
neurons, and multiple modes in electrical activities were observed28,29. Based on these biological and physical 
neuron models, different types of network connection are considered, thus the transition of collective behaviors 
in network can be understood. Within this topic, pattern selection and control, synchronization stability are 
appreciated and are paid much attention30,31. In the chain or ring network, wave propagation is often used to 
discuss the collective behaviors supported by different types of oscillators. Furthermore, the models of excitable 
complex network are established to investigate the phenomena observed in neuronal networks and brain systems. 
Self-sustained oscillation is one of the most important issues under investigation in this field due to its extensive 
application in these systems32–46. In recent years, diverse self-sustained oscillatory activities are revealed in dif-
ferent kinds of excitable complex networks. For example, Sinha et al. discovered the emergence of self-sustained 
patterns in small-world excitable media35. McGraw et al. reported the self-sustaining oscillations in homoge-
neous random networks of excitable elements41. Mi et al. studied the long-period rhythmic synchronous firing 
in a scale-free network containing excitable neurons42. The author of present paper discussed the emergence of 
self-sustained oscillations in excitable Erdös-Rényi random networks43.

It has been confirmed that the interactions between neurons in neuronal networks and brain systems are 
particularly complex, and can constitute complicated structural networks. More importantly, these anatomical 
complex structures can really influence the dynamic characteristic of coherent physiological activities. Previous 
researches have shown that there is an important relationship between the network structure and the spatiotempo-
ral dynamics in these two systems47–55. For example, Bogaard et al. investigated the interaction of cellular and net-
work mechanisms in spatiotemporal pattern formation in neuronal networks48. Mäki-Marttunen et al. studied the 
effects of local structure of neuronal networks on spiking activity in silico49. Butz et al. found that homeostatic struc-
tural plasticity can increase the efficiency of small-world neuronal networks53. Gonzalez et al. discussed the impact 
of connections between oscillatory neuronal networks on oscillation frequency and pattern54. Jovanović et al.  
revealed the interplay between graph topology and correlations of third order in spiking neuronal networks55.

In this paper, we systematically investigate the influence of network structures and system parameters on 
the spatiotemporal dynamics in excitable homogeneous random networks (EHRNs) composed of periodically 
self-sustained oscillation (PSO). Distinct impacts induced by the network structures and the system parameters 
are observed. Importantly, the corresponding mechanisms are revealed.

The Mathematical Model and The Order parameter
In the present paper, we consider the EHRN containing N nodes. The Bär-Eiswirth model56 is adopted to describe 
the local kinetics. The evolution of the studied network dynamics is described by the following equations:
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where i = 1, 2, …, N represents the position of excitable node in the network. In equations (1) and (2), the varia-
bles ui and vi describe the activator and the inhibitor of the ith node, respectively, and the function f(u) satisfies 
the form: f(u) = 0 for <u 1

3
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; and f(u) = 1 for u > 1. Here ε is the small 

relaxation parameter, which represents the time ratio between the activator u and the inhibitor v. The dimension-
less parameters a and b denote the activator kinetics of the local dynamics and can effectively control the excita-
tion threshold (the excitation threshold of Bär-Eiswirth model is determined by =u b

ath ). D is the coupling 
strength of activator u, which determines the interaction intensity between linking nodes. In Eq. (1), Ai,j is the 
adjacency matrix element, and is defined as Ai,j = Aj,i = 1 if there is a bidirectional connection linking nodes i and 
j in the network, and Ai,j = Aj,i = 0 otherwise. As EHRN is considered in this paper, we adopt identical degree k for 
each node (i.e., each node in the network couples to k other nodes, and the bidirectional symmetric couplings are 
chosen randomly). Here, we should mention that although the Bär-Eiswirth model is originated from chemical 
systems, it can also exhibit a typically excitable dynamics for appropriate sets of system parameters. Importantly, 
the parameters used in the present paper can ensure the excitable dynamics of Bär-Eiswirth model. Consequently, 
the Bär-Eiswirth model can be used to describe typical excitability of neurons, and the network dynamics of 
equations (1) and (2) can serve as a simplified version of neuronal networks36,37,42,43,57–59. In this case variable u 
represents the membrane potential and variable v is the somatic inhibitory current. The diffusive coupling simu-
lates electrical conjunction interaction between neurons. The above studied network dynamics are integrated by 
the forward Euler integration scheme with time step Δt = 0.02. The random initial condition is used in the 
numerical simulation (i.e., the initial variables =u t( 0)i  and =v t( 0)i  are randomly given between 0 and 1).

In order to quantitatively investigate the influence of network structures and system parameters on the spatio-
temporal dynamics of PSO in EHRNs, and also reveal the corresponding mechanisms, the oscillation proportion 
pos is introduced as the order parameter. It is defined as follows:
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where NALL is the total number of numerical simulations performed for each set of parameters and Nos is the 
number of PSOs counted in the NALL independent samples. For each simulation, we execute 20000 time steps (i.e., 
the duration of each simulation is 400 time units), and we utilize the last 200 time units of simulation to judge 
whether PSO emerges in the EHRN or not. The detailed numerical criterion is as follows. If one of the nodes in 
the network executes permanently periodical cycles in the last 200 time units (such as the spatiotemporal evolu-
tion pattern shown in Fig. 1(c)), PSO is deemed to emerge in EHRN in this numerical simulation. We count this 
as 1 PSO (i.e., Nos = 1). Here we should mention that if the EHRN performs successive 37 oscillatory cycles in the 
last 200 time units in 1 numerical simulation (such as the asymptotic time series shown in Fig. 1(d)), it is still 
counted as 1 PSO. If nodes in the network are all in the rest state in the last 200 time units (such as the spatiotem-
poral evolution pattern shown in Fig. 1(a)), no PSO can be observed in this numerical simulation (i.e., Nos = 0). 
For each set of parameters, one hundred independent numerical simulations are performed (i.e., NALL = 100). The 
above criterion is employed to count the number of PSOs Nos observed in this NALL = 100 independent samples. 
In the following, we will use oscillation proportion =p N

Nos
os

ALL
 as the order parameter to investigate the influence 

of network structures and system parameters on the spatiotemporal dynamics of PSO in EHRNs, and to reveal the 
corresponding mechanisms.

Numerical Results and Discussions
The PSO In EHRN And The Corresponding Oscillation Source.  In this part we first study the spatio-
temporal dynamics obtained in EHRNs. The numerical computation results of the studied EHRN for parameters 
a = 0.90, b = 0.04, ε = 0.04, D = 0.30, N = 100 and k = 3 is exhibited in Fig. 1. Figure 1(a) shows the spatiotemporal 
evolution pattern of the rest state realized from a certain set of random initial conditions. In the white regions, the 
nodes fire, while in the black ones they are quiescent, and time passes from left to right. The EHRN damps to the 
homogeneous rest state from the random initial excitations. Figure 1(b) displays the asymptotic time series 
< >= ∑ =

=u t u t( ) ( )
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N
i

1
1

100  of pattern Fig. 1(a). It is shown that < >u t( )  damps to zero after a spiking. Figure 1(c) 
shows a distinct spatiotemporal evolution pattern realized from another set of random initial conditions. Nodes 
in the network exhibit successively excitations. Figure 1(d) exposes the corresponding asymptotic time series 
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100 . Permanently oscillatory behavior of < >u t( )  is detected. The local amplifications of 
Fig. 1(c) and (d) are displayed in Fig. 1(e) and (f), respectively. It is shown obviously that the permanently oscil-
latory behavior observed in Fig. 1(c) and (d) is periodical, which means that the spatiotemporal dynamics of PSO 
can emerge in EHRNs with suitable initial conditions.

Now we would ask where is the oscillation source of PSO, and how excitable wave propagates from the oscil-
lation source to the whole network. To answer the above two questions, the dominant phase-advanced driving 
(DPAD) method36, which was proposed to analyze the oscillation source and wave propagation path of oscilla-
tory complex networks consisting of non-oscillatory nodes, will be employed. Here we briefly interpret the main 
idea of the DPAD method. Given a network consisting of N nodes with non-oscillatory local dynamics, there 
are M(M > N) interactions between different nodes. It is evident that any individual non-oscillatory node can 
oscillate if and only if it is driven by one or more interactions with advanced phases. Among all phase-advanced 
interactions, the interaction providing the most contribution to exciting the given node, is defined as the domi-
nant phase-advanced driving. Based on this idea, the corresponding DPAD path for each node can be identified. 
Then the original oscillatory complex network can be reduced to structurally simple and instructive subnetwork 
of the DPAD pattern, which can effectively reveal the mechanism of the oscillation.

Figure 2(a) shows the DPAD pattern corresponding to the PSO of Fig. 1(c). Based on the information revealed 
by the DPAD pattern, the above two questions can be explained without any ambiguity. First, we have exposed in 
Fig. 2(a) the oscillation source (indicated by the loop structure composed by five pink nodes). Other nodes are 
positioned on the branches radiated from the loop structure. Figure 2(b) displays the spatiotemporal evolution 
pattern of nodes in the loop structure. These nodes are ordered according to the sequence in the loop. Successive 
excitable wave propagation is formed in the loop. This is exactly the self-sustained excitable one-dimensional 
(1D) Winfree loop60, which plays the role of oscillation source supporting the spatiotemporal dynamics of PSO 
in EHRN. Second, the excitable wave propagation pathways are uncovered (indicated by the successive arrowed 
driving sequences in Fig. 2(a)). To further prove this point, the spatiotemporal evolution pattern of nodes in a 
branch in the DPAD pattern (indicated by blue nodes in Fig. 2(a)) is plotted in Fig. 2(c). The accurate excitable 
wave propagation pathways from the oscillation source to the nodes in network are exposed clearly.

Based on the results revealed in this part we can declare that the spatiotemporal dynamics of PSO can emerge 
in EHRNs with suitable initial conditions. Importantly, by using the DPAD method, the 1D Winfree loop is 
revealed as the oscillation source supporting the PSO, and the accurate wave propagation pathways from the 
oscillation source to the whole network are exposed clearly, which are otherwise deeply hidden in the complicated 
spatiotemporal evolution pattern.

The influence of network structures on PSO in EHRNs and the corresponding mechanisms.  
Now we investigate the influence of network structures on the spatiotemporal dynamics of PSO in EHRNs. We 
mainly focus on the system size N and the node degree k, which are two major manners in regulating the network 
structure. Other system parameters are chosen as a = 0.90, b = 0.04, ε = 0.04 and D = 0.30 in this part. The oscil-
lation proportion pos is used as the indicator. Figure 3(a) displays the dependence of the oscillation proportion 
pos on the system size N for different node degrees k in EHRNs. For k = 3 (shown by red dots), pos increases 
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Figure 1.  The numerical computation results of the studied excitable homogeneous random networks 
(EHRNs) for the parameters a = 0.90, b = 0.04, ε = 0.04, D = 0.30, N = 100 and k = 3. Time step Δt = 0.02. (a) 
Spatiotemporal evolution pattern of the rest state realized from a certain set of random initial conditions in 
EHRNs. The figure is plotted in grayscale from black (lowest value at 0.0) to white (highest value at 1.0). This 
grayscale will be used throughout this paper. Time passes from left to right. (b) The asymptotic time series 
< > = ∑ =

=u t u t( ) ( )
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i
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100  of pattern (a). (c) Spatiotemporal evolution pattern of the self-sustained oscillation 
realized from another set of random initial conditions in EHRNs. (d) The asymptotic time series 
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100  of pattern (c). (e) (f) The local amplifications of panels (c) and (d), respectively. 
Periodically oscillatory behavior is indicated obviously. This implies that periodically self-sustained oscillation 
(PSO) can emerge in EHRNs with suitable initial conditions.
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straightly from 0.96 (corresponding to N = 100) to 1.00 (corresponding to ≥N 150). For =k 4 (shown by blue 
squares), pos increases gradually from 0.01 (corresponding to N = 100) to 0.29 (corresponding to N = 1000). It is 
shown from Fig. 3(a) that the oscillation proportion pos can increase as the system size N is increased both for 
node degrees k = 3 and k = 4. This means that larger system size is beneficial for the spatiotemporal dynamics of 
PSO and can promote the emergence of PSOs in EHRNs. The larger the system size is, the more the PSO can 
emerge in EHRNs.

It is well known that system size can effectively influence the property of network structure, especially in 
impacting on the average path length (APL) of network. Therefore, the relationship between APL of network and 
system size is the crucial point to explain the results obtained in Fig. 3(a). Figure 3(b) shows the dependence of the 
APL of EHRN dAPL on the system size N for two different node degrees k (as shown by red dots for k = 3 and blue 
squares for k = 4). It is exhibited that the APL of EHRN increases gradually as the system size is increased both for 
k = 3 and k = 4. As we know APL denotes the average shortest path between any two nodes in complex network. 
It can be approximately considered as the distances between the initially excited nodes to their corresponding 
driving nodes along the wave propagation pathways in the network. When APL is long, the initially excited nodes 
have enough time to response to the next excitation from their driving nodes, the 1D Winfree loop has a great 
chance to form, and the PSO can largely emerge in the EHRN. However, the initially excited nodes are largely in 
the refractory periods as APL is short. The 1D Winfree loop has a little chance to form, or even cannot form in 
this case. Consequently, the PSO can hardly emerge in the EHRN. Based on the results shown in Fig. 3(a) and (b)  
and the above analysis we can assert that the system size, which is one of the major manners in regulating the 
network structure, can effectively influence the spatiotemporal dynamics of PSO in EHRNs. The corresponding 
mechanism is the change of the APL of network.

Here we discuss the effect of node degree on the spatiotemporal dynamics of PSO in EHRNs. Figure 3(c) 
exhibits the dependence of the oscillation proportion pos on the node degree k for different system sizes N in 
EHRNs (as shown by red dots for N = 100, blue squares for N = 400, green triangles for N = 700 and pink dia-
monds for N = 1000). Contrary to the impact induced by the system size (comparing to the results shown in 

Figure 2.  (a) The dominant phase-advanced driving (DPAD) pattern corresponding to the PSO of Fig. 1(c). 
All subscripts indicate the node positions in the network. From the DPAD pattern we can identify the following 
information: (i) The oscillation source (indicated by the loop structure composed by five pink nodes); (ii) The 
excitable wave propagation pathways in the network (indicated by the successive arrowed driving sequences). 
(b) Spatiotemporal evolution pattern of nodes in the loop structure. These nodes are ordered according to the 
sequence in the loop. The one-dimensional (1D) Winfree loop which plays the role of the oscillation source is 
revealed explicitly. (c) Spatiotemporal evolution pattern of nodes in a branch in the DPAD pattern (indicated by 
blue nodes in panel (a)). The accurate excitable wave propagation pathways from the oscillation source to the 
nodes in network are exposed clearly.
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Fig. 3(a)), the oscillation proportion pos decreases remarkably as the node degree k is increased. When the node 
degree k is small (i.e., k = 3), the oscillation proportions are all in a higher level (i.e., the pos almost equals to 1.0 
in each system size N). This means that the PSO can almost emerge in EHRNs in each numerical simulation for 
small node degree k, which is nearly regardless of the system size. As node degree k is increased (i.e., k = 4), each 
oscillation proportion pos decreases to a lower level abruptly. Now the system size becomes significantly. It is dis-
played that the larger the system size is, the more the PSO can emerge in EHRNs. When node degree k is further 
increased (i.e., k = 5), oscillation proportions pos obtained for different system sizes N are all located at zero (i.e., 
pos = 0.0 for all N). This indicates that large node degree is harmful for the spatiotemporal dynamics of PSO and 
can hinder the formation of PSO in EHRNs. No PSO can be observed in this case.

Similar to the system size, node degree can also regulate the network structure by changing the APL of net-
work. Consequently, we can speculate the decrease of the oscillation proportion pos induced by the increase of 
node degree k in EHRNs may be caused by the decrease of APL of network. To verify our conjecture, the depend-
ence of the APL of EHRN dAPL on the node degree k for different system sizes N is plotted in Fig. 3(d) (as shown 
by red dots for N = 100, blue squares for N = 400, green triangles for N = 700 and pink diamonds for N = 1000). 
It is displayed that the APL of EHRN dAPL decreases remarkably as the node degree k is increased. As stated above 
the initially excited nodes are largely in the refractory periods when the APL of network is short. The 1D Winfree 

Figure 3.  (a,b) The dependence of the oscillation proportion pos (a) and the average path length (APL) of 
network dAPL (b) on the system size N  for different node degrees k in EHRNs (shown by red dots for =k 3 and 
shown by blue squares for =k 4). (c,d) The dependence of the oscillation proportion pos (c) and the APL of 
network dAPL (d) on the node degree k for different system sizes N  in EHRNs (shown by red dots for =N 100, 
shown by blue squares for =N 400, shown by green triangles for =N 700 and shown by pink diamonds for 

=N 1000). System parameters are chosen as: = .a 0 90, = .b 0 04, ε = .0 04 and = .D 0 30. The oscillation 
proportion is defined as =p N

Nos
os

ALL
. Here NALL is the total number of numerical simulations executed for each 

set of parameters, and Nos is the number of PSOs counted in the NALL independent numerical simulations. One 
hundred independent numerical simulations (i.e., =N 100ALL ) are performed for each set of parameters.
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loop can hardly form in this case. As a result, fewer PSOs or even no PSO can emerge in EHRNs for large node 
degree k, and the results shown in Fig. 3(c) can be obtained. Now, our conjecture has been confirmed, and a possi-
ble mechanism behind the spatiotemporal dynamics of PSO in EHRNs influenced by the node degree is revealed.

In the above paragraphs, we have studied the influence of node degree on the spatiotemporal dynamics of PSO 
in EHRNs and reveal a possible mechanism, which is the change of APL of network induced by the node degree. 
However, another potential determinant, i.e. the invasion of 1D Winfree loop (or we can say the invasion of oscil-
lation source) from the outside linking nodes, should also be considered. We use the DPAD pattern shown in 
Fig.  2(a) to give further explanation. In Fig.  2(a) a 1D Winfree loop composed by nodes 

→ → → → →79 32 49 23 96 79 is discovered as the oscillation source supporting the PSO. The outside nodes, 
such as 40, 47, 91, 62, 44, are linking to the nodes in the loop. More importantly, these outside linking nodes do 
will impact on the formation of 1D Winfree loop. To confirm this point of view, the artificial 1D periodic excitable 
rings with different node degrees k are constructed, which are shown in Fig. 4(a)–(c), respectively (as shown in 
Fig. 4(a) for k = 3, shown in Fig. 4(b) for k = 4 and shown in Fig. 4(c) for k = 5). The lengthes of these 1D periodic 
excitable rings are all fixed at 5 (i.e., there are 5 nodes in each excitable ring). The outside linking nodes increase 
remarkably as node degree k is increased. With suitable initial conditions, excitable waves can propagate unidi-
rectionally along the periodic excitable rings to form 1D Winfree loops. Due to the existence of the oscillation 
sources, PSOs can emerge in these rings. Figure 4(d) displays the dependence of the oscillation proportion pos on 
the node degree k in these artificial 1D periodic excitable rings. System parameters are chosen as a = 0.90, 
b = 0.04, ε = 0.04 and D = 30. One hundred independent numerical simulations are performed for each node 
degree k, and the random initial condition is utilized. It is shown that the oscillation proportion pos decreases 
gradually as the node degree k is increased. This means that these increased outside linking nodes do will promote 
the chance to invade the excitable ring to hinder the formation of 1D Winfree loop. Without the supporting from 
the oscillation source, fewer PSOs or even no PSO can be observed. This is the another potential mechanism, why 
the oscillation proportion pos in EHRNs decreases as the node degree k is increased. Consequently, the results 
shown in Fig. 3(d) can be observed. Based on these discussions we can declare that the node degree, which is 
another major manner in regulating the network structure, can significantly influence the spatiotemporal dynam-
ics of PSO in EHRNs. Two possible determinants behind the influence induced by the node degree are revealed. 
The one is the change of APL of network, and the other is the invasion of 1D Winfree loop from the outside link-
ing nodes.

According to the investigation in this section we can conclude that the system size and the node degree are 
two major manners in regulating the network structure, and can impact the spatiotemporal dynamics of PSO 
in EHRNs remarkably. Importantly, two possible mechanisms are revealed. The PSO influenced by the network 
structures are induced not only by the change of APL of network (caused by the the system size or the node 

Figure 4.  (a,b,c) The artificial 1D periodic excitable rings with different node degrees k. (a) =k 3. (b) =k 4. 
(c) =k 5. The lengthes of these 1D periodic excitable rings are all fixed at 5 (i.e., there are 5 nodes in each 
excitable ring). The outside linking nodes increase remarkably as node degree k is increased. (d) The 
dependence of the oscillation proportion pos on the node degree k in the artificial 1D periodic excitable rings of 
panels (a), (b) and (c). System parameters are chosen as = .a 0 90, = .b 0 04, ε = .0 04 and = .D 0 30. One 
hundred independent numerical simulations are performed for each node degree k, and the random initial 
condition is utilized.
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degree), but also by the invasion of 1D Winfree loop from the outside linking nodes (only caused by the node 
degree).

The Influence Of System Parameters On PSO In EHRNs And The Related Key Determinants.  In 
this section, we investigate the influence of system parameters on the spatiotemporal dynamics of PSO in EHRNs. 
Here we still use the oscillation proportion pos as the indicator. Figure 5(a)–(d) display the dependence of the 
oscillation proportion pos on the system parameters a, b, ε and D respectively for different system sizes N in 
EHRNs (as shown by red dots for N = 100, shown by blue squares for N = 400, shown by green triangles for 
N = 700 and shown by pink diamonds N = 1000). The node degree is fixed at k = 3. Other parameters are fixed 
and are marked in the corresponding panels. We first discuss the results obtained for small system size (i.e., shown 
by red dots in Fig. 5(a)–(d) for N = 100) to reveal the influence of system parameters on PSO in EHRNs and the 
related key determinants. Figure 5(a) exhibits the relationship between the oscillation proportion pos and the 
parameter a. It is shown that the oscillation proportion pos increases monotonically as the parameter a is 
increased. Contrary to the results obtained for the parameter a, the pos∼b relationship is plotted and is displayed 
in Fig. 5(b), in which the oscillation proportion pos decreases monotonically as the parameter b is increased. 
Figure 5(c) reveals the dependence of the oscillation proportion pos on the relaxation parameter ε. It is shown that, 
as the relaxation parameter ε is increased from 0.01 to 0.07 gradually, the oscillation proportion pos initially 
increases, then passes through a maximum, and finally decreases. The relationship between the oscillation pro-
portion pos and the coupling strength D is displayed in Fig. 5(d), where the oscillation proportion pos decreases 
gradually from 0.97 (corresponding to = .D 0 20) to 0.0 (corresponding to = .D 2 0) as the coupling strength D 
is increased.

Figure 5.  The dependence of the oscillation proportion pos on the system parameters a (a), b (b), ε (c) and D (d) 
for different system sizes N  in EHRNs (shown by red dots for =N 100, shown by blue squares for =N 400, 
shown by green triangles for =N 700 and shown by pink diamonds =N 1000). The node degree is fixed at 

=k 3. Other parameters are fixed and are marked in the corresponding panels.
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Now we try to explain the dependence of the oscillation proportion pos on the system parameters a, b, ε and D 
for small system size (i.e., the results shown by red dots in Fig. 5(a)–(d) for =N 100). As we have stated above 
the formation of 1D Winfree loop, which exists as the oscillation source, is the key mechanism for maintaining 
the PSO in EHRNs. Moreover, as we know, nodes in excitable complex network must be excited in sequence. 
Consequently, the excitable wave must propagate forward along the shortest path in the network. The 1D Winfree 
loop, which can self-organize as the oscillation source to support the PSO in excitable complex network, should 
also obey this shortest path rule. This implies that the length of 1D Winfree loop should be as short as possible 
(i.e., the number of nodes in 1D Winfree loop should be as small as possible). However, as the existence of the 
refractory period of excitable dynamics, which is determined by the system parameters, the 1D Winfree loop 
cannot self-organize on a too small size topological loop. This means that there must be a minimum 1D Winfree 
loop at a given set of system parameters. Based on these discussions we can speculate that the minimum 1D 
Winfree loop will play a key role in interpreting the influence of system parameters on the spatiotemporal dynam-
ics of PSO in EHRNs. Consequently, the dependence of the minimum 1D Winfree loop length on the system 
parameters is the crucially point, and needs to be exposed.

Figure 6(a)–(d) display the dependence of the minimum 1D Winfree loop length Lmin on the system parame-
ters a, b, ε and D, respectively. The node degree of 1D Winfree loop is fixed at =k 3. Other parameters are fixed 
and are marked in the corresponding panels. Here we should mention that the length of a given 1D Winfree loop 
L can be approximately calculated by the formula ≈ ⁎L T V , where T is the oscillation period of the local excit-
able node and V  is the propagating speed of the excitable wave along the 1D Winfree loop. Due to the existence of 

Figure 6.  The relationship between the minimum 1D Winfree loop length Lmin and the system parameters a 
(shown by red dots in (a)), b (shown by red dots in (b)), ε ((c)) and D ((d)). The node degree of 1D Winfree loop 
is fixed at =k 3. Other parameters are fixed and are marked in the corresponding panels. In panels (a) and (b), 
the left axis and the right axis denote the minimum 1D Winfree loop length Lmin and the excitation threshold of 
the Bär-Eiswirth model uth, respectively, and the blue squares represent the dependence of the excitation 
threshold uth on the system parameters a and b.



www.nature.com/scientificreports/

1 0Scientific REPOrTS | 7: 11885  | DOI:10.1038/s41598-017-12333-3

the refractory period of excitable dynamics, there is a minimum oscillation period Tmin, which approximately 
equals to the refractory period Tf . Consequently, the length of minimum 1D Winfree loop can be estimated 
approximately by the formula ≈ ≈⁎ ⁎L T V T Vfmin min . Here, the refractory period of the local excitable node 
Tf  and the propagating speed of the excitable wave V are decided by the system parameters. Based on the above 
discussion, we can find that the minimum 1D Winfree loop length, which is related to the refractory period of the 
local excitable node Tf  and the propagating speed of the excitable wave V, is largely determined by the system 
parameters and is independent of the initial conditions. Whatever the initial condition is, the constant minimum 
1D Winfree loop length should be obtained.

Based on the results revealed in Fig. 6, now we can explain the influence of system parameters on PSO in 
EHRNs for small system size (i.e., the results shown by red dots in Fig. 5(a)–(d) for N = 100). The red dots in 
Fig. 6(a) show the dependence of the minimum 1D Winfree loop length Lmin on the parameter a. It is shown that 
the minimum 1D Winfree loop lengthes are all fixed at =L 5min  in the whole interval of parameter a, which 
indicates that Lmin is independent of a in this parameter region. However, the oscillation proportion pos increases 
as the parameter a is increased (as shown by red dots in Fig. 5(a) for the pos∼a relationship). This means that the 
mechanism of the PSO in EHRNs influenced by the parameter a is not the minimum 1D Winfree loop. However, 
another key factor, i.e., the excitation threshold, which is related to the parameter a, should also be considered. As 
mentioned above, the excitation threshold of Bär-Eiswirth model is determined by =u b

ath . By increasing the 
parameter a, the excitation threshold of the local excitable dynamics will decrease (as shown by the blue squares 
in Fig. 6(a)), which can effectively improve the excitability of local excitable nodes and the wave propagation in 
excitable complex networks. This is beneficial for the spatiotemporal dynamics of PSO and can promote the emer-
gence of PSOs in excitable complex networks. Consequently, the oscillation proportion pos in EHRNs will increase 
as the excitation threshold is decreased (induced by the increase of the parameter a). And the dependence of the 
oscillation proportion pos on the parameter a for small system size can be observed (as shown by red dots in 
Fig. 5(a) for N = 100).

Figure 6(b) displays the dependence of the minimum 1D Winfree loop length Lmin (shown by the red dots) 
and the excitation threshold uth (shown by the blue squares) on the system parameter b. Similar to the results 
obtained for the parameter a, the Lmin fixes at 5 in the whole interval of the parameter b, and the excitation 
threshold increases as the parameter b is increased. The increase of excitation threshold is harmful for the 
excitability of local excitable nodes and the wave propagation in the network, which will hinder the formation 
of PSO in excitable complex networks. As a result, the oscillation proportion pos in EHRNs decreases remarka-
bly as the excitation threshold is increased (induced by the increase of the parameter b). And the PSO in 
EHRNs influenced by the parameter b for small system size can be obtained (as shown by red dots in Fig. 5(b) 
for =N 100). Based on the above discussions we can declare that the system parameters a and b can effec-
tively influence the spatiotemporal dynamics of PSO in EHRNs. The immediate determinant is the excitation 
threshold, which is decided by these two system parameters. So we call it as the excitation threshold deter-
mined PSO in EHRNs. However, this kind of influence degenerates as the system size expands. The blue 
squares, the green triangles, and the pink diamonds in Fig. 5(a) and (b) exhibit the dependence of the oscilla-
tion proportion pos on the system parameters a and b obtained at three larger system size N = 400, N = 700, and 
N = 1000, respectively. It is shown that the excitation threshold determined PSO in EHRNs degenerates as the 
system size is expanded.

Now we discuss the key factor of PSO in EHRNs influenced by the relaxation parameter ε and the coupling 
strength D. Figure 6(c) shows the dependence of the minimum 1D Winfree loop length Lmin on the relaxation 
parameter ε. As ε is increased from 0.01 to 0.07 gradually, Lmin initially decreases from 6 to 5, then stays at this 
level, and finally increases to 6 again. As we know the larger the Lmin is, the harder for 1D Winfree loop to 
self-organize in the network supporting the PSO. Consequently, the oscillation proportion pos influenced by 
the relaxation parameter ε should initially increases, then passes through a maximum, and finally decreases. 
And this opposite trend has been confirmed in Fig. 5(c) (as shown by red dots for N = 100). Similar result is 
obtained for the coupling strength D. Figure 6(d) exhibits the relationship between the minimum 1D Winfree 
loop length Lmin and the coupling strength D. It is shown that, as D is increased, Lmin increases gradually, 
which will cause the decrease of the oscillation proportion pos influenced by the coupling strength D (see red 
dots in Fig. 5(d) for N = 100). This further confirms the opposite trend between the oscillation proportion pos 
and the minimum 1D Winfree loop length Lmin. Based on the results revealed in Fig. 6(c)–(d) and Fig. 5(c)–
(d), we can assert that the relaxation parameter ε and the coupling strength D can effectively influence the 
spatiotemporal dynamics of PSO in EHRNs. The immediate determinant is the length of minimum 1D Winfree 
loop, which is decided by these two parameters. Hence, we call it as the minimum 1D Winfree loop determined 
PSO in EHRNs. However, this kind of influence also degenerates as the system size expands. The blue squares, 
the green triangles, and the pink diamonds in Fig. 5(c) and (d) exhibit the dependence of the oscillation pro-
portion pos on the parameters ε and D obtained at three larger system size N = 400, N = 700, and N = 1000, 
respectively. It is shown that the minimum 1D Winfree loop determined PSO in EHRNs degenerates as the 
system size is expanded.

Based on the investigation in this part, we have discovered that the system parameters have remarkable influ-
ence on the spatiotemporal dynamic of PSO in EHRNs. Specifically, two distinct determinants, i.e., the excitation 
threshold and the minimum 1D Winfree loop determined PSO in EHRNs, have been exposed explicitly, which 
are otherwise deeply hidden behind the system parameters.
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Conclusion
In this paper, we have systematically investigate the influence of network structures and system parameters on 
the spatiotemporal dynamics of PSO in EHRNs. Firstly, a PSO emerging in the EHRN is presented. By using 
the DPAD method, the 1D Winfree loop is revealed as the oscillation source supporting the PSO, and the accu-
rate wave propagation pathways from the oscillation source to the whole network are exposed clearly. Then, the 
oscillation proportion pos is introduced, and is used as the order parameter to quantitatively study the influence 
of network structures and system parameters on the PSO in EHRNs. Phenomenally, we have found that network 
structures and system parameters have significant impacts on PSO. Importantly, the corresponding mechanisms 
are revealed, which are otherwise deeply hidden behind the network structures and the system parameters. PSO 
influenced by the network structures are induced not only by the change of APL of network, but also by the inva-
sion of 1D Winfree loop from the outside linking nodes. Moreover, PSO influenced by the system parameters 
are determined by the excitation threshold and the minimum 1D Winfree loop. Finally, we uncovered that the 
excitation threshold and the minimum 1D Winfree loop determined PSO will degenerate as the system size is 
expanded.

Self-sustained oscillations in excitable complex networks are very important issues in wide practical fields, 
especially in neuronal networks and brain systems. A systematical investigation of the influence of network struc-
tures and system parameters on the spatiotemporal dynamics of periodically self-sustained oscillation in excitable 
homogeneous random networks and the related mechanisms are expected to be useful both for theoretical under-
standings and practical applications. Specifically, we have revealed four key factors in determining the emergence 
of periodically self-sustained oscillations in excitable homogeneous random networks, i.e., the system size, the 
node degree, the excitation threshold, and the minimum 1D Winfree loop length. According to these four key 
determinants, people can probably predict the emergence of oscillations in excitable complex networks, neuronal 
networks and brain systems. Furthermore, by using these four key determinants, people can effectively regulate 
the emergence of oscillations. If oscillations are beneficial and are needed in these systems, people can promote 
the emergence of oscillations by increasing the system size, decreasing the node degree, decreasing the excitation 
threshold, or selecting the system parameters with smaller minimum 1D Winfree loop length. If oscillations are 
harmful and needs to be inhibited, opposite operations can be performed. We do hope our work will be a useful 
supplement to the previous contributions and will have a helpful impact in related fields.
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