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Lipidomes of lung cancer and 
tumour-free lung tissues reveal 
distinct molecular signatures 
for cancer differentiation, age, 
inflammation, and pulmonary 
emphysema
Lars F. Eggers1, Julia Müller2, Chakravarthy Marella1, Verena Scholz1, Henrik Watz3,4, Christian 
Kugler5, Klaus F. Rabe4,5, Torsten Goldmann   2,4 & Dominik Schwudke   1,4

Little is known about the human lung lipidome, its variability in different physiological states, its 
alterations during carcinogenesis and the development of pulmonary emphysema. We investigated 
how health status might be mirrored in the lung lipidome. Tissues were sampled for both lipidomic and 
histological analysis. Using a screening approach, we characterised lipidomes of lung cancer tissues and 
corresponding tumour-free alveolar tissues. We quantified 311 lipids from 11 classes in 43 tissue samples 
from 26 patients. Tumour tissues exhibited elevated levels of triacylglycerols and cholesteryl esters, 
as well as a significantly lower abundance of phosphatidylglycerols, which are typical lung surfactant 
components. Adenocarcinomas and squamous cell carcinomas were distinguished with high specificity 
based on lipid panels. Lipidomes of tumour biopsy samples showed clear changes depending on their 
histology and, in particular, their proportion of active tumour cells and stroma. Partial least squares 
regression showed correlations between lipid profiles of tumour-free alveolar tissues and the degree of 
emphysema, inflammation status, and the age of patients. Unsaturated long-chain phosphatidylserines 
and phosphatidylinositols showed a positive correlation with a worsened emphysema status and 
ageing. This work provides a resource for the human lung lipidome and a systematic data analysis 
strategy to link clinical characteristics and histology.

The anatomical organisation of the human lung enables the exchange of gases between blood and air. Alveoli 
represent the basic units for gas exchange within the lung. Pulmonary surfactant, which lines the inner surface 
of the lung, prevents alveolar collapse at the end of expiration1. It comprises a complex mixture of mainly phos-
pholipids and surfactant proteins. The main components are saturated phosphatidylcholine (PC) species such as  
PC 16:0/16:0, PC 16:0/14:0 and PC 16:0/16:12. Phosphatidylglycerol (PG) is, with 7 to 15% of total phospholipids3, 
the second most abundant surfactant lipid class and plays a crucial role as immune regulator3–5.

The functional connection between the lipidome and tissues, as well as cell types, has been investigated by 
using biological model organisms such as Drosophila melanogaster6 and Mus musculus7. A recent study showed 
that widespread alterations of phospholipid profiles occurred in lung cancer tissues8. These alterations especially 
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affect pulmonary surfactant components, but also sphingomyelin (SM)8. Further investigation by mass spectro-
metric imaging showed that lipidomes of cancer cells comprise specific alterations within surfactant lipids.

In this study, we analysed tissues from non-small cell lung cancer (NSCLC) and corresponding tumour-free 
alveolar control tissues by applying shotgun lipidomics screens9, 10. In addition to the abundant major phospho-
lipid classes PC, phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and SM, 
we included the neutral lipids diacylglycerol (DAG), triacylglycerol (TAG) and cholesteryl ester (CE). We also 
included the sphingolipids ceramides (Cer) and hexosylceramides and the glycerophospholipids including PG 
and phosphatidic acid (PA). Clinical characteristics such as age, gender, body mass index (BMI), history of smok-
ing, and quantitative scores for histological phenotypes were also assessed. Using this information, we systemat-
ically evaluated the multivariate statistical methods suitable for relating lipidomics data with individual clinical 
and histological characteristics. Omics data were explored by hierarchical clustering, principal component anal-
ysis (PCA) and partial least squares (PLS) regression11–14.

It is known that cells undergo a significant reprogramming of their metabolic networks during carcinogenesis, 
which is mirrored in systematic lipidome changes8, 15. Therefore, it is possible to evaluate several data interpre-
tation strategies in terms of the physiological impact of a phenotype. From this perspective, we expected to find 
the most prominent alterations in the comparison between lipidomes of tumour and tumour-free control tissue, 
because of the profound metabolic reprogramming of cancer cells. On the other hand, we expected the influence 
of ageing on the lipidomes of alveolar tissues to be much more elusive. Hence, we followed this logic to test the 
application range of certain data analysis strategies. These range from objectively large histopathological changes 
that affect the composition of the lipidome itself, to subtly nuanced alterations in clinical parameters such as age, 
BMI, and gender. This study enabled us to compile a resource for the human lung lipidome that shows how histo-
logical diversity and clinical data are reflected in distinct molecular features.

Results
Customised screening improves lipidome coverage.  To gain insight into the general lipidome com-
position of lung tissues, we used a customised lipidomics screening approach9, 10, 16, 17. We devised sample prepa-
ration and extraction procedures that had small sample size requirements and could be performed in a typical 
laboratory. Mass spectrometric conditions for negative ionisation were optimised to improve sensitivity for 
negatively charged lipids such as PI, PG, PA and PS (Supplement 1, Supplementary Fig. S1). Using ammonium 
chloride as an additive for electrospray ionisation, we circumvented the overlapping of mass spectrometric sig-
nals of PC with PS (Supplementary Fig. S2). In this way, unambiguous quantification of lipids from both classes 
was achieved. We determined the optimal ammonium chloride concentration to be 0.05 mM, which yielded the 
highest responses for negatively charged lipids (Supplementary Fig. S2, Supplement 2). We estimated a dynamic 
range of 3 orders of magnitude for the lipid quantitation of our mass spectrometric system. To this end, 311 lipids 
from 11 classes were quantified: CE, Cer, cardiolipins, DAG, PC, PE, PG, PI, PS, SM, and TAG (Supplement 3).

Lipidomes of tumour-free alveolar tissues and tumours show distinct molecular composi-
tions.  Several characteristic lipid species were only present in either alveolar control tissues or tumour tissues. 
For example, in the tumour lipidome of patient ID64, we quantified 33 TAG and 16 CE species that were not 
detected in the matched alveolar control tissue (Fig. 1b,c). We also identified 13 PG species that were exclusively 
detected in the alveolar tissue lipidome. These remarkable changes were observed in a number of paired tissue 
samples, indicating that widespread compositional changes occurred in tumour lipidomes. For a systematic char-
acterisation of these changes, we applied an earlier reported method to determine lipidome homologies based on 
the LUX (Lipidome Juxtaposition) score18 (Supplement 4). The hierarchical clustered tree based on the LUX score 
showed that tumour and alveolar tissue lipidomes have distinct compositional features (Fig. 1a). We observed a 
robust tree morphology consisting of two main branches. The first branch exclusively comprised alveolar control 
tissues, and the second was populated by all tumours plus a cluster of six alveolar tissues. Significantly, tumour 
and control samples from the same patient were never clustered together. This finding supports the notion that 
a patient-independent tumour lipidome comprises structural entities that are not present in alveolar controls. 
When PCA was applied to LUX scores, a clear separation of tumour tissues and alveolar control tissues along 
principal component 1 (PC1) was observed (Supplementary Fig. S3). The distribution of individual lipidomes 
along PC1 was used for tissue classification and showed high sensitivity and specificity in a receiver operat-
ing characteristics (ROC) curve, with an area under the curve (AUC) of 0.983 and p < 0.0001 (Supplementary 
Fig. S3). Our data showed that the large histopathological differences between alveolar control tissues and tumour 
tissues caused distinct compositional perturbations in lipidomes. However, we did not observe a difference 
between main tumour subtypes of NSCLC—adenocarcinomas (ADC) and squamous cell carcinomas (SCC)—
by analysing LUX scores. No other clinical characteristics were linked by using the unsupervised LUX score 
methodology.

Lipidome alterations of NSCLC tissues revealed by correlation analyses.  To gain further insight 
into lung lipidome characteristics, we applied unsupervised hierarchical cluster analysis using lipid quanti-
ties as input data. For this analysis, 141 lipids that were present in at least 90% of all samples were considered 
(Supplement 3). Hierarchical clustering revealed a clear-cut separation between tumour and alveolar control 
tissues (Fig. 2). All alveolar control tissues clustered together with a correlation coefficient of 0.779 (Fig. 2b, left 
cluster), with the exception of ID29, a patient suffering from Crohn’s disease. In general, neutral lipids such as CE 
and TAG were more abundant in tumour tissues (Fig. 2b). This trend was observed in all samples, with a corre-
lation coefficient of 0.781 (Fig. 2a). Furthermore, DAG [34:1], DAG [34:2], DAG [36:3] and DAG [36:1] showed 
the same trend (Supplementary Fig. S4). The opposite trend was observed for surfactant main components, 
most prominently for PG lipids. PG lipids were less abundant in tumours (Fig. 2b), and samples showed high 
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correlation, clustering together with a correlation coefficient of 0.673 (Fig. 2a). The surfactant main components 
PC [32:0], PC [30:0] and PC [28:0] were also less abundant in tumours (Supplementary Fig. S4), which further 
supported the hypothesis that a loss of surfactant components is a general feature of tumorigenesis. We further 
observed that a number of lipids, mostly long-chain SM, PG and PS, increased in abundance in alveolar control 
tissues (Supplementary Fig. S4). We did not observe a difference between the main NSCLC types ADC and SCC 
in these analyses. Interestingly, the ADC ID24 was clearly different from all other cancer tissues (Fig. 2b), most 
likely owing to the high proportion of necrosis. The clear differentiation between tumour and alveolar tissues was 
confirmed with a complementary PCA of the same input data (Supplementary Fig. S5). Furthermore, distinguish-
able clusters for ADC and SCC were observed for the PC1/PC3 factor map (Supplementary Fig. S5).

Figure 1.  Tumour and alveolar control tissue lipidomes have distinct compositions. (a) Hierarchical clustered 
tree of 43 tissue lipidomes based on the LUX score (Supplement 4). The frequency of reoccurrence of each 
branch after error modelling using 100 iterations is indicated with green numerals for t  = 0.005, SD = 0.002 
and red numerals for t = 0.003, SD = 0.001. (b) Lipidome map of patient ID64 tumour tissue. (c) Lipidome 
map of the matched alveolar control tissue of patient ID64. Each point on the lipidome map represents a lipid, 
and distances between lipids represent their structural similarity. The size of the data point corresponds to the 
quantity. Uniquely identified lipids in either tumour or alveolar tissues belonging to TAG, CE and PG classes are 
highlighted. ADC: adenocarcinoma; SCC: squamous cell carcinoma; FC: free cholesterol.
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Both hierarchical clustering and PCA indicated that there is greater heterogeneity among lipidomes of tumour 
tissues than among those of alveolar control tissues. Using hierarchical clustering, we observed a complex branch-
ing structure of the tumour lipidomes, which resulted in a number of subclusters that showed low correlation 
with each other (Fig. 2b). Using PCA, we observed that the heterogeneity was apparently greater for tumour 
tissues than for alveolar control tissues, as deduced from the computed confidence areas (Supplementary Fig. S5).

Tissue classification based on lipid panels.  Next, we asked if the observations made by cluster anal-
ysis and PCA could be confirmed by a scoring system to classify tissues. For this investigation, 92 lipids that 
were detected in every sample were evaluated for their discriminative power (Fig. 3a). Twenty lipids that were 
significantly changed, with a p value < 0.01 and at least a twofold change between the groups (mostly PGs, 
CEs and TAGs), were chosen as a panel to discriminate between tumour tissues and alveolar control tissues 
(Supplement 3). The resulting score, calculated from the abundance of these lipids, classifies a sample as tumour 
tissue if it has a value of about −20 au (boxplot, Fig. 3a). A score of about +20 au would identify a sample as alveo-
lar tissue. The ROC curve indicated that the score works well to differentiate between tumour and alveolar control 
tissues (AUC = 0.922; p < 0.0001). However, the ROC curve based on LUX scores performed even better, with 
an AUC = 0.983 (Supplementary Fig. S3). We concluded that lipidome data are sufficient to distinguish tumour 
tissue from alveolar tissue through the extensive changes in the lipidome that occur during tumorigenesis, as 
reported previously8, 19.

We then investigated the possibility of distinguishing between ADC and SCC tissues. In a similar manner, 113 
lipids of the 20 ADC and SCC samples were screened for their discriminative power (Fig. 3b). Seven lipids with 
significantly increased quantities (p < 0.05) in SCC tissues compared to those in ADC tissues were selected for the 
score calculation (Fig. 3b and Supplement 3). The resulting score indicates ADC if a value of ~5 au is computed, 
and SCC for a value of about −5 au. The ROC curve indicates good sensitivity and specificity with AUC = 0.910 
and p = 0.0019 (Fig. 3b). As examples for the lipid panel components, the abundance of PE-O [36:4], Cer [42:1;0], 
PC [36:1] and PI [36:1] is shown in Fig. 3c. Individual marker lipids alone did not achieve the high specificity of 
the panel (Supplementary Table S6).

Numerous factors potentially affect the composition of the human lung lipidome. From this perspective, we 
clearly reached the limit of unsupervised multivariate approaches to associate functional and phenotypical data 
with the lung lipidome. Besides the large perturbations in lipidomes caused by carcinogenesis, no other pheno-
type was associated by using hierarchical clustering and PCA. Our next step was to determine if clinical charac-
teristics (Table 1) influenced the lipidome composition using PLS regression. Because of the notable differences 

Figure 2.  Tumour and alveolar control tissues can be distinguished by cluster analysis of lipid profiles. (a) 
Heat-map of 141 lipid quantities identified in 43 lung tissues (Supplement 11). The corresponding hierarchical 
clustered tree is shown in panel b. (b) Individual lipidomes are colour coded according to the tissue type. Scans 
of histology slices of tumour and alveolar control tissue of patient ID64 are shown at the bottom.
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between tumour and alveolar control tissues, PLS regression analyses were performed separately for tumours 
and alveolar tissues. This also allowed us to study the effect of tissue-specific histopathological phenotypes on the 
lipidome composition.

The histopathology of NSCLC is reflected in the lipidomes.  We performed PLS regression analysis 
on tumour tissue lipidomes to find the main factors that influence lipidome organisation. In this analysis, we 

Figure 3.  Tumour tissue types can be differentiated by a lipid panel. (a) Identification of tumour tissue based 
on its lipidome. Volcano plot showing significantly changing lipid quantities in tumour tissues and alveolar 
control tissues. Boxplot of the resulting score and ROC curve for the differentiation between tumour tissues and 
alveolar control tissues (au: arbitrary unit). (b) Volcano plot, boxplot and ROC curve to distinguish ADC and 
SCC tissue samples. (c) Boxplots of selected lipid quantities differing between ADC (n = 10) and SCC (n = 10). 
The p value was calculated using the Mann-Whitney U test.
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included 113 lipids that were present in all tumour samples, as well as all clinical and histopathological data 
(Table 1 and Supplement 3).

Tissue composition was assessed by determining the percentage of vital tumour, stroma and necrosis; inflam-
mation status was also characterised (Fig. 4a). The histology scores of tumour samples indicated great heteroge-
neity in tissue composition. This indicates that extensive histological changes occur, which is also indicated by the 
examples showing 90% stroma (ID22), 80% vital tumour (ID29) and 70% necrosis (ID19). We expected such sub-
stantial morphological changes to be reflected in the lipidome structure. Indeed, PLS regression analysis revealed 
that tissue composition is the most influential factor shaping the lipidome of tumour biopsy samples (Fig. 4b,c and 
Supplement 5). Samples with high stroma content were separated from samples with high vital tumour content 
along the component t2, positioning high stroma samples in the top left corner of the factor map and high vital 
tumour samples at the bottom (Fig. 4b). We also noted that samples with high necrosis content were located at high 
t1 values. Stroma, vital tumour and necrosis content had a very distinct influence on the lipidome, characterised 
by the directional divergence of their vectors (Fig. 4c). Accordingly, a set of lipids could be specified that showed 
the best positive correlation to one of the tissue fractions; however, this would make marginal contributions to 
the others. Stroma content, PC [36:5], PC [34:3], and saturated surfactant-related lipids PC [32:0] and PC [30:0]  
showed the strongest correlation. Necrosis was mostly associated with TAGs and free cholesterol, whereas vital 
tumour content correlated with PC [36:1] and PE [36:1]. The predictive power of the PLS model was then eval-
uated using cross-validation. We found strong correlations for stroma and vital tumour, with Q2 values of 0.42 
for stroma and 0.27 for vital tumour (Fig. 4d). For necrosis, cross-validation was not significant, most likely 
because only two samples had a content >50%. We further found a valid cross-validation for the age of patients 
with Q2 = 0.27 (Fig. 4e). However, at this point we could not exclude a dependence between age and vital tumour 
content, even though on the t1/t3 plane a nearly orthogonal behaviour was observed (Supplementary Fig. S7). For 
the categorical phenotypes, we compared the values computed by the model with those of the original categories 
and tested if computed values would reflect the original phenotype using the Mann-Whitney-U test. In this case, 
the PLS regression model had sufficient predictive power to distinguish ADC from SCC tissues (p = 0.029) and 
to distinguish gender (p = 0.0063) (Fig. 4f). However, tumour diagnosis and gender are most likely dependent 

Patient ID Gender Tumour-free tissue* Tumour tissue* Cancer diagnosis Age (years) BMI PY GOLD stage

ID2 Male + + SCC 71 35 60–70 1

ID4 Male + + SCC 66 25 >100 1

ID6 Male + + SCC 70 28 50 1

ID11 Male + − ADC 48 NA NA NA

ID12 Male + + SCC 70 21 50 2

ID15 Male + − SCC 45 40 70 2

ID17 Male + − SCC 68 NA NA 2

ID18 Female + + SCC 47 32 50 No COPD#

ID19 Female + + other 54 28 35 1

ID22 Male + + SCC 57 25 25 1

ID24 Male + + SDC 55 26 40 No COPD#

ID29 Male + + SCC 59 29 40 No COPD#

ID30 Male − + ADC 52 27 30 3

ID31 Male − + SCC 68 33 100–150 2

ID32 Male − + ADC 45 23 30 1

ID39 Male + + SCC 60 25 40 2

ID43 Male + + other 60 23 30 1

ID50 Male + + SCC 63 25 47 1

ID52 Female + − other 44 27 10
Restriction 
with 
pneumonia

ID53 Male + + ADC 48 29 30 No COPD#

ID61 Male + + ADC 70 18 60 2

ID64 Female + + ADC 51 27 35 1

ID66 Male + + ADC 62 28 45 1

ID67 Female + + ADC 52 30 50 2

ID71 Female − + ADC 57 21 30 1

ID72 Male − + ADC 62 34 40 2

Table 1.  Clinical characteristics of the analysed cohort (26 patients). NA, not available; BMI, body mass index; 
PY, pack-years; GOLD, Global Initiative for Chronic Obstructive Lung Disease; COPD, chronic obstructive 
pulmonary disease; ADC, adenocarcinoma; SCC, squamous cell carcinoma; other, tumour diagnosis was either 
large-cell carcinoma (ID19), sarcomatoid large cell carcinoma (ID43) and carcinoid tumour (ID52). *Tissue 
sample availability for the analysis is indicated; for all lipidomics analysis, 14.4 mg wet-weight was extracted. 
#For the diagnosis ‘No COPD’, the GOLD stage was set to zero for all data analysis strategies.
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Figure 4.  Factors influencing lung tumour lipidomes analysed by PLS regression. (a) Results of histological 
scoring. Sections were histologically characterised according to their tissue composition, using percentages 
of necrotic areas, vital tumour cells and stroma content. The infiltration by immune cells was scored in 
categories (0, 1, 2, 3). (b) Factor map of individual tumour lipidomes, colour coded according to the dominant 
tissue fraction (stroma ≥50%, blue; vital tumour cells ≥50%, yellow; necrotic areas ≥50%, red; none of the 
tissue fractions ≥50%, black). (c) Correlation of lipid quantities, histology scores, and clinical data to the 
t-components. The vectors indicate how strong the variables correlate to the t-components and show the 
correlations between the lipidome data (black arrows) and the histology scores and clinical data (red arrows). 
(d) Correlation of original histology scores to scores computed from the PLS regression model for stroma, vital 
tumour and necrosis. Linear regressions with 95% confidence bands are shown in grey. The specific slope is 
noted on the plot. The dotted black line indicates the location of the ideal correlation. (e) Correlation for the 
clinical parameter age. (f) Evaluation of the PLS regression model for tumour diagnosis, inflammation score, 
and gender. Boxplots show computed scores versus the original categorical values. Q2 values are the results of 
the cross-validation of the model. A model is considered significant for a response if Q2 ≥ 0.0975. The associated 
t-component is noted in brackets after the Q2 value. All p values were calculated using the Mann-Whitney U 
test. Q2 values and p values are noted only when significance was reached. See also Supplementary Fig. S7.
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parameters because of a bias for ADC for female patients (3 ADC, 1 SCC, 1 other) in the current data set. For 
inflammation stage 1 and stage 3, the computed values were significantly different (p = 0.03). Other parameters 
recorded in this study—e.g., haemoglobin content, pack-years of smoking (PY), BMI and severity of chronic 
obstructive pulmonary disease (COPD) according to the Global Initiative for Chronic Obstructive Lung Disease 
(GOLD)20— showed no significant correlations in the tumour tissues (Supplementary Fig. S7).

The lipidomes of tumour-free alveolar tissues are mostly affected by emphysema, age and 
inflammation.  The results for the PLS regression analysis of tumour tissues showed that histological pheno-
types are mirrored in the lipidomes. We then applied the same method to investigate the influence on lipidomes 
in alveolar lung tissues. Alveolar control tissues exhibited a much more homogeneous histology. The content of 
cell types did not change to the extent observed in the tumours. Specific attention was given to the emphysema 
score because of its specific role in COPD. Accordingly, the emphysema stage was used to align all other tissue 
phenotypes (Fig. 5a). The extent of histological changes, an increase in the size of alveoli, is clearly visible from 
the examples shown for stage 2 (ID 39 A) and stage 5 (ID 2 A) (Fig. 5a). Although inflammation status, fibrosis 
and presence of alveolar macrophages were also scored, we did not observe a correlation between progressing 
emphysema and the other histological scores (Fig. 5a).

We calculated the PLS regression model using 139 lipids that were present in every alveolar tissue sample 
and included all histopathological and clinical parameters (Supplement 3). First, we focused on the impact of 
the emphysema grade and ageing on the lung lipidome. The PLS regression factor map showed an inverse rela-
tionship between the emphysema score and component t1 (Fig. 5b and Supplement 6). However, a closer look 
at the correlation circle revealed that emphysema and age correlated with each other (Fig. 5c). In these samples, 
the abundance of glycerophospholipids PS [38:4], PI [38:4], PI [38:5] and PS [40:4] was strongly correlated with 
increasing emphysema scores and ageing. We also observed that the distribution of standard coefficients of the 
model, linking lipid data and phenotypes, was very similar for emphysema and age (Supplementary Fig. S8 and 
Supplement 6). Furthermore, the cross-validation for both the influence of emphysema (Q2 = 0.16) and age-
ing (Q2 = 0.14) on the lipidome was significant (Fig. 5e,f). Although the potential effects of emphysema and 
age on the lipidomes could not be completely separated, we showed that a systematic change in the lipidome 
is detectable for both. This finding is in line with earlier reports that ageing and progression of emphysema are 
connected21. In contrast, the influence of BMI and PY on the lipidome was rather limited (Fig. 5d). Furthermore, 
it was possible to distinguish inflammation stage 1 from stage 2 using lipidome data (Fig. 5f). Here, we observed 
the strongest correlation for DAG [34:2] and DAG [34:1], and for 10 TAG species, with positive standard coeffi-
cients (Supplement 6). On the other hand, strong negative coefficients were computed for long-chain SMs such as  
SM [38:1], SM [40:1] and SM [40:2], as well as for PG [35:1], PG [36:1] and PG [33:1].

Our data further indicated a connection between the histological subtype of cancer and the lipidome of the 
corresponding tumour-free control tissues (Fig. 5f). This result was somewhat unexpected and might indicate 
that there is a limit to using residual tissue material of cancer patients as a model. In particular, the three patients 
diagnosed with large-cell carcinoma and carcinoid tumour (for this study grouped under ‘other’) were distin-
guished from those with ADC (p = 0.0167) and SCC (p = 0.022) using the PLS regression model. However, a 
potential overlapping effect of tumour diagnosis and inflammation and/or fibrosis cannot be excluded. Another 
possible association could be smoking behaviour. SCC is predominantly linked to smoking22, whereas ADC has 
a high prevalence in never-smokers23. The impact of gender was relatively low but could indirectly influence this 
finding because of the relatively small number of female patients included and the underlying bias toward ADC 
(Supplementary Fig. S7).

For the remaining categorical variables—fibrosis, haemoglobin content (as measure of remaining blood in the 
tissue) and GOLD stage—no further trends were observed (Supplementary Fig. S7).

Discussion
Previous studies describing lung tissue lipidomes strictly focused on phospholipids accessible by triple quad-
rupole specific scans and did not describe PGs and PAs or neutral lipids8, 19. In contrast, the lipidomic screens 
we applied overcame the problem that PG and PA do not form characteristic fragments or neutral losses related 
to the lipid head group24, 25. Our analytical approach covered a wide range of phospholipid classes and enabled 
quantification of neutral lipids. As a result, we improved coverage of the human lung lipidome, and we provide 
these findings as a general resource (Supplement 3).

Our research shows that the major abundant structural lipids alone are sufficient to distinguish tumour tissues 
from alveolar control tissues. By showing the remarkable changes of PG, TAG and CE lipids, we have significantly 
improved the understanding of lipid metabolic perturbations of NSCLC. In particular, PG molecules are of spe-
cial interest, especially in alveolar tissues, as they are the main constituents of pulmonary surfactant4. Among 
the single lipids most characteristic of NSCLC, we identified CE [18:1], CE [20:4] and TAG [54:4], which are all 
involved in energy storage and cholesterol metabolism. These nicely reflect the enhanced energy consumption 
by malignant tumours. It is little wonder that we found a high abundance of PG [36:1], PG [34:1], and PG [34:2] 
in tumour-free alveolar lung tissues, all of which are constituents of pulmonary surfactant. Hence, lipid profiles 
of alveolar lung tissues comprised elevated levels of surfactant lipids, including saturated PC and a variety of PG 
species that are generally decreased in NSCLC. At the same time, tumour tissues showed an increased abundance 
of neutral lipids such as TAG and CE, which further correlated with the fraction of necrotic areas. With the help 
of PLS regression, we correlated specific lipid panels to the percentage of vital tumour, necrosis and stroma. This 
shows that the cellular composition of tumour tissues should be considered to improve the diagnostic and func-
tional value for such analyses. It is likely that metabolic active tumour cells induce a large proportion of lipidome 
perturbations, which allows the clear differentiation between tumour and alveolar control tissues. In almost all 
cases, the loss of surfactant lipids indicated pathological changes, as well as a loss of function for the alveoli. Using 
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Figure 5.  Lipidomes of alveolar tissues correlate with patient data and histological scores. (a) Histology scores 
for alveolar control tissues. Alveolar control tissues were scored by inflammation (stages 0, 1, 2, 3), alveolar 
macrophages (stages 0, 1, 2, 3), emphysema according to Nagai et al.37 and fibrosis (stages 0, 1, 2, 3). The bar 
graphs show scoring results for every individual tissue, sorted according to increasing emphysema score. (b) 
PLS regression factor map for alveolar tissue lipidomes. Individuals were colour coded according to their 
emphysema score. (c) Correlation of lipid quantities, histology scores and clinical data to the t-components. 
Predictor variables (X) are indicated by black vectors and responses (Y) by red vectors. (d) Correlations of the 
PLS regression model between original values and computed values for BMI and PY of patients. Grey dotted 
lines represent the linear fit, and solid grey lines indicate 95% confidence bands. The dotted black line indicates 
the location of the ideal correlation. (e) Evaluation of the association between age and lipidome. (f) Evaluation 
of categorical parameters: tumour diagnosis, inflammation status and emphysema stage. Q2 values are the 
results of the cross-validation of the model. A model is considered significant for a response if Q2 ≥ 0.0975. 
The associated t-component is noted in brackets after the Q2 value. All p values were calculated using Mann-
Whitney U test. Q2 values and p values are only noted when significance was reached.
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this perspective, we showed that scores derived from lipidome data are not only suitable to discriminate between 
tumour tissues and tumour-free alveolar control tissues, but also between the major NSCLC subtypes ADC and 
SCC. This not only opens the opportunity to provide a novel diagnostic approach for cancer differentiation, but 
may also enable the study of functional aspects of different carcinogenic mechanisms. It is also noteworthy that 
the metabolic reprogramming of tumour cells leads to systematic differences in lipidome composition, which we 
highlighted with the LUX score as a measure of lipidome homology18.

From our results, we can extrapolate that further improvements in lipid quantitation, as well as sampling 
technology for examining tissue lipidomes, will be necessary to gain further insights into the functional aspects 
of the observed histopathology. Quantitation procedures for many glycerophospholipids, major abundant sphin-
golipids and neutral lipids will improve because better suitable standards are increasingly commercially available. 
However, for now it remains a challenge to use quantitative tissue lipidomics for clinical applications because of 
the technological demands, costs for such analyses and lack of automation procedures.

Furthermore, the isolation of defined cell populations from tissues using fractionation techniques might 
provide a better opportunity to standardize sampling26. Another possibility would be to apply sophisticated 
localisation-resolving techniques to isolate cells and tissues, such as laser capture microdissection27, 28. Tissue 
substructures and cell populations that are the focus of pathological events such as tumorigenesis8, development 
of granulomas or chronic inflammation can be further analysed by mass spectrometric imaging29, 30.

The informatics and statistical methodology to correlate histological phenotypes and clinical parameters to lipi-
dome data will be a central aspect for further investigations. Linear models based upon PLS regression will be a val-
uable tool. However, other approaches based upon machine learning and nonlinear models31, 32 should be evaluated, 
in conjunction with increased case numbers. Besides computational improvements, translational and interdiscipli-
nary cooperation to incorporate other omics’ results will be intensified. Such comprehensive study designs will help 
to refine molecular phenotyping and aid the implementation of personalised medicine concepts for lung diseases.

Together with the observed histopathological phenotype, we assessed the information value and success of our 
data interpretation strategy upon the degree of expected lipid metabolic perturbations. Perturbations occurring in 
tumours have such a strong impact that lipid panels signifying these morphological and functional changes can be 
identified with ease. The differentiation of tumour subtypes required the application of multivariate analysis tools to 
identify diagnostic lipid markers, even in the background of other underlying histological differences. For the associ-
ation of lipid metabolic consequences for ageing, emphysema stage and inflammation, model-based approaches are 
a necessity. We are convinced that the applied PLS regression methodology fosters such sophisticated investigations.

The molecular mechanisms behind the development and prevention of emphysema are not yet fully under-
stood. A few studies in animal models33–35 have related emphysema to changes in Cer metabolism. We could not 
confirm this observation, but did find evidence for age dependency of the lung lipidome, in line with the hypoth-
esis that ageing is a known risk factor for developing emphysema and COPD21.

In conclusion, we have described the lipidome of tumour-free alveolar lung tissues and shown the impact of 
reprogrammed lipid metabolism in tumours. With the help of PLS regression, a linear model can be created to 
relate lipidome alterations to histopathological phenotypes and clinical parameters. The resource presented here 
provides a first glimpse of the human lung lipidome in the context of disease development and natural variations.

Methods
Chemicals and lipid standards.  All solvents, reagents and lipid standards were used in the highest availa-
ble purity grade (see details in Supplementary Methods, Supplement 7).

Cohort.  Human lung tissue samples were collected from March to October 2013. Samples originated from 
lung cancer patients after surgical tumour removal at the LungenClinic Großhansdorf, Germany. This study was 
conducted using material from NSCLC resections and performed anonymously. The use of patient tissue and all 
experimental procedures were approved by the local ethics committee of the University of Lübeck (AZ 12–220). 
All procedures were carried out in accordance with respective guidelines and regulations. The clinical parameters 
of the 26 lung cancer patients are summarised in Table 1. Forty-three human lung tissue samples from the patients 
were analysed. Twelve patients had SCC, 11 had ADC, and patients with large-cell carcinoma (ID19), sarcoma-
toid large cell carcinoma (ID43) and carcinoid tumour (ID52) were grouped under ‘other cancer’. Age ranged 
from 44 to 71 years. Clinical characteristics such as PY, GOLD stage and BMI were included in our analysis.

Sampling strategy.  When available, representative biopsy samples of tumour-containing and tumour-free lung 
parenchyma were collected in the range of 0.5 to 1 g wet-weight. All samples were divided into two approximately 
equal-sized parts for processing for histopathology analyses and shotgun lipidomics. For shotgun lipidomics, samples 
were shock-frozen in liquid nitrogen and stored at −80 °C until analysis. For histological characterisation, tissue sam-
ples were fixed using the HOPE technique (HEPES-glutamic acid buffer-mediated organic solvent protection effect)36.

Histopathology.  Tissue sections of 1 µm were prepared from paraffin-embedded blocks and stained with 
haematoxylin and eosin. Slices were characterised by light-microscopy. Phenotypic features were scored accord-
ing to the specific tissue type. For tumour-free tissues, emphysema, inflammation, alveolar macrophages and 
fibrosis were scored on a scale from 0 to 3. A score of 0 would represent no inflammation/fibrosis/macrophages 
and a score of 3 would indicate a high degree of inflammation/fibrosis/macrophages. The emphysema grade was 
determined, according to the method by Nagai et al.37 in grades between 0 (no emphysema) and 10 (complete 
loss of alveolar structure). Tumour-containing tissues were characterised by their relative content of vital tumour, 
stroma and necrosis, defined as tissue fraction given in percentage. Additionally, inflammation was scored in 
stages between 0 and 3. Tissue scans were recorded with a Plustek OpticsLab H850 scanner and the pictures can 
be found in Supplement 8.
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Lipid extraction.  Tissue samples were homogenised in 50 mM KCl buffer using an Ultra-Turrax Tube Drive 
(IKA, Staufen, Germany). A constant ratio between tissue wet-weight and buffer volume of 1:20 (wt/vol) was 
applied for all samples. Accordingly, 300 μL tissue homogenate, containing 14.4 mg tissue, was extracted using the 
MTBE-based lipid extraction procedure38 (see details in Supplementary Methods, Supplement 7).

Shotgun lipidomics screen.  Lipid extracts were tenfold diluted in chloroform/methanol/2-propanol (1:2:4; 
v/v/v) using 3.7 mM ammonium acetate as additive for positive ion mode and 0.05 mM ammonium chloride for 
negative ion mode. Lipidomics screens10 were performed using an Apex Qe Fourier Transform Ion Cyclotron 
Resonance mass spectrometer (Bruker, Bremen, Germany) equipped with a TriVersa NanoMate (Advion 
BioSciences, Ithaca, NY, USA) as autosampler and ion source. Mass spectrometric acquisitions of 5 minutes’ 
time were separately recorded for the positive and negative ion mode (see details in Supplementary Methods, 
Supplement 7).

Quantification of free cholesterol.  Free cholesterol was quantified using derivatisation with acetyl 
chloride, as described earlier39, using deuterated cholesterol as internal standard (see details in Supplementary 
Methods, Supplement 7).

Lipid identification and quantification.  LipidXplorer40 was used to identify the lipid classes—TAG, SM, 
lysophosphatidylserine (LPS), PS, lysophosphatidylglycerol (LPG), PG, lysophosphatidylethanolamine (LPE), 
PE, PE-O, PA, lysophosphatidylcholine (LPC), PC, PC-O, lysophosphatidylinositol (LPI), PI, cardiolipin, CE, Cer 
and hexosylceramide—using peak lists as input (Supplement 9) and customised MFQL scripts (Supplement 10). 
Lipids were assigned only when the mass accuracy was ≤2.5 ppm and the signal intensity was at least 10 times 
higher than that of blank control samples. Afterwards, the lipid identification was revised in respect of isobaric 
species by evaluating isotopic distribution.

Lipid species were annotated as follows: lipid class [no. of carbon atoms in aliphatic chains:no. of unsatura-
tions in aliphatic chains]. For sphingolipids: class [no. of carbon atoms in aliphatic chains:no. of unsaturations in 
aliphatic chains; no. of additional hydroxylations: 0 or 1]. Lipid species of PE and PC with one O-alkyl chain and 
one O-acyl link are indicated as PE-O and PC-O, respectively.

Lipids species were quantified based on responses of internal standards (Supplementary Table S10). LPC, PC, 
PE, SM and TAG species were quantified based on their respective internal standard from the same class. For 
other lipid classes, abundances were determined in relation to the sum-intensity of internal standards LPC, SM, 
PC, and TAG in positive ion mode as well as LPC, PC, and PE in negative ion mode (see details in Supplement 7 
and Supplementary Table S11)17. Finally, the relative abundance for all lipids was determined as a percentage of 
total abundance of all lipids (Supplement 3).

Multivariate data analysis methods.  For the PCA and hierarchical cluster analysis presented in Figs 2, 
S4 and S5 lipid species were included that were present in at least 90% of the samples (Supplement 3). PCA was 
performed using the package FactoMineR41 of R (The R Project, version 3.2.042). Hierarchical clustering was 
computed applying Euclidean distance and complete linkage using Gene Cluster 3.043 and visualised by Java 
Treeview-1.1.6r444 (Supplement 11).

Tissue discrimination scores based on lipid panels presented in Fig. 3 were calculated for (i) tumour tissues 
from alveolar control tissues; (ii) ADC from SCC.

	 (i)	 To determine the lipid panel for differentiation of alveolar control tissues and tumour tissues, only lipid 
species that were detected in all 43 samples were included. As a result, 20 lipids were chosen that were 
significantly changed between tumour and alveolar control tissues with p > 0.01 (two-tailed t-test) and 
comprised a log2-fold change of <−1 or >1 (Supplement 3).

	(ii)	 For discriminating ADC and SCC tissues, a lipid panel was chosen from lipids present in each tumour 
tissue sample. A panel of 7 lipid species was chosen with p < 0.05 (two-tailed t-test), which showed a log2-
fold change of <−1 or >1 between the two tumour types (Supplement 3).

To calculate both scores, the relative abundance of chosen lipids was log2 transformed and mean centred. 
Finally, both scores were calculated according to equation 1.

∑= ⋅S A c
(1)i

i

S: Score
A: constant: A = 1 if log2-fold change >1; A = −1 if log2-fold change <−1
ci: log2 transformed and mean centred abundance of lipid i of the respective panel.
�The associated ROC curves and volcano plots were calculated and visualised by GraphPad Prism 6 (GraphPad 
�Software, Inc., La Jolla, CA, USA).
To calculate a mathematical model that correlates histological and clinical data to the lipidome, we used PLS regres-

sion, as described by Wold et al. and Geladi and Kowalski13, 14. PLS regression was calculated using the R package plsde-
pot45 using the function plsreg2. Prior to PLS regression, clinical data and histopathology scores (defined as responses; Y 
variables) and all lipid quantities (defined as predictors, X variables) were transformed to consist only of values between 
0 and 1. Categorical variables, like gender or tumour diagnosis, were also scaled in a range of 0 to 1.
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For the PLS regression model of tumour tissues presented in Fig. 4, the complete set of response variables was 
used as input. Furthermore, only lipids that were quantified in all tumour tissue samples were included in the 
analysis (Supplement 3).

The PLS regression model of alveolar lipidomes shown in Fig. 5 was computed using all available histological 
scores (emphysema, fibrosis, inflammation, alveolar macrophages) and clinical data (age, gender, tumour diagno-
sis, BMI, PY, GOLD stage) as response variables. Only lipids that were present in all alveolar control tissues were 
considered, as listed in Supplement 3.

Cross-validation was performed using the default leave-out-one algorithm of the R function plsreg2 of the 
plsdepot R package13. Briefly, the dataset is split randomly into ten equally sized segments consisting of individual 
patients’ data. Nine of these segments are used as training set to compute the model, while the remaining segment 
is used for validation. This process is repeated so that all ten segments are once utilised for validation. The results 
of the cross-validation are expressed by the Q2 value. A model for a response variable is considered to be signifi-
cant when at least one Q2 value for one principal component is ≥0.097545.

Chemical space model and LUX score.  Chemical space model and LUX scores were calculated as 
described previously18. The source code to calculate LUX scores can be downloaded from the website http://
lux.fz-borstel.de. The overall fatty acid composition of the lung lipidome was determined by tandem mass spec-
trometry, performed in negative ion mode on a Q Exactive Plus Orbitrap mass spectrometer (Thermo Scientific, 
Bremen, Germany). We used the resulting list of 35 fatty acids to infer isomeric species for all identified lipids 
and to choose a representative molecule (Supplementary Table S12 and Supplement 7). From the initially iden-
tified 311 lipids, 293 lipids were used for LUX score calculation (Supplement 3). Eighteen lipids could not be 
computationally generated using the presented fatty acids as minimum building blocks. Hierarchical clustering 
was performed using the R function hclust with Euclidian distance and complete linkage. PCA of lipids based on 
structural similarity was performed with R function princomp. Error modelling was performed using quantifica-
tion threshold (dt) and standard deviation (SD) of (1) t = 0.005, SD = 0.002 and (2) t = 0.003, SD = 0.001.
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