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Nanoindentation Induced 
Deformation and Pop-in Events in a 
Silicon Crystal: Molecular Dynamics 
Simulation and Experiment
Sun Jiapeng1, Li Cheng1, Jing Han2, Aibin Ma1 & Liang Fang3

Silicon has such versatile characteristics that the mechanical behavior and deformation mechanism 
under contact load are still unclear and hence are interesting and challenging issues. Based on 
combined study using molecular dynamics simulations and experiments of nanoindentation on Si(100), 
the versatile deformation modes, including high pressure phase transformation (HPPT), dislocation, 
median crack and surface crack, were found, and occurrence of multiple pop-in events in the load-
indentation strain curves was reported. HPPTs are regard as the dominant deformation mode and even 
becomes the single deformation mode at a small indentation strain (0.107 in simulations), suggesting 
the presence of a defect-free region. Moreover, the one-to-one relationship between the pop-in events 
and the deformation modes is established. Three distinct mechanisms are identified to be responsible 
for the occurrence of multiple pop-in events in sequence. In the first mechanism, HPPTs from Si-I to 
Si-II and Si-I to bct5 induce the first pop-in event. The formation and extrusion of α-Si outside the 
indentation cavity are responsible for the subsequent pop-in event. And the major cracks on the surface 
induces the pop-in event at extreme high load. The observed dislocation burst and median crack 
beneath the transformation region produce no detectable pop-in events.

Single crystal silicon is the most important material in semiconductor industry and in micro/nanoelectrome-
chanical systems (MEMS/NEMS). Exploring and understanding the mechanical behavior and deformation 
mechanism are critical to the design, production and operation of Si-based structures and devices. In the past 
half-century, micro/nano-indentation has been extensively applied to investigate this matter both experimentally 
and theoretically. In many of those studies, silicon, which is a completely brittle material at room temperature, 
displays a distinct ductile behavior resulting from the high-pressure phase transformation (HPPT)1–4, slip1, 5, pla-
nar defect6, twinning7, 8 or dislocations3, 9, 10 under a contact load. Due to the complex nature of silicon, complete 
understanding of its plastic deformation is still a challenging issue and hence an interesting research topic.

Early studies have shown that HPPT is the dominant mode of plastic deformation in single crystal sil-
icon, followed by brittle fracture above a certain load under micro-indentation up to a large temperature 
(~370 °C~500 °C)11–13. Beyond that temperature range, the plastic deformation is dominated by the dislocation 
activity. Subsequently, the HPPT of single crystal silicon under micro/nano-indentation are extensively studied.

In situ electrical measurements show a transformation from a semiconductor-like phase (pristine diamond 
cubic structure, Si-I) to a metallic phase14, 15. The resulted metallic phase is generally accepted to be the β-Si 
phase, which is a body-centered-tetragonal structure with sixfold coordination, based on the phase transforma-
tion sequences observed in diamond-anvil cell (DAC) experiments15. This transformation may lead to an abrupt 
change in the load-displacement curve, which is called a ‘pop-in’ event. During unloading, sudden changes in 
both the contact electrical resistance and the load-displacement curve (known as a ‘pop-out’) indicate further 
phase transformation, which is believed to be the transformation from the Si-II phase to the crystalline bc8/
r8 phase16, 17. A slow change in the load-displacement curve (known as an elbow) indicates the formation of 
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amorphous silicon (α-Si). Further investigations have demonstrated that the HPPT and resultant mechanical 
behavior during micro/nanoindentation are closely related to the maximum indentation load17–19, load/unload 
speed16–20, geometry of the indenter17, 21 and the crystallographic orientation of the indented surface4, 22, 23.

Recently, Wong et al.2 reported that the HPPT could be the single deformation mechanism without exten-
sive damage under a relatively small maximum load using a sphere indenter, but no pop-in event was found. 
Upon increasing the maximum load, extensive damage (major slip, cracking and crystalline damage) is observed 
under the indenter. The authors also investigated the mechanism of initial plastic deformation with respect to 
the hold time under the maximum load, and suggested that plastic deformation is typically initiated by HPPT or 
crystalline defect24. These results indicate that defect propagation and HPPT are mutually exclusive, competing 
deformation mechanism.

Most researchers have reported that crystalline defects, including slip bands, planar defects and dislocations, 
and cracks commonly coexist with HPPT under micro/nanoindentation of single crystal silicon, as determined 
by transmission electron microscope (TEM)3, 5–7, 16, 21, 25, 26. The common feature of the cross-sectional TEM 
(XTEM) images of deformation region is that phase transformation region locates on the topmost of the indented 
surface, followed by the crystalline defects and cracks underneath the transformation region1, 2, 16, 24. The defor-
mation mechanism of single crystal silicon is closely related to load conditions. Under some load conditions, such 
as the compression of single crystal silicon nanoparticle10, 27 or submicron pillar28, 29, dislocations were observed 
to be the single form of plastic deformation. On scratching and grinding process, the α-Si on the topmost of the 
scratched surface and the damaged crystalline Si with high densities of dislocations underneath the α-Si fea-
ture the deformation region30–33, and an alternative phase transformation route is suggested: Si-I → α-Si → Si-III/
Si-XII in α-Si, which is quite different from that in the case of nanoindentation (i.e., Si-I → Si-II → Si-III/Si-XII 
or α-Si). Recently, nanoscale solely amorphous layer, followed by pristine crystalline lattice, is obtained under 
ultraprecision grinding using the newly developed diamond wheel with ceria34.

Molecular dynamics (MD) simulations are also widely used to study the mechanical behavior35–38 and HPPT22, 36, 39–43  
of single crystal silicon during nanoindentation. The MD simulations successfully predict the formation of the 
Si-II phase and show the detailed distribution, structural characteristics and phase transformation process of 
Si-II36, 39–46, which is almost impossible to achieve in present experimental conditions. In addition, another new 
body-centered-tetragonal high-pressure phase of bct5 with fivefold coordination is predicted by the MD simu-
lations41, 42, 45. Recently, an in situ Raman micro-spectroscopy experiment confirmed the existence of the bct5 
phase during nanoindentation47. Thus, MD simulations have become an indispensable approach to furthering 
our understanding of these processes at the atomic scale.

In this paper, we performed large-scale MD simulations and experiment study of nanoindentations on 
(100)-oriented silicon [Si(100)]. We focused on the indentation-strain-dependent mechanical behavior and com-
plicated deformation mediated by HPPT, dislocations and brittle cracking. The versatile deformation mechanisms 
of single crystal silicon were investigated, and occurrence of multiple pop-in events in the load-indentation strain 
curves was found. Moreover, three distinct mechanisms were identified to be responsible for the successive occur-
rence of pop-in events. The process of HPPT, the distribution of high-pressure phases, the nucleation and prop-
agation of dislocations, and brittle cracking were further investigated in details. This work provides new insight 
into the mechanical behavior and versatile deformation mechanisms of single crystal silicon, which advances our 
understanding of the nature of silicon material.

Methods
MD simulations procedure.  Large-scale MD simulations were performed to investigate nanoindenta-
tion on a flat Si(100) surface. A newly developed screened empirical bond-order potential (a screened version 
of the potential developed by Erhart et al.48) was used49, as this potential provides the improved descriptions 
of the mechanical behavior of nanowires under uniaxial tension and the deformation mechanisms during cut-
ting of monocrystalline and polycrystalline silicon50. Figure 1 shows the adopted MD simulation model. In this 
model, a virtual spherical indenter with a diameter of ~21.72 nm was use, which was modeled using the repul-
sive force: F = AH(r)(R-r)2, where A is the force constant with value of 10 eV/A2, H(r) is a step function, R is 
the indenter radius, and r is the distance from the silicon atoms to the center of the indenter sphere. The single 
crystal silicon specimen had dimensions of 43.45 × 43.45 × 29.87 nm3 and contained approximately four million 
atoms. To obtain the equilibrium configuration of the silicon specimens at a temperature of 300 K, a meticulous 

Figure 1.  Molecular dynamics simulation model.
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heat treatment process was performed, in which the temperature was controlled using the NVT ensemble with 
Langevin dynamics51. The initial specimens, composed of silicon atoms in a diamond cubic structure with a 
lattice parameter of 5.431 Å, were first heated from 0 K to 600 K over 25 ps and then at this temperature for 25 ps. 
Then, the heated specimens were gradually cooled to 300 K over 25 ps, subsequently followed by annealing at 
300 K over 50 ps. Elaborately heating the sample to an elevated temperature of 600 K was performed to speed the 
equilibration process.

After the initial construction, MD simulations of nanoindentation were performed at a constant velocity of 
80 m/s by the LAMMPS code52. The free boundary was applied along the indentation direction, while periodic 
boundary conditions were applied along the other two directions. The atoms in a layer with a thickness of 0.5 nm 
was frozen to provide structural stability on the bottom of the specimen. The next atom layer with a 2 nm thick-
ness adjacent to frozen layer was maintained at a constant temperature of 300 K to dissipate excess thermal energy. 
All the remaining atoms were allowed free movement according the Newtonian motion equations.

The combination of the modified coordination number (MCN), considering the first and second nearest 
neighbors, the radial distribution function (RDF); and the bond angle distribution function (ADF) was applied 
to identify five crystal phases (Si-I, Si-II, Si-III, Si-XII, and bct5) and amorphous phase (α-Si) observed in the 
previous studies. The structure characteristics of five crystal phases are summarized in Table S1 in supplementary 
material along with the typical transition pressure. According to the authors’ previous work, the isolated Si-III/
Si-XII atoms around the transformation region were identified as a slightly distorted diamond cubic structure 
(DDS) rather than the Si-III/Si-XII phase structure. A detailed description of the combined approach can be 
found in the supplementary material and in our prior work45, 53.

Experimental
procedure.  A single crystal silicon (100) sample was prepared from an intrinsic silicon wafer (320 μm thick-
ness). The root-mean-square (RMS) roughness of the sample was measured as around 0.5 nm. Before tests, the 
sample was dipped into 5 wt.% hydrofluoric acid for 2 min to remove the superficial native oxide layer. Then, the 
sample was ultrasonically cleaned with acetone, ethanol and deionized water in sequence for 5 minutes to remove 
surface contamination. Many researchers showed that this procedure is able to prepare a contamination free bare 
silicon surface54, 55.

The nanoindentation tests were performed using a NanoTest Vantage (Micro Materials Ltd.) with a diamond 
spherical indenter of 1 μm radius. The sample was subjected to the peak load of 3 mN, 10 mN, and 15 mN at 
a fixed loading rate of 0.1 mN/s, held at peak load for 20 s to minimize the time-dependent plastic effect, then 
unloaded at 0.1 mN/s. For each condition, 8 tests were repeated. After tests, a field emission scanning electron 
microscope (SEM, Zeiss) was used to examine the morphology of residual impression.

Simulation Results
Mechanical behavior.  The characteristic indentation strain, ε = . h a0 2( / ) was took the place of the gener-
ally used indentation depth, where h is the contact depth and a is the contact radius. The resultant load-indenta-
tion strain (L-ε) curve (Fig. 2(a)) illustrates the representative elastic-plastic response of single crystal silicon to 
nanoindentation. A key interesting result is that two distinct pop-in events are detected in the L-ε curve at an 
indentation strain of εA = 0.067 and εB = 0.115. Although the occurrence of multiple pop-in events has been 
reported in some experimental studies2, 18, 22, this is the first report, to the best of our knowledge, of multiple pop-
ins predicted by MD simulations.

The mean contact pressure was also calculated with respect to the indentation strain, as shown in Fig. 2(b), 
which is defined as Pm = P/πa2, where Pm is the mean contact pressure, P is the load, and a is the radius of the cir-
cle of contact. The Pm-ε curve provides the characteristic values of 14.91 GPa and 19.22 GPa, which mark the onset 
of pop-in A and pop-in B, respectively. The Pop-in A is generally found in experiments and is widely accepted 
to indicate the initial HPPT from Si-I to Si-II2, 5, 18, 24, 51, which suggests the onset of plastic deformation. The 

Figure 2.  (a) L-ε curve and (b) Pm-ε curve during nanoindentation on Si(100) predicted by the MD simulation. 
The red arrows mark the pop-in events.
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predicted pressure for Pop-in A is consistent with the experimental result of 9.9–15GPa22, 56 and the theoretical 
value for HPPT from Si-I to Si-II57.

High-pressure phase transformation.  The sequence of snapshots in Fig. 3 illustrates the evolution of 
high-pressure phases at indentation strains of 0.060, 0.067, 0.080 and 0.095, showing the cause of Pop-in A. In 
Fig. 3(a), although some Si-II and bct5 atoms are observed at ε = 0.060, these atoms are only the isolated atoms 
and not a cluster of a single phase. The first detectable HPPT from Si-I to Si-II occurs at ε = 0.067 [Fig. 3(b)] when 
the mean contact pressure reaches its local maximum of 14.91 GPa, and Pop-in A occurs. Almost at the same 
time, a bct5 phase forms around the Si-II phase. As the penetration proceeds, the Si-II phase continually expands 
to a large single-phase volume beneath the indenter, and the bct5 phase extends around the Si-II phase region, as 
illustrated in Fig. 3(c) and (d). The entire transformation zone is immersed in the DDS region, which indicates the 
existence of a distorted lattice in this region.

The Si-I to Si-II transformation leads to a 23% decrease in volume, while only a 15% decrease in volume 
occurs during the Si-I to bct5 transformation. The sudden volume reduction of the constrained region beneath 
the indenter results in a sharp load reduction of the indenter, i.e., a pop-in event, when the Si-I to Si-II and Si-I 
to bct5 transformations occur. Moreover, the Si-I to Si-II transformation is caused by flattening the tetrahedral 
structure along the [001] direction, and the Si-I to bct5 transformation is formed by flattening the stepped sixfold 
rings of the diamond lattice41. Hence, although both transformations from Si-I to bct5 and from Si-I to Si-II, can 
induce a pop-in, we suggest that the Si-I to Si-II transformation is the primary contributor to Pop-in A.

As the nanoindentation proceeds, pop-in B occurs at the indentation strain of 0.115, as shown in Fig. 2. Note 
that pop-in B is a kink pop-in and is significantly different from pop-in A. For pop-in A, the load sharply drops. 
In contrast, a gradual load increase and pressure reduction are found for pop-in B, which is similar to the kink 
pop-out generally found in experimental nanoindentation during unloading22. Figure 4 illustrates the structure 
evolution at different indentation strains of 0.109, 0.115, 0.124 and 0.138. We note that the single crystal Si-II 
and bct5 phases are the only two high-pressure phases when the indentation strain is less than 0.115, as shown 

Figure 3.  Side cross-sectional views of the phase distribution at ε = (a) 0.060, (b) 0.067, (c) 0.080, and (d) 0.095.

Figure 4.  Side cross-sectional views of the phase distribution at ε = (a) 0.109, (b) 0.115, (c) 0.124, and (d) 0.138.
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in Figs 3 and 4(a). When the indentation strain increases over the critical value of 0.115, the amorphous sili-
con (α-Si), which is the mixture of atoms with coordination number equal to 4, 5 and 6, appears around the 
indenter. Simultaneously, the continuous extrusion of α-Si outside the indentation cavity is detected, as illus-
trated in Figure 4(a), indicating that the transformed region extends beyond the constraint of the indenter. The 
transportation of α-Si to the surface causes the gradual pressure reduction reflected by the kink pop-in event. 
This result demonstrates that the formation and extrusion of α-Si outside the indentation cavity is responsible for 
pop-in B in the L-ε curve. Further evidence can be obtained from the 3D surface morphology of impression, as 
shown in Fig. 5, which shows an unequivocal link between α-Si extrusion and pop-in B. Interestingly, the occur-
rence of pop-in B is resulted from the pressure-induced amorphization and is facilitated by the extrusion of α-Si. 
Therefore, pressure-induced amorphization without extrusion can also promote the occurrence of pop-in, which 
was confirmed by our previous MD simulations using the Tersoff potential58.

As the nanoindentation strain continues to increase, the Si-II and bct5 phases gradually transform into α-Si, 
and the α-Si continuously extrudes outside the indentation cavity [Figs 4(c,d and 5c,d)]. In particular, the single 
crystal Si-II nanovolume beneath the indenter is also gradually replaced by α-Si [Fig. 4(d)]. Therefore, amor-
phous silicon becomes the dominant high-pressure phase when the indentation strain approaches an extreme 
large value, as illustrated in Fig. 6. In this Figure, a large amorphous zone distributes directly underneath the 
indenter, and a large α-Si extrusion forms on the surface. The bct5 phase is located around the amorphous silicon. 
Almost all of the Si-II formed at small ε transforms into amorphous silicon. Moreover, the bct5 phase is abundant 
at any indentation strain and is comparable with Si-II at small ε and with α-Si at large ε, which suggests more 
attentions should be given to the bct5 phase. Consequently, the complete scenario of high-pressure phases evolu-
tion during nanoindentation on Si(100) is elucidated.

More detailed structure characterizations of Si-II, bct5 and α-Si were obtained by calculating the RDF and 
ADF within the congregating single-phase region identified by MCN, as shown in Figures S1, S2, S3, and S4 in 
supplementary material.

Dislocations during the nanoindentation process.  Two full dislocations with Burger vectors 1/2[011] 
and 1/2[101] nucleate beneath the phase transformation region at ε = 0.107, as shown in Fig. 7(a). With an 
increase in the indentation strain, these dislocations move in its slip plane toward the untransformed region, and 
new full dislocations nucleate and following glide continually [Fig. 7(b,c)]. All the dislocations are blocked by the 
phase interface. That is, the dislocations glide in the untransformed region around the transformation region. 
This becomes in accordance with the experimental result in the literature1–3, 24, 59. Generally, dislocation burst 
can lead to sudden, repeated unloading and loading cycles, leaving many serrations in the L-ε curve for metal60. 
However, here, this dislocation behavior does not leave any trace in the L-ε curve. One reason is that the resultant 
dislocations are located far away from the indenter. The other reason lies in the lack of sufficient dislocations. 

Figure 5.  The surface morphology of impression at ε = (a) 0.109, (b) 0.115, (c) 0.124, and (d) 0.138.
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Figure 6.  The high-pressure phases distribution and the surface morphology at ε = 0.2.

Figure 7.  Slip vector analysis of the dislocation structure at ε = (a) 0.107, (b) 0.138, and (c) 0.2.
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In fact, even at the maximum indentation strain, we observe only a few of dislocations, as shown in Fig. 7(c). 
Consequently, the dislocations only slightly contribute to the plastic deformation in the present condition.

Cracking during the nanoindentation process.  A median crack along the [110] orientation is emanat-
ing from the bottom of the phase transformation region, as shown in Fig. 8(a) and (b), when ε increases to above 
0.185. The crack nucleates in the irregular α-Si/Si-I phase interface at the bottom of the transformation region, as 
illustrated in Fig. 8(a). The median crack is generally found during nanoindentation on Si(100) with a spherical 
indenter when the indentation load increases25, and becomes even more widespread using Berkovich indenter21. 
Although the median crack was reported to nucleate at the defects intersection, no link between the crack nuclea-
tion and the defects intersection is found. With a continuous increasing in ε, the median crack extends down into 
the untransformed region, as illustrated in Fig. 8(c) and (d).

This result indicates silicon tends to brittle deformation at large indentation strain during nanoindentation. To 
the best of our knowledge, this is the first successful prediction of median crack during nanoindentation on sili-
con by the MD simulations, although cracking has been proven to occur based on experiments at a large inden-
tation strain, as indicated in our subsequent experiment and reported in the literature21, 25, 59. The crack-driven 
brittle deformation is also observed during the cutting of polycrystalline silicon using MD simulation50.

Experimental Results
Figure 9 shows the typical experimental L-ε curves of Si(100) during nanoindentation at different peak load. The 
occurrence of multiple pop-in events clearly appears in the L-ε curve during loading, providing convincing evi-
dence for the present MD simulations. The number of pop-in events increases with an increase in peak load. At 
small peak load of 3 mN, only one pop-in event is found at ε = 0.042, indicating onset of non-elastic deformation 
at low load. At large peak load of 10 mN and 15 mN, three and four pop-in events are detected in the L-ε curve. 
The initial pop-in, indicating the onset of HPPT and transition from purely elastic to elastic-plastic deformation, 
occurs over a small strain range of 0.042~0.044 for all three peak loads. The initial pop-in pressure, i.e. HPPT 
pressure, was calculated over a small range of 9.24~10.06 GPa, which is consistent with the experimental result of 
9.9–15GPa22, 56 reported in the literature. This initial pop-in strain and pressure is smaller than values of 0.067 and 

Figure 8.  Cross-sectional view (a), (c) and side cross-sectional view (b) and (d) of crack evolution at ε = (a), (b) 
0.185, and (c), (d) 0.2.
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14.91 GPa predicted by the present MD simulation. This discrepancy between the experiment and MD simulation 
due to the large difference in indenter size and indentation velocity. The increased pop-in load with loading rate 
has been reported for the single crystal silicon61.

The second pop-in event at peak load of 10 mN and 15 mN appears at nearly same indentation strain of 0.062. 
The different strain for the third pop-in event at peak load of 10 mN and 15 mN is observed, indicating experi-
mental scatter as shown in Fig. 9. At large peak load of 15 mN, the fourth event is observed at a large indentation 
strain of 0.082. During unloading, the pop-out and elbow appear statistically for all the tests, showing further 
phase transformation. The pop-out events and its mechanism have received much research attention, but are 
beyond the scope of this article.

Three typical examples of residual impression at peak load of 5 mN, 10 mN, and 15 mN are shown in Fig. 10. 
It can be seen from Fig. 10(a) that although the residual impression seems to be very irregular, there is no obvi-
ous extrusion and crack around the indentation. Hence, the HPPT and dislocation burst are the possible cause 
of the initial pop-in event in the L-ε curve. Dislocation formation in silicon has so far been shown only a small 
effect on the deformation compared to other materials especially when a small indenter is used. The present MD 
simulations indicate that the dislocation burst occurs behind of occurrence of HPPT, and the dislocations slightly 
contribute to the plastic deformation. Defect propagation and HPPT are reported to be mutually exclusive, com-
peting deformation mechanism at low peak load24, however this fact may be due to the large radius of indenter 
used. Thus, it is rational that the HPPT is responsible for the observed initial pop-in event synthetically consider-
ing the experiments and MD simulation.

In Fig. 10(b), regular residual impression appears at peak load of 10 mN. The distinct extrusion around the 
indentation is observed, and there is no obvious cracking on the surface. Increasing peak load to 10 mN, three 
pop-in events are observed. Therefore, it is reasoned that the second and third pop-in events are linked to the 
sudden extrusion of ductile material. At peak load to 15 mN, three major cracks appear on the surface accom-
panying with the fourth pop-in event, as shown in Fig. 10(c). So, the surface crack is responsible for the fourth 
pop-in event in the L-ε curve. Another possible cause of the pop-in is the subsurface crack, which is commonly 
found in experiments and the present MD simulations. Until now, there is no report on the relationship between 
the crack in subsurface and the pop-in. Present MD simulations also indicate that the median crack at the bottom 
of the transformation region produces no detectable pop-in in L-ε curve. Further in situ nanoindentation and 
XTEM characteristic are needed to support or refute these possibilities, and validate the present MD simulations.

Discussion
Mechanism of plastic deformation.  The versatile characteristics of silicon lead to the plastic deforma-
tion mechanism under contact load remaining unclear. The present MD simulations reveal that single crystal 
silicon can deform not only in a ductile manner, driven by HPPT and dislocations, but also in a brittle manner, 
driven by direct cracking at the nanoscale. The key factor governing deformation mode is the indentation strain. 
Dislocation- and cracking-mediated deformation are detected at large indentation strain. As a matter of fact, very 
few dislocations are observed, and only one median crack is observed in the subsurface, which suggests that the 
contribution of dislocations and cracks to the plastic deformation is almost negligible. Therefore, phase trans-
formation is the dominant deformation mechanism and is the single mode of mechanical deformation when the 
indentation strain is less than 0.107 in simulation, suggesting a defect-free region at small ε during nanoindenta-
tion. This single-mode mechanical deformation at small load has been proven by a recent experiment2. A defect 
free region is necessary for engineering applications, for example, defect free CMP (the chemical mechanical 
polishing) and the ultraprecision grinding of silicon have been developed based on this principle34.

At large indentation strains, a large number of dislocations, major slips, cracking and extensive crystalline 
damage are generally found beneath the indenter in experiments1, 2, 16, 24. Although the occurrences of dislocations 
and cracks predicted by present MD simulations are less than that observed in experiments, the morphology 
of the deformation region in our simulations is consistent with experiments, i.e. a phase transformation region 

Figure 9.  Experimental L-ε curve during nanoindentation on Si(100). The open arrow marks the pop-in events 
and solid arrow marks the pop-out events.
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appears near the surface and forms an impression, and the dislocations and cracks develop beneath the trans-
formation region accompanied by an extrusion on the surface. These results are illustrated by the cross-sectional 
views of deformation region in MD simulations (Figs 4 and 6) and the XTEM images in experiments1, 2, 16, 24.

The present MD simulation results demonstrate that the piecewise plastic deformation of silicon is related to 
the indentation strain. When the indentation strain ranges from 0.067 to 0.115, the pristine diamond-structured 
silicon continuously transforms into crystalline Si-II and bct5 phases, which results in the rapid expansion of the 
Si-II and bct5 phase volume. Once the indentation strain increases to over 0.115, the crystalline-to-amorphous 
transformation and the extrusion of α-Si continuously proceed. In this case, the flow and extrusion of α-Si are 
linked to the plastic deformation. The dislocations nucleate (at ε = 0.107) after the occurrence of the phase trans-
formation (at ε = 0.067) and shortly before the appearance of α-Si (ε = 0.115). A large shear stress is generally 
known to drive the nucleation of dislocations and amorphization45, 53. Therefore, the dislocations and amorphous 
phase appear almost simultaneously.

The deformation behavior can be closely related to the stress state. At small ε, the large hydrostatic pressure 
and associated small shear stress drives the Si-I to Si-II and Si-I to bct5 phase transformations. As the penetration 
proceeds, the continuously increasing shear stress and hydrostatic pressure facilitate the nucleation of dislocations 
and amorphization, and following extrusion of α-Si and crack.

Pop-ins.  The occurrence of pop-in events during loading in the nanoindentation of silicon is a very interest-
ing and controversial topic. The mechanism behind the pop-ins is far less clear due to the lack of accurate in situ 
structures and defect detection during nanoindentation. It is known from previous studies that three events are 
responsible for pop-ins. (i) The Si-I to Si-II transformation is linked to the occurrence of pop-ins. Convincing 

Figure 10.  The morphology of residual impression at peak load of (a) 3 mN, (b) 10 mN, and (c) 15 mN.
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evidence comes from the pop-in observed in DAC experiments via in situ electrical characterization. (ii) Pop-in 
can be caused by sudden extrusion, rather than the formation of the Si-II phase, which is based on the observa-
tion that the phase transformation is detected prior to the occurrence of the pop-in event1, 15, 58, 59. (iii) Dislocation 
burst or cracking induce the pop-in event9, 10, 24.

In the present paper, the occurrence of multiple pop-in events in L-ε curve was reported, and three mech-
anisms were identified to be responsible for the observed pop-in events based on the combined study using 
MD simulation and experiment. In the first mechanism, the Si-I to Si-II and Si-I to bct5 phase transformations 
induce the initial pop-in, which define the incipient plasticity. This result supports the above-mentioned claim 
(i). The formation and extrusion of α-Si outside the indentation cavity are responsible for the pop-ins at high 
load (Pop-in B in MD simulation, and second and third pop-in in experiments), as the second mechanism. This 
is similar to the abovementioned claim (ii). The differences result from the different extrusion materials. Present 
MD simulation indicate that the extrusion of α-Si, rather than Si-II, occurs outside the indentation cavity. The 
extrusion of Si-II is based on the assumption that the Si-II phase is the single high-pressure phase in the trans-
formation region, in which convincing evidence is lacked. In fact, the observed bct5 phase and α-Si have higher 
probability for extrusion because these two phases distribute directly alongside the indenter. Present MD simu-
lations show that dislocation burst and median crack at the bottom of the transformation region are not linked to 
pop-in events because few dislocations and only one median crack is found beneath the transformation region. 
As the nanoindentation strain continues to increase, the major cracks on the surface induce the pop-in at extreme 
high load (fourth pop-in in present experiment), as the third pop-in mechanism. This mechanism is found in 
present experimental nanoindentation. Although first two mechanisms and the median crack are found in the 
present MD simulation, the third pop-in mechanism, surface cracking, still cannot be predicted. The improved 
MD simulations and more experiments are need to further our understanding of this mechanism.

At experimental conditions, not all the pop-ins can be detected, because of the influence of the indenter geom-
etry and size, the loading rate, the peak load, and the limited instrumental sensitivity, which may result in differ-
ent interpretations for pop-ins. For example, the Pop-in B predicted by the present MD simulations is difficult to 
detect during nanoindentation using a spherical indenter with large radius, because of the so large critical inden-
tation strain. In contrast, the critical strain can be easily achieved by a sharp indenter, such as Vickers, Berkovich 
and cube corner indenters. In fact, the kink pop-in and direct amorphization with Berkovich indenter have been 
reported, which indirectly verifies the present results. The recent nanoindentation experiments using the small 
indenter and ultra-low loads confirm the HPPT is responsible for the first pop-in ref. 56, which is consistent with 
the present MD simulations. In our experimental nanoindentation, the small indenter, slow loading rate and large 
peak load promote the occurrence of multiple pop-in events especially the pop-in events at low load.

Conclusion
In the present paper, by combined study using MD simulation and experiment, the occurrence of multiple pop-in 
events in L-ε curve was found during nanoindentation of single crystal silicon with a spherical indenter. Three 
distinct mechanisms are identified to be responsible for the pop-in events. In the first mechanism, the Si-I to Si-II 
and Si-I to bct5 transformations induce the first pop-in, which defines the incipient plasticity. The formation and 
extrusion of α-Si outside the indentation cavity are responsible for the subsequent pop-in event at high load, as 
the second mechanism. The major cracks on the surface induces the pop-in event at extreme high load, as the 
third pop-in mechanism. Although dislocation burst and median crack are also observed at large indentation 
strain, these events produce no detectable pop-in event in L-ε curve according to the MD simulations.

We also show that single crystal silicon can deform not only in a ductile manner, driven by HPPT and dislo-
cations, but also in a brittle manner, driven by direct cracking. The key factor governing the deformation mode is 
the indentation strain. Even so, very few dislocations are observed, and only one median crack is observed at the 
bottom of the transformation region, suggesting that the contributions of dislocations and cracks to the plastic 
deformation are almost negligible. We emphasize that phase transformation is the dominant deformation mode 
and is the single mode of mechanical deformation with small indentation strain during nanoindentation, sug-
gesting the presence of a defect-free region. This work advances our understanding of the nature of single crystal 
silicon with respect to the elastic-plastic transition, pop-ins, phase transformations and amorphization, which are 
of great significance for silicon science and technologies.
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