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Universal scaling of the self-field 
critical current in superconductors: 
from sub-nanometre to millimetre 
size
E. F. Talantsev1, W. P. Crump1 & J. L. Tallon1,2

Universal scaling behaviour in superconductors has significantly elucidated fluctuation and phase 
transition phenomena in these materials. However, universal behaviour for the most practical property, 
the critical current, was not contemplated because prevailing models invoke nucleation and migration 
of flux vortices. Such migration depends critically on pinning, and the detailed microstructure naturally 
differs from one material to another, even within a single material. Through microstructural engineering 
there have been ongoing improvements in the field-dependent critical current, thus illustrating its non-
universal behaviour. But here we demonstrate the universal size scaling of the self-field critical current 
for any superconductor, of any symmetry, geometry or band multiplicity. Key to our analysis is the 
huge range of sample dimensions, from single-atomic-layer to mm-scale. These have widely variable 
microstructure with transition temperatures ranging from 1.2 K to the current record, 203 K. In all cases 
the critical current is governed by a fundamental surface current density limit given by the relevant 
critical field divided by the penetration depth.

The key practical property of a superconductor is its maximum dissipation-free current density, the so-called 
critical current density, Jc

1, 2. This quantity varies widely from one superconductor to another and is generally pre-
sumed to be governed by the pinning of flux vortices3. Over the decades a huge effort has gone into successfully 
increasing Jc through enhanced pinning1, 3, 4. Pinning, in turn, depends on the detailed microstructure which can 
vary widely even for a single superconductor. Thus Jc cannot in general be a fundamental property but, rather, 
is regarded as a materials engineering property. But recently we began to question this conventional view for 
the special case of zero external field5 where the only field present is the “self-field” arising from the transport 
current. We showed6 for a large range of single- or multi-band superconductors, independent of type, symmetry, 
size or geometry, that, in the absence of weak links and in zero external field, the transport critical current den-
sity is determined only by the penetration depth. As noted, this is referred to as the “self-field Jc” or Jc(sf). This 
observation therefore provides a simple route to measure the absolute value of the penetration depth and other 
thermodynamic properties such as the superconducting energy gap and the relative jump in electronic specific 
heat at the transition temperature, Tc.

Here we explore the implications of this experimental observation. Using a simple but compelling scaling 
plot we compare Jc(sf) data for nanoscale films and wires, including single-atomic-layer superconductors, with 
data for macroscopic samples to show that in all cases, spanning up to eight orders of magnitude in effective size, 
the current density across the surface, when dissipation sets in, is always Js = Bc/(μ0λ) for type I superconductors 
and Js = Bc1/(μ0λ) for type II superconductors. Here λ is the London penetration depth, Bc is the thermodynamic 
critical field:
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while, for type II Bc1 is the lower critical field

1Robinson Research Institute, Victoria University of Wellington, P.O. Box 33436, Lower Hutt, 5046, New Zealand. 
2MacDiarmid Institute for Advanced Materials and Nanotechnology, P.O. Box 33436, Lower Hutt, 5046, New 
Zealand. Correspondence and requests for materials should be addressed to E.F.T. (email: Evgeny.Talantsev@vuw.
ac.nz)

Received: 1 November 2016

Accepted: 8 August 2017

Published: xx xx xxxx

OPEN

mailto:Evgeny.Talantsev@vuw.ac.nz
mailto:Evgeny.Talantsev@vuw.ac.nz


www.nature.com/scientificreports/

2Scientific REPORTs | 7: 10010  | DOI:10.1038/s41598-017-10226-z

φ
πλ

κ= + .B T
T

( )
4 ( )

(ln 0 5),
(2)c1

0
2

where φ0 is the flux quantum and κ = λ/ξ is the Ginzburg-Landau parameter with ξ being the coherence length.
What is compelling about our scaling plot is that calculated surface and edge fields vary extremely widely 

across all samples investigated (by more than four orders of magnitude) while the surface current density, Js, alone 
remains universal. This inevitably brings into possible question the conventional picture of dissipation onset due 
to vortex entry, as we will show.

Figure 1 summarises the two geometries considered - round wires and thin films. Current flows along the 
z-axis and field lines circulate the conductor in the x-y plane. For films, the surface current density, Js, and surface 
field, Bs, discussed below are those values on the broad flat surfaces (y = ±b), not the values at the edges (x = ±a). 
We show schematically the two extremes when the wire radius, a, and film thickness, b, are either large compared 
with λ (left side) or small compared with λ (right side), respectively. The displayed formulae summarise our 
conclusions below regarding (i) the global critical current density, Jc, averaged over the full cross-section, (ii) the 
surface current density, Js, in the critical state, which in all cases adopts the fixed value of Bc/(μ0λ) or Bc1/(μ0λ), 
depending on superconductor type; and (iii) the surface field, Bs, in the critical state, which only in the large limit 
is independent of size and equal to the critical field. (We use the term “critical state” to mean at the onset of dissi-
pation when the critical current has been reached. The critical current is customarily defined in terms of a 1 μV/
cm electric field criterion but because we are relying largely on historical literature data not every group has used 
that criterion though it has now become the norm.). In the small limit Bs falls off as tanh(b/λ). Asymptotically, for 
both films or round wires, Jc(sf) ∝ λ−3 in the small limit and Jc(sf) ∝ λ−2 in the large limit, as will be shown below.

Elsewhere6, and here, we analyse in total 74 different data sets of Jc(sf, T) versus T which we fit using extended 
BCS equations (see Eqs 4 and 5 below), obtaining free-fit parameter values for λ(0), Tc, Δ(0) and ΔC/C where 
Δ(0) is the ground-state superconducting energy gap, C is the electronic specific heat and ΔC is its jump at Tc. 
The purpose of this, in the context of the present work, is solely to enable projection of the Jc(sf, T) data to T = 0 
so that we are able to compare ground-state values of critical current density for many different samples across a 
wide range of size scales. The fact that the parameter values returned by the fits concur with independent meas-
urements gives confidence in the extrapolated values of Jc(sf, 0) and, further, the returned values of λ(0) form a 
critical test of our model. Samples include metals, alloys, cuprates, pnictides, oxides, nitrides, heavy fermions 
and borocarbides. In all cases the deduced values of λ(0) are in excellent agreement with independently reported 

Figure 1. The two wire geometries, round wires and thin films, investigated here for self-field Jc showing 
coordinate system and dimensions. The film cross-section extends from x = −a to x = +a in width, and 
from y = −b to y = +b in thickness. Depicted are the two extremes when the wire radius, a, and film half-
thickness, b, are either large compared with λ (left side) or small compared with λ (right side). The displayed 
formulae summarise our conclusions regarding (i) the global critical current density, Jc, averaged over the full 
cross-section, (ii) the surface current density in the critical state, and (iii) the surface field in the critical state. 
Asymptotically, for both films or round wires, Jc(sf) ∝ λ−3 in the small limit and Jc(sf) ∝ λ−2 in the large limit.
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values. Most of these previously studied films or wires were of size comparable with λ but here we extend the size 
range considerably to both extremes: b ≪ λ and b ≫ λ. It is this crucial extension that clarifies to us the precise 
nature of the phenomenology and leads to the unexpected scaling behavior we report here.

Figure 2 shows reported Jc(sf, T) values and λ(T) values along with their fits deduced using Eqs 3, 4 and 5 
below for (a) a single-atomic-layer FeSe film, (b) an almost atomically-thin exfoliated TaS2 film, and, by way 
of comparison, (c) a relatively large 160 μm round wire of the Chevrel phase system PbMo6S8; all of which are 
s-wave superconductors and, finally, (d) one of our own cuprate (Y, Dy)Ba2Cu3O7 films5. The cuprate reveals the 
characteristic d-wave linear temperature dependence of λ(T) at low T which is the hallmark of a nodal super-
conducting gap. In contrast panels (a), (b) and (c) are more consistent with the overall T-dependence for s-wave 
superconductors though it would be preferable to have fuller data sets. Crucially, these examples extend our data 
range down to single-atomic-layer thicknesses.

The Jc data for these films is processed as described elsewhere6 and the method is justified rigorously later in 
this paper. For a type II superconductor when b ≪ λ then Jc(sf) = Bc1/(μ0λ), so
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Our only input is the experimental value of κ. For an s-wave superconductor the penetration depth can be 
expressed in terms of the T-dependence of Δ using7
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where kB is Boltzmann’s constant. An analytical expression for the superconducting gap Δ(T) that allows for 
strong coupling is given by Gross8:
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where ΔC/C is the relative jump in electronic specific heat at Tc. For s-wave symmetry η = 2/38. By combining 
these equations we fit the experimental Jc(sf, T) values using λ(0), Δ(0), ΔC/C and Tc as free fitting parameters. 
We use non-linear curve fitting in the MATLAB package. For d-wave symmetry the related equations are pre-
sented elsewhere6.

For single-atomic-layer FeSe (Fig. 2(a)) we use the Jc(sf, T) data set of Zhang et al.9 along with κ = 72.310. For 
TaS2 (Fig. 2(b)) we use the Jc(sf, T) data of Navarro-Moratalla11 with κ = 11 ± 2. TaS2, like TaSe2, is a multi-band 
superconductor and this is evidenced by the additional step in Jc(sf, T) below 0.7 K. For this we use the multi-band 
fitting analysis developed elsewhere6. For PbMo6S8 (Fig. 2(c)) we use the Jc(sf, T) data of Decroux et al.12 with 
κ = 12513. For this sample with a ≫ λ Eq. 3 has an additional factor (2λ/a)tanh(a/2λ) as applicable to round wires 
(see below). The Jc(sf, T) data for YBCO is our own5 and we use κ = 957. The green data points on the y-axis are 
independently measured values of λ(0) as follows. For FeSe, from Bc1 = 7.5 mT10, we infer λ(0) = 324 nm; for TaS2 
reported values vary quite widely - by averaging these we obtain λ(0) = 384 ± 159 nm and κ = 11 ± 211–17; for 
PbMo6S8 λ(0) = 275 nm13 and κ = 12513; while for YBCO we use λ(0) = 125 nm18, as previously5, 6.

The fit curves are shown in Fig. 2 for Jc (blue curve, right-hand axis) and λ (red curve, left-hand axis). They are 
seen to be excellent (though more complete data sets would be preferable) and as noted the inferred values of λ(0) 
are in very good agreement with independently-measured bulk values (green data points). In particular for FeSe 
we find Δ(0) = 3.0 ± 0.2 meV and λ(0) = 336 ± 2 nm c.f. 324 nm measured. For exfoliated TaS2 with 2b = 4.2 nm 
we find Δ1 = 0.34 ± 0.05 meV and Δ2 = 0.14 ± 0.07 meV, a two-band gap ratio very similar to that found in 
TaSe2

19. The inferred partial band contributions to Jc and λ are shown by the black curves. The deduced composite 
value λ(0) = 394 nm compares well with the measured 384 ± 159 nm. For PbMo6S8 we find Δ(0) = 2.2 ± 0.2 meV 
and λ(0) = 284 ± 5 nm c.f. 2.4 meV20 and 275 nm13, measured independently. And for YBCO, as discussed else-
where6, we find λ(0) = 123 nm c.f. 125 nm measured independently18.

The consistency of these fits and the realistic fitting parameters nicely endorse our analysis. It is however 
important to note that in the scaling analysis to follow we only use these fits to determine the ground-state values 
(T → 0) of Jc(sf) and λ. As such the scaling analysis is not at all critically dependent on the detail of these fits.

Having established a reliable method to extrapolate to ground-state values we repeated this analysis for 74 dif-
ferent data sets for widely different superconductors and we turn now to our scaling analysis of this ground-state 
data. Figure S2 in the Supplementary Information (SI) shows values of Jc(sf, T = 0) plotted versus sample 
half-thickness, b, or radius, a for many different superconductors, as annotated. There is considerable scatter in 
Jc(sf) over several orders of magnitude, though for large b a roughly 1/b falloff in Jc(sf, 0, b) is already evident. We 
wish to scale the dimension of the conductor and the natural length scale to do this is the London penetration 
depth, λ. Figure S3 shows the resultant Jc(sf, 0, b) plotted versus b/λ. It is probably fair to say that the scatter now 
seems even greater, with e.g. doped BaFe2 As2 being a significant outlier. At the extreme left is our single-unit-cell 
FeSe film with b = 0.275 nm while the adjacent TaS2 sample is the exfoliated film of thickness 2.1 nm which were 
discussed in detail in Fig. 2.

The next step is to scale Jc(sf, 0). The units of current density are the same as those of magnetic field strength 
divided by a distance, so the natural units of current density for a type I superconductor are Bc/(μ0λ), and Bc1/
(μ0λ) for a type II superconductor. Of course this choice is guided by the outcome but it is the obvious choice in 
view of our previous work5. Thus the normalised critical current density, Jc

n, is
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Figure 2. (a) Experimental self-field Jc(T) data for single-atomic-layer FeSe (right axis, blue) together with 
values of λ (left axis, red) derived as described in the text. The solid curves are the BCS-like fits using Eqs 3, 4 
and 5. The single green data point at T = 0 is the independently reported ground-state value of λ(0) = 324 nm10. 
(b) Presents the same data for ultra-thin exfoliated TaS2 with 2b = 4.2 nm; (c) shows the same for a 
comparatively large round wire of PbMo6S8 with a = 80 μm; and (d) shows the same for (Y, Dy)Ba2Cu3O7 from 
our own work.
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for type II.
We stress here that to calculate Bc/(μ0λ) and Bc1/(μ0λ) we do not use the values of λ that we deduce from our 

fit procedures. That would be petitio principii - circular reasoning. We use independently-measured values of 
λ(0) and κ (as listed in Table 1) to calculate Bc and Bc1 using Eqs 1 and 2. Note also that wherever possible we do 
not use magnetically-measured values of Bc1 as these are fraught with experimental uncertainty as we discussed 
previously5.

Figure 3 captures our key result. We plot (black symbols) the normalised ground-state conductor critical cur-
rent density, Jc

n, versus the normalised conductor dimension, b/λ, for the same comprehensive set of supercon-
ductors as were discussed in Figs S2 and S3 of the SI. Astonishingly, the broad scatter of Figs S2 and S3 is now 
almost completely eliminated and in particular the above-noted outlier BaFe2 As2 is entirely consistent now with 
all other superconductors. The solid curve is the function (λ/b)tanh (b/λ) which we previously introduced on 
purely intuitive grounds5 but which we rigorously justify later in this paper.

Data for YBa2Cu3Oy (YBCO) is shown by the gold symbols. YBCO is anisotropic and this anisotropy needs to 
be accommodated in the scaling plot for samples with b > λ, indeed the scaling plot enables the anisotropy to be 
accurately determined but for the time being we set this to one side. Anisotropy is discussed in more detail later. 
For all samples numerical values and data sources are listed in Table 1.

Two regions in our scaling plot are evident: For b < λ the data points remain essentially constant across the 
entire small-b range with =J 1c

n ; while, for b > λ the data falls off as λ/b and, as noted, this fall-off was already 
evident in the raw data (see SI, Figs S2 and S3). We may draw the following key conclusions:

 i. This λ/b fall-off informs us immediately that the transport current at Jc is not distributed across the full 
cross-section but is confined to the surface in London-Meissner currents with “dead-space” between. This 
observation contrasts sharply with the flux-entry model of, for example, Brandt and Indenbom22 where 
the current density at Jc is distributed over the entire cross-section due to the ingress of flux vortices. This 
λ/b fall-off is clear evidence against this apparently well-established model. Indeed, the fact that type II 
superconductors follow the same generic behaviour as type I superconductors in this scaling plot is rather 
suggestive that vortices (which must be absent in the case of type I) might possibly not play a role in type II 
superconductors for the onset of self-field dissipation. On the other hand it is entirely consistent with Lon-
don-Meissner transport currents which are certainly present in the case of type I superconductors. Indeed, 
for type I it is the surface confinement of these London-Meissner currents that is solely responsible for the 
λ/b falloff when b ≫ λ.

 ii. For b < λ there is also crucial information to be found in the fact that Jc
n(sf) remains constant and equal to 

unity. The most direct inference, and our firm prediction, is that the current distribution over the entire 
width, 2a, must be uniform at the onset of dissipation. The reason for this is that our samples range widely 
in aspect ratio, a/b, from 1 to 3 × 106. Further, the effective aspect ratio given by the ratio of the Pearl 
length23, λP = λ2/b to the half-width, a, ranges from 3.5 × 10−3 to 1.3 × 107 with the ratio for one third of 
our data sets falling less than unity. For these a uniform distribution is expected. But for the remainder, the 
prevailing if not universal view is that the current must be non-uniformly distributed with the local 
x-dependent current density, j(x), averaged over the film thickness, given by:

π
=

−
j x I

b a x
( )

2
,

(8)2 2

as proposed by Rhoderick and Wilson24 and frequently reiterated since22, 25. However, our observed scaling behav-
iour, over such a huge range of effective aspect ratios, precludes such non-uniformity. Jc

n is independent of a/b or 
a/λP. Moreover, Fig. 3 also includes round wires (to be discussed in more detail later) where, in self-field, the 
surface azimuthal current density is certainly uniform around the circumference. This huge range of actual and 
effective aspect ratios all yielding Jc

n(sf) = 1 when b < λ or Jc
n(sf) = λ/b when b > λ would appear to have no other 

explanation except that the current density in the films is uniform across the width. We deduce that under 
self-field the conductor is in a global critical state with the local surface current density saturating everywhere at 
a critical value, to be identified below as having a magnitude given by the critical field divided by λ, irrespective 
of the magnitude of b. This critical state begins at the edges and with increasing conductor current the critical 
region simply extends deeper and deeper into the conductor until, at dissipation, it extends over the full conduc-
tor width.

In summary, over the entire range of b, and despite the huge variation in Jc, sample size and material type, all 
Jc

n data points lie on a single scaling curve given by (λ/b)tanh(b/λ) for films or (2λ/a)tanh (a/2λ) for round wires. 
The λ/b fall-off when b ≫ λ confirms that the transport current is simply the London-Meissner current and the 
constancy of the amplitude of these scaling functions shows that all these conductors reach a critical state at Jc(sf) 
with a fundamental surface current density limit given by the critical field divided by λ; this current density is 
uniform across the conductor width.

This last conclusion, namely the inference of uniform surface current density at critical current, is so central to 
our scaling hypothesis that we proceeded to measure the field distribution across the width of commercial RBCO 
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coated-conductor tapes under self-field transport conditions. (RBCO refers to RBa2Cu3O7 where is R in general a 
mixture of rare earth elements and/or Y). Figure 4 shows our preliminary measurements of the local perpendic-
ular magnetic field, B⊥(x), over the surface of (a) a 10 mm wide Fujikura tape and (b) a 12 mm wide Superpower 
tape. We used a cryogenic seven Hall sensor array (Arepoc THV-MOD) with sensors positioned 1.5 mm apart 
and approximately 0.5 mm above the RBCO film. The data is plotted as B⊥/I where I is the total transport current 

Material 2a (nm) 2b (nm) κ (expt)
λ(0)(expt) 
(nm)

Jc(0)(MA/
cm2)

λ(0)(derived) 
(nm) Js

n Bs
n (b/λ)

FeSe (single-atom-layer) 1.5 mm 0.55 7210 32410 1.659 336 0.897 0.000762 0.00085

TaS2 (exfoliated) 450 4.2

11 ± 2 338 ± 143

0.6211 394 0.631 ± 0.45 0.00391 ± 0.0004 0.0062 ± 0.002
13.6, 12.116 41017

9.815 302, 26016

9.514 61314

PbMo6S8(round-wire) 160 μm — 12513 27513 0.021612 284 0.936 0.936 291

NbN (film)

8.9 μm 8

407

19432 7.933 193.5 1.0076 0.0208 0.0206

300 8
2007

14.333 191.5 1.035 0.0213 0.0206

6.0 μm 22.5 7.4734 198.6 0.9348 0.0541 0.058

Al (Thin film) (nanowires)

610 89

0.037 50 ± 1035

4.4421 49.3 1.0368 0.738 0.89

680 98 3.3821 53.8 0.831 0.625 0.98

500 34 3.8221 55.8 0.859 0.281 0.34

300 20 3.6821 59.3 0.628 0.124 0.20

10 5 9.2336 49.3 1.040 0.0520 0.05

8.4 5 7.9436 51.9 0.8944 0.0447 0.05

Ba(Fe, Co)2As2
500 μm 500 μm

9037 284 ± 1537–39
0.007840 259 1.201 1.201 880

6.7 μm 220 2.1941 316 0.738 0.273 0.387

Nb
82 μm 1 μm

142 49 ± 643–45
5.1246 50.9 0.928 0.928 10.2

49 μm 1 μm 5.9246 51.2 1.064 1.064 10.2

YBa2Cu3Oy

500 μm 850

957

12518

31.85 122.6 1.040 1.037 3.4

500 μm 1.4 μm 2647, 48 124.3 1.011 1.011 5.6

50 μm 50 3049 131 0.897 0.177 0.2

5.0 μm 150 28.950 134 0.902 0.484 0.6

(STI tape) 500 μm 4.5 μm 137 (22 K) 10.648 138 0.984 0.984 16.4

(single xtal) 2 mm 30 μm 12518 2.0430 123 1.032 1.032 120

(single xtal) 2 mm 30 μm 12518 1.5030 143 0.761 0.761 120

Nb3Sn 101 μm —

227 657

0.5651 57.7 1.27 1.27 777

(cyl) 94 μm — 0.4651 66 0.972 0.972 723

(film) 150 μm 36 μm 0.76151 65.2 0.992 0.992 277

(commercial)
1.3 cm 8.5 μm 2.5952 65.4 0.9904 0.9904 65.4

1.3 cm 5.76 μm 4.5852 59.7 1.186 1.186 44.3

MgB2

320 10

2653 9054, 55

12156 84.9 1.171 0.065 0.0555

5 μm 10 78.257 86.7 1.119 0.0621 0.0555

350 100 84.158 94.2 0.889 0.448 0.556

1.2 mm 200 μm 0.08559 82.2 1.376 1.376 1216

In 360 100

0.117 407

41.160 34.1 1.163 0.987 1.25

(round-wire)

520 μm — 0.010561 39.1 1.072 1.072 3250

270 μm — 0.021161 38.5 1.119 1.119 1688

170 μm — 0.03661 37.6 1.202 1.202 1063

170 μm — 0.034761 38.1 1.158 1.158 1063

MoN (round) 160 — 5462 440 ± 4064 0.592363 463 0.8676 0.156 0.1818

MoGe

10 μm 200

94 ± 1465, 66 40067

1.7565 332–339 1.731 0.424 0.25

20 μm 200 1.3165 366–373 1.296 0.317 0.25

25 μm 200 1.1365 384–392 1.118 0.274 0.25

30 μm 200 1.0465 395–403 1.029 0.252 0.25

40 μm 200 1.0265 397–405 1.009 0.247 0.25

H2S (155 GPa) 80 μm 650 (est) 8868 16368 10.368 189 0.682 0.657 1.99

Table 1. Materials, input parameters, source references and derived values of λ(0), the normalized surface 
current density, Js

n, and normalized surface field, Bs
n, at self-field critical current for all data points in Fig. 5. The 

column for (b/λ) refers to films while for cylindrical samples refers to (a/λ).
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which is increased in steps up to the respective self-field transport critical current according to an electric field 
criterion of 1 μV/cm. The red arrows indicate increasing current. Plotted also is the calculated field distribu-
tion for a uniform current distribution (solid curve) and for the Rhoderick and Wilson non-uniform current 
distribution (dot-dash curve)24. It is evident from the data that at low current (20–60 A) the field distribution 
is indeed consistent with the Rhoderick and Wilson non-uniform current distribution. But, crucially, at higher 
currents the field distribution deviates from this increasingly and has crossed over, at critical current, to a field 
distribution fully consistent with the uniform current distribution that we deduced from our scaling analysis. This 
correspondence is supported both in the shape and in the absolute magnitudes of the local field - with no fitting 
parameters. In panel (a) the disparity at the extreme left between data and models reflects a small asymmetry in 
alignment or in conductor performance. In panel (b) all measured fields are slightly higher than the calculated 
curves but an almost perfect match is achieved if the effective RBCO film width within the tape is 11.7 mm rather 
than the nominal 12 mm. Many subsequent measurements reinforce this picture in great detail. It is significant 
also to note that in the original experimental study used by Rhoderick and Wilson24 for a 20 nm thick Pb strip the 
current used was about 1/500th of the critical current. Consistent with our data shown in Fig. 4 it is not surprising 
that at such a low current the non-uniform current distribution was observed. We expect that, at 500 times this 
current density, Pb films or strips will likewise exhibit a uniform current distribution across the conductor width.

We turn now to explicitly quantify our scaling hypothesis using a London analysis. Consider 
first our rectangular film illustrated in Fig. 1 of width, 2a, extending in the x-direction and thickness 2b extending 
in the y-direction with current flowing in the z-direction. As noted, in the critical state at Jc(sf) the local current 
density j(x) is uniform across the width (except very close to the edges) and the London solution to the self-field 
current distribution is then x-independent with J(y) = Jscosh (y/λ)/cosh (b/λ) where Js is the surface current den-
sity. Integrating from −b to +b to obtain the total current then dividing by 2 b to get the global current density we 
can express the critical surface current density, Js, in terms of the overall Jc as follows:

λ
λ

= ×J J b
b

( / )
tanh( / )

,
(9)s c

From London’s second equation the surface field (at y = ±b) at this critical current is

µ= .B bJ (10)s c0

As before, we normalise Js using the natural units of current density of Bc/(μ0λ) for type I or Bc1/(μ0λ) for type 
II superconductors. Similarly, we normalise Bs in Eq. 10 by Bc or Bc1, respectively. Thus e.g. for a type II supercon-
ductor the normalised surface current density at the onset of dissipation is

Figure 3. Normalised values of the ground-state critical current density, Jc
n (black) for various type I and type II 

superconductors in films or round wires plotted versus normalised conductor dimension b/λ for films and a/2λ 
for round wires. Values are calculated using Eqs 6 and 7 for type I and type II, respectively. Data for YBa2Cu3Oy 
(YBCO) is shown by the gold symbols and because it is anisotropic this data is plotted versus b/λc where λc is 
the c-axis penetration depth taken here to have the value λc(0) = 1000 nm. Anisotropy is discussed in more 
detail later. H3S is H2S compressed to 155 GPa having the current record Tc = 203 K68. Jc data for H3S is processed 
in ref. 69. The error bars for TaS2 are due to excessively disparate reported measurements of λ(0) for this system, 
as described in the text. For this the errors in Js

n are correlated with those in (b/λ) as shown by the sign of the 
partial error bars.
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λ
λ

πµ λ

φ κ
= ×

+ .
J J b

b
( / )

tanh( / )
4

(ln 0 5)
,

(11)s
n

c
0

3

0

while the normalised surface field at dissipation onset is:

µ
πλ

φ κ
= ×

+ .
.B bJ 4

(ln 0 5) (12)s
n

c0

2

0

The equivalent expressions for type I will be obvious. Our approach then is to fit the experimental Jc(sf, T) data 
over a broad temperature range using the modified BCS equations as above. For example, the fit for single-layer 
FeSe is shown by the blue curve in Fig. 2(a). By extrapolating to T = 0 we obtain the ground-state value Jc(sf, 
T = 0) = 1.67 MA/cm2. We use the geometrical factors reported with the data (b = 0.275 nm) then use inde-
pendently reported λ(0) and κ values to calculate the normalisation factors. The results for single-layer FeSe are 
Js

n = 0.895 and = . × −B 7 5 10s
n 4. The former shows that the surface current density is close to the mooted critical 

value Bc1/(μ0λ), and indeed the reported value of λ(0) = 324 nm need only be 3.6% larger to obtain =J 1s
n , exactly. 

This is because of the cube dependence on λ(0) and is probably less than the error bars on the value of Bc1 used to 
obtain λ. In contrast = . × −B 7 5 10s

n 4 shows that the surface field is three orders of magnitude less than the bulk 

Figure 4. The perpendicular field distribution, B⊥(x), across commercial RBCO tapes measured using a 7 Hall-
sensor array for (a) a 10 mm wide Fujikura conductor with current increasing from 20 A to 460 A in steps of 
20 A; and (b) a 12 mm wide Superpower conductor with current increasing from 25 A to 425 A in steps of 25 A. 
In both cases increasing current is indicated by the red arrows. The sensors are arranged in a line 1.5 mm apart. 
The black dot-dash curve is the calculated field distribution (0.5 mm above the tape surface at the Hall sensors) 
for the Rhoderick and Wilson non-uniform current distribution24 while the solid black curve is the calculated 
field distribution for a uniform current distribution. As current increases there is a clear crossover from the 
non-uniform to the uniform current distribution when critical current is attained. The data is plotted as B⊥/I so 
as to more clearly expose the detailed evolution at lower currents.
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lower critical field and, as we show in the SI, at elevated temperatures closer to Tc the surface field is four orders of 
magnitude less than Bc1.

Before turning to other materials we first extend the above equations to cylindrical symmetry which will 
also be used in our analysis of some literature examples. The case of cylindrical symmetry was first discussed by 
London and London6, 26. The local current-density distribution at radial position r in a cylindrical wire of radius 
a carrying a total current I along its axis in the z-direction is J(r) = [I/(2πa)] × [I0(r/λ)/I1(a/λ)], where I0(x) and 
I1(x) are the zeroth- and first-order modified Bessel functions of the first kind. This leads to the following normal-
ised expressions equivalent to Eqs 11 and 12:

λ

πµ

φ κ
= ×

λ
λ

×
λ

+ .
J J a I a

I a2
( / )
( / )

4
(ln 0 5) (13)s

n
c

0

1

0
3

0

λ
λ

πµ λ

φ κ
≈ × ×

+ .
J a

a
( /2 )

tanh( /2 )
4

(ln 0 5)
,

(14)c
0

3

0

and

µ
πλ

φ κ
= ×

+ .
B aJ1

2
4

(ln 0 5)
,

(15)s
n

c0

2

0

together with the equivalent expressions for type I superconductors. Note that in these equations there is no 
requirement for local current density uniformity around the circumference as was the case for films. Previously 
we found the approximation to the ratio of Bessel functions in Eq. 14 was excellent across the entire range of a 
values and is exact at both the large and small asymptotes. In our calculations we prefer to use the exact Bessel 
function expression but the correspondence between Eqs 11 and 14 is notable and shows that Jc(sf) versus a/
(2λ) for round wires has the same scaling as Jc(sf) versus b/λ for rectangular films. This also suggests a means 
of addressing the case where the film width, 2a, is finite. In particular we replace the second factor in Eq. 11 by:

λ λ λ λ λ λ→ + .b b a a b b( / )tanh( / ) ( / )tanh( / ) ( / )tanh( / ) (16)

This is our only approximation; it is used only for finite-width films and, because of the observed uniform 
current distribution at Jc, we believe it to be a good approximation to within a factor close to unity. When a ≫ λ 
it reduces to our exact expressions and the approximation is certainly good enough when we consider that both 
the current and the dimension range over some seven orders of magnitude. When a = b and b ≪ λ it reduces to 
the cylindrical case.

We see that Eqs  11 and 14 immediately capture the scaling behaviour shown in Fig.  3, namely 
λ λ= ×J J b b( / )tanh( / )c

n
s
n  for films and λ λ= ×J J b b(2 / )tanh( /2 )c

n
s
n  for round wires with in either case =J 1s

n . 
This shows explicitly that at the onset of self-field dissipation the surface current density is always equal to the 

Figure 5. Normalized values of the ground-state critical current density, Jc
n (black), surface current density, Js

n 
(red), and surface field, Bs

n (blue), for type I and type II superconductors in films or round wires plotted versus 
normalized conductor dimension b/λ for films and a/2λ for round wires. Values are calculated using Eqs 11 and 
12, 13 and 15. For anisotropic superconductors γBs

n is plotted instead of Bs
n, where γ = λc/λab –see text. When 

b ≫ λ the blue Bs
n data points more or less exactly superpose the red Js

n data points which are made slightly 
larger to be seen. For b ≪ λ the black Jc

n data points sit exactly under the red Js
n data points. The figure shows 

that for all size scales the critical surface current density, Js, always equals the critical field divided by μ0λ. Bs
n for 

the three iron pnictides is shown in green to identify them across the entire range.
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critical field divided by λ. Figure 5 reproduces the Jc
n scaling plot (black symbols) and to it we now add the nor-

malised surface field and surface current density. This summmarises all our results. Details are as follows.
Given the ground-state Jc(sf, 0) data and using Eqs 12 or 15 we plot the normalized critical-state surface field, 

Bs
n (blue data points) as it varies with normalised conductor dimension. The solid blue curve is the scaling func-

tion λ=B btanh( / )s
n  which arises naturally from Eqs 11 and 12 if =J 1s

n . Finally, using Eqs 11 or 13 we plot the 
ground-state normalized surface current density, Js

n, (red data points) calculated from the Jc(sf, 0) data. These red 
data points are made slightly larger than the blue data points so that they can be seen behind them when b > λ. 
Across the entire size range the scaled parameter Js

n remains close to unity (red dashed line) showing that in every 
case, small or large, the surface current density at Jc(sf) is indeed given by the relevant critical field divided by μ0λ. 
Bs

n also shows a common scaling behavior. The three Bs
n or Jc

n data points for the ferro-pnictides, 
single-atomic-layer FeSe and Ba(Fe, Co)2As2, are shown in green firstly to identify them where there is a cluster of 
data points, but also to highlight the two extremes of behavior at the nanoscale and macroscale in a single class of 
superconductor, as well as an intermediate case.

Figure 5 reveals a common universal scaled behavior namely that, whatever the size, dissipation sets in when 
Js reaches Bc/μ0λ for type I and Bc1/μ0λ for type II superconductors, and this condition occurs uniformly across 
the entire conductor surface. This is fully understandable for type I because this corresponds to the London 
depairing current density, Jd. But for type II Jd is higher by a factor of 2κ/(lnκ + 0.5) (≈27 for YBCO) and the 
result is new and puzzling. Importantly, only for large dimensions with respect to λ does this threshold coincide 
with Bs reaching the relevant critical field. For small dimensions the surface field falls far short of the bulk critical 
field, indeed even below Earth’s magnetic field. The dissipation threshold is thus not field-limited but, according 
to Ampere’s law, field-gradient-limited corresponding to (∂Bs/∂y)y=±b = Js = Bc/(μ0λ) or (∂Bs/∂y)y=±b = Js = Bc1/
(μ0λ).

The case of anisotropic superconductors is discussed in detail in the SI. The scaling curve for the normalised 
Jc is given in this case by:

λ λ= .J b b( / )tanh( / ) (17)c
n

c c

where λc is the c-axis penetration depth and the crystallographic c-axis of the film is parallel to the y-axis of the 
coordinate system shown in Fig. 1. As a consequence identical scaling behavior should be found as was found for 
the isotropic superconductors provided that (b/λc) is plotted on the x-axis. This was done for YBCO in Figs 3 and 
5 so as to bring all superconductors together in a single plot. Note that the effects of anisotropy vanish when 
b ≪ λc. Our fit procedure does allow for the anisotropy parameter γ = λc/λab to be extracted as a free-fitting 
parameter (where, for a layered superconductor, λab is the in-plane penetration depth, usually abbreviated to just 
λ). However, this scaling behavior immediately suggests an alternative approach to directly determine the mag-
nitude of γ, something that historically has been difficult to pin down. If we plot Jc

n versus (b/λab) (instead of (b/
λc)) using a log-log plot, then we obtain the scaling curve as for the isotropic superconductor but rigidly displaced 
to the right by the factor γ. We illustrate this in Fig. 6 for the case of YBCO. One simply needs good quality 
self-field Jc data for a wide range of film thicknesses (in which of course the c-axis is normal to the plane of the 
film). The data in the literature is rather limited in this regard but nonetheless sufficient to illustrate the method. 
From Fig. 6 we obtain γ = 7, very consistent with for example the value determined by torque magnetometry29. 
Note also that Bs

n (blue data points) is displaced upwards by the factor γ as shown in the figure. Hopefully this 
work will prompt the accumulation of a wider data range in order to determine the anisotropy with more accu-
racy, and potentially as a function of doping where we expect it will change rapidly.

As shown in the SI, for anisotropic superconductors the surface field only scales like the isotropic supercon-
ductors when plotting γ− Bs

n1  versus b/λc. This is what was done in Fig. 5 for YBCO. This then brings together films 
and round wires, for both isotropic and anisotropic superconductors into a single scaling plot for Jc

n and Bs
n.

What are the physical origins of this apparently universal scaled behavior in type II superconductors? 
Importantly we should be guided by the fact that this behavior is completely analogous to that exhibited by type 
I superconductors. It is as though the current density Bc1/μ0λ acts as some kind of depairing limit in type II just 
as Bc/μ0λ is the depairing limit in type I. For the case of thin films we may consider just three possibilities: (i) 
conventional vortex entry from the edges22, (ii) vortex entry from the flat surfaces as we proposed earlier5, or (iii) 
a non-vortex, and hence new, mechanism.

Vortex entry at the edges. The edge field, By, can be calculated using Eq. (4) of Brojeny and Clem25 who 
consider the case of a uniform current distribution over the film cross section. These are the conditions that cer-
tainly pertain when b ≪ λ. Brojeny and Clem express the field in terms of the current density. At J = Jc we may 
replace Jc by Js using Eq. 9 (recall that b ≪ λ) and then replace Js by Bc1/(μ0λ) to obtain the edge field:

π λ= ± =






+





.B x a B b a

b
( ) (1/ )tanh( / ) ln( 2 ) 1

(18)y c1

Even though the assumption of uniform current density restricts this expression nominally to b ≪ λ we believe 
it to be general, for all b, including where for b ≫ λ the current is confined just to the London screening layer at 
the surface. To see this we consider the approximation of replacing the wire of rectangular cross-section, 2a × 2b, 
by a planar assembly of round wires, each of radius b, placed side by side to a width of 2a and carrying the same 
total current. The field at the edge can be calculated exactly for all b. We find (see SI)
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π λ= ± =






+ .






B x a B b a
b

( ) (1/ )tanh( / ) ln( 2 ) 1 2704 ,
(19)y c1

which is almost identical to Eq. 18 which we take therefore to be valid for all b. In the SI we discuss the effect of 
anisotropy. The modification to Eq. 18 is quite straightforward and leads to:

γ π λ= ± =






+






B x a B b a
b

( ) (1/ )tanh( / ) ln( 2 ) 1
(20)y c c1

π λ λ→






+






B b a
b

b(1/ )( / ) ln( 2 ) 1
(21)c ab c1

γ π λ→






+






B a
b

b(1/ ) ln( 2 ) 1
(22)c c1

The first difficulty to note with the edge field is that, in the conventional picture of vortex entry from the edges, 
this dependence of the edge field on the ratio a/b would preclude our observed scaling behavior. In the examples 
of Fig. 3 the ratio a/b ranges over six orders of magnitude. Even though a/b sits within a logarithm the factor 
[ln(2a/b) + 1] still ranges from 1 to 16.6. Within this picture the edge field simply could not scale with (b/λ), yet 
Jc

n, γ− Bs
n1  and Js

n all do so, without exception.
Secondly, the edge field ranges from 0.0045 Bc1 to 12.1 Bc1 and shows no correlation whatsoever with Jc(sf). A 

key player here is the anisotropy factor γ in Eq. 20 which can lead to very large values of the edge field relative to 
Bc1 when b ≫ λc. When b ≪ λc the parameter λc cancels out and then the edge field can be extremely small because 
of the resulting (b/λab) factor.

This is our third point: it can be seen that for b ≪ λ the edge field is always much smaller than the bulk Bc1. 
Consider single-atom layer FeSe where we find By = 0.0045Bc1 at Jc(sf) or exfoliated TaS2 where By = 0.0133Bc1.

Fourthly, where the edge field does exceed Bc1 (when b > λ) we can then ask how deep the field penetrates 
before it falls to the value of Bc1. In the presence of strong pinning once By does reach Bc1, as shown by Brandt 
and Indenbom22, the field falls abruptly to zero and there is no current density in the interior of the conduc-
tor beyond this point (except for the London current at the surface). Again we can use Brojeny and Clem25 to 

Figure 6. Illustrating the method to measure the anisotropy parameter γ = λc/λab for YBa2Cu3O7 (YBCO) films 
and single crystals. Normalized values (black symbols) of the critical current density, Jc

n, are plotted versus 
normalized conductor dimension b/λab. The solid black curve is the scaling curve for isotropic superconductors 
and is identical to the black curve in Fig. 5. The black dashed curve is the solid curve displaced along the x-axis 
by the factor γ. By extrapolating the data on the sloping (1/b) arm back to =J 1c

n  the value of γ may be read off 
as the abscissa. Here we obtain γ = 7. Parenthesised data at small b is for a single 4.5 nm thick film of YBCO at 
different doping levels achieved by ionic-liquid gating27. Values of λ(0) are obtained from the doping-dependent 
superfluid density28. The two data points at the large b are for two 30 μm thick single crystals30 and the next 
highest b value is for a 4.5 μm thick STI tape measured in our laboratory. The remainder are films reported in 
Table 1. The blue data points are the scaled surface field, Bs

n and blue dashed curve is the scaling curve given in 
the SI by Eq. S7, γ γ λ= −B btanh( / )s

n
ab

1 . The red data points are the scaled surface current density, Js
n and the 

red dashed line is the scaling curve =J 1s
n . The red data points are made smaller so as to make the black data 

points under them visible.
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calculate the maximal extent of the flux entry at the edges. Rearranging their Eq. (13) (or indeed their Eq. (8) for 
a finite-thickness film) and generalising to the anisotropic case, the y-component of the field at any point on the 
axis from x = −a to x = +a becomes

γ λ
π

=






+
−






.B x B b x a

x a
( ) tanh( / )

2
ln ( )

(23)y
c c1 2

The amplitude γBc1tanh(b/λc) is just the value of the x-component of the normalized surface field discussed 
above and shown in Fig. 5. For b ≪ λ this field is tiny. But for b ≫ λ consider as an example the case of the thick 
MgB 2 film in Table 1 with 2b = 0.2 mm. Inserting these numbers and using λ(0) = 90 nm54, 55 we find that By falls 
to the value of Bc1 in just 0.043 × 2a from the edges and this is essentially negligible. The same applies for each of 
the few very thick films listed in Table 1.

Fifthly, and perhaps more important than any of the above, we obtain precisely the same scaling behavior 
(with a/2λ) for the round cross-section examples in Table 1 where there is no singularity at the edges that might 
drive early entry of vortices. Our observed scaling behaviour is entirely consistent with the London-Meissner 
model and inconsistent with conventional vortex models. In this regard we also recall the previously reported 
insensitivity of Jc(sf) to pinning enhancement5.

Vortex entry at the flat surfaces. In our previous work5 we postulated that vortices might enter the flat 
surfaces. That work was largely confined to cases where b ≤ λ and here of course the nucleation, ingress and anni-
hilation of vortices is energetically favoured by the logarithmically-diverging interaction between vortices enter-
ing opposing faces. Further, for isotropic superconductors with b λ the surface field is found to always just reach 
the magnitude of Bc1, whether for highly-aspected films or for round wires. But, for anisotropic superconductors, 
the surface field can substantially exceed the critical field. So we have precisely the same quantitative problem here 
as with vortex entry at the edges. For b < λ at Jc(sf) we find Bs = Bc1tan h(b/λab), even in the anisotropic case, so 
here the surface field falls far below the bulk critical field. Now it may be that the effective critical field, Bc1, for 
small samples varies as λ=~B B btanh( / )c c1 1  (or for round wires λ=~B B btanh( /2 )c c1 1 ) i.e. it is diminished in pro-
portion to its size. This was proposed by Brandt22 for the effective lower critical field of a very thin film in a longi-
tudinal external field. If this were the case then for all small samples we would have the surface field just reaching 
the effective critical field for both isotropic and anisotropic superconductors. We remain open to this possibility. 
But there are difficulties. Firstly, as noted, thick anisotropic samples at Jc can have a surface field which far exceeds 
the critical field. Secondly, at the other extreme for the single-atomic layer FeSe sample this would require 

µ≈ .~B 6 4 Tc1  . This is as low as one tenth earth’s magnetic field. This would mean that the sample on cooling 
should already be threaded with flux from the earth’s ambient field. Thirdly, when b/λ = 0.00085, as in this exam-
ple, any conventional description of a vortex fails completely, still less its nucleation at the surface and annihila-
tion with vortices of the opposite sense arriving from the opposing surface. Indeed because here b ≈ 0.06ξ(0) 
there cannot even be a conventional vortex core structure. x-oriented vortices in such a confined environment 
cannot exist. And yet the same Jc scaling behavior found in macroscopic samples is observed in these atomic-scale 
superconductors with Js = Bc1/λ. Fourthly, the range of superconductors investigated here must represent an 
extremely varied spectrum of pinning profiles. Any kind of vortex model would reflect this variable pinning in a 
distribution of Jc(sf) magnitudes. This does not appear to be observed. Lastly, it is perhaps understandable that 
when b < λ any vortices nucleated on opposite faces of the film will strongly attract and annihilate, with the 
logarithmically-diverging interaction term immediately overcoming any surface barriers. Thus it is arguable that 
dissipation could immediately set in when Bs reaches Bc1. But this will not be the case in macroscopic samples 
where surface barriers and pinning profiles will have to be overcome by Bs significantly exceeding Bc1. This is not 
observed. And again we note the apparent pinning independence of Jc(sf)5.

Non-vortex mechanisms. If indeed vortices are absent then a new physical mechanism for the onset of dis-
sipation is probably required to explain our analysis of type II superconductors under self-field conditions. Our 
results perhaps indicate this possibility. The fact that type I and II superconductors exhibit essentially the same 
scaling behavior certainly suggests a common non-vortex model, perhaps based on pair-breaking. What might 
this new mechanism be? Hirsch31 has postulated the existence of a Meissner spin current coexisting with the con-
ventional Meissner charge current which, in our case, is the transport current. These spin currents, in the absence 
of an external field, flow in opposite directions for each up, or down, spin component. In his picture dissipation 
would set in when the charge current density reaches Bc1/(μ0λ) just as we have deduced. This corresponds to one 
of the spin currents being reduced to zero. His analysis is for the case b ≫ λ and so it remains to be seen whether 
this result is also sustained when b < λ. This is the only alternative picture that we are aware of for the onset of dis-
sipation that leads to a universal self-field Jc such as we have inferred. Doubtless there may be others. Finally, we 
ask how our scaling analysis differs from previous ideas regarding universal onset of dissipation under self-field. 
Bean and Livingston70 introduced the concept of a barrier to vortex entry arising from interaction of a vortex 
near the surface with its image vortex. But the penetration field under such a barrier can substantially exceed Bc1. 
And for putative vortex entry at the flat surfaces the surface field, Hx, when b > λ is universally observed to just 
reach Hc1 at Jc with no apparent barrier at all. Moreover, for b ≪ λ the Bean-Livingston barrier falls to zero due to 
interaction with the second image vortex at the opposing surface and interaction with any opposite-sign vortices 
nucleated there. It is difficult to see how our universal Js value could be recovered from a surface-barrier-type 
model for such a vast range of sample dimensions and also for round wires.

Our results are perhaps more akin to the idea of a so-called ‘geometrical barrier’ introduced, for example, by 
Zeldov and co-workers71 in which the presumed non-uniform current distribution given by their Eq. (1) is 
responsible for a vortex potential barrier at the edges. The resulting penetration self-field at the edge is given by 
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Hp ≈ Hc1 × b a2 /  at which the local edge-current-density is Bc1/(μ0λ). This may seem to correspond to our result, 
however, we stress that we find this local critical current to occur not just at the edges but uniformly over the 
entire conductor width, independent of absolute aspect ratio or effective Pearl aspect ratio, and independent of 
pinning or surface and edge quality. Indeed, because of this current uniformity at the onset of dissipation there is 
no existing geometrical edge barrier of the form described by Zeldov et al.71.

Perhaps more significantly, Genenko and co-workers consider the self-field entry of flux vortex rings into 
cylindrical conductors and find this occurs at a universal surface current density of Js = B2 c/(μ0λ)72 or alterna-
tively vortex loop nucleation when Js = µ λ2 0 )73. The criterion generally applies for all a/λ. Though these values 
are much higher than the critical surface current density that we observe these authors state that for real conduc-
tors with surface imperfections on a size-scale δ where ξ < δ < λ then Bc in the above expressions should be 
replaced by (ξ/δ)Bc. And if δ λ then Bc should be replaced by Bc1. This then looks like our result and we do not 
discount the possibility of vortex loop nucleation as described by these authors however we have to note that this 
model allows for surface current densities anywhere in the range µ λ µ λ≤ ≤B J B/( 2 ) 2 /( )c s c1 0 0 , depending on 
surface quality. For a high κ system this admits a variation in Js of a factor of 50–60. This is simply not observed 
and moreover the lower limit is too low by a factor 1/ 2 . To sum up, we do not see any consistent precedent in the 
literature for our observations that might conclusively identify the physical mechanism behind our observed 
universal scaling.

In conclusion, by examining a large number of superconductors of both type I and type II over a huge range 
of sample dimension we show that in all cases the onset of dissipation at the critical current coincides with the 
surface current density reaching a value given by the critical field divided by λ: Bc/(μ0λ) for type I and Bc1/(μ0λ) 
for type II. This is equivalent to a surface-field-gradient threshold and not a surface-field threshold as in the Silsbee 
criterion. For small sample dimensions with b ≪ λ the surface field falls far short of the critical field - by more 
than three orders of magnitude in the case of single-atomic-layer superconductors. We argue that under these cir-
cumstances flux vortices are likely to not be present and therefore possibly play no role in the dissipation process. 
Further, we extract from this scaling analysis a simple method to determine the anisotropy factor in anisotropic 
superconductors. Our deduced current density criterion is obvious enough in the case of type I superconductors: 
the surface current density simply reaches the London depairing current density and as a consequence the normal 
state is nucleated at the surface and the transition for the remainder of the sample simply runs away as the critical 
interface displaces towards the interior. But for type II superconductors we have a surprising new result that mim-
ics the behavior for type I as though Bc1/(μ0λ) were some kind of effective pairbreaking current density, but only 
at the surface. This is closely reminiscent of Hirsch’s spin-current picture31. Whatever the case this observation 
renders a universal behavior for all superconductors that can at the very least be used to measure rather precisely 
the absolute magnitude of the penetration depth and superfluid density–even for multi-band and anisotropic 
superconductors.
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