
1SciENtific REPOrTS | 7: 9803  | DOI:10.1038/s41598-017-09962-z

www.nature.com/scientificreports

Robust seismicity forecasting based 
on Bayesian parameter estimation 
for epidemiological spatio-
temporal aftershock clustering 
models
Hossein Ebrahimian1 & Fatemeh Jalayer   2

In the immediate aftermath of a strong earthquake and in the presence of an ongoing aftershock 
sequence, scientific advisories in terms of seismicity forecasts play quite a crucial role in emergency 
decision-making and risk mitigation. Epidemic Type Aftershock Sequence (ETAS) models are frequently 
used for forecasting the spatio-temporal evolution of seismicity in the short-term. We propose robust 
forecasting of seismicity based on ETAS model, by exploiting the link between Bayesian inference 
and Markov Chain Monte Carlo Simulation. The methodology considers the uncertainty not only in the 
model parameters, conditioned on the available catalogue of events occurred before the forecasting 
interval, but also the uncertainty in the sequence of events that are going to happen during the 
forecasting interval. We demonstrate the methodology by retrospective early forecasting of seismicity 
associated with the 2016 Amatrice seismic sequence activities in central Italy. We provide robust spatio-
temporal short-term seismicity forecasts with various time intervals in the first few days elapsed after 
each of the three main events within the sequence, which can predict the seismicity within plus/minus 
two standard deviations from the mean estimate within the few hours elapsed after the main event.

Following a large earthquake and in the presence of a vast number of aftershocks, short-term operational seis-
micity forecasts (in the order of days to months) are of utmost importance for emergency decision-making and 
risk mitigation in the disaster area1–6. The aftershock activity is forecasted mainly based on the observed data 
of already registered (and mostly incomplete) recordings within the ongoing sequence7. The Epidemic Type 
Aftershock Sequence (ETAS) model8, 9 is the stochastic model most frequently used to describe earthquake 
occurrence within a seismic sequence10. It is an epidemic stochastic point process in which every earthquake 
within the sequence is a potential triggering event for subsequent earthquakes11, and therefore generates its own 
well-defined Modified Omori12, 13 (MO) aftershock decay14. Hence, it is capable of accounting for the triggering 
effect of all the events that have taken place before a desired time. The ETAS model performed quite well in oper-
ational seismic forecasting during the L’Aquila 2009 (central Italy) seismic sequence15. The model parameters are 
usually calibrated a priori based on the maximum likelihood criterion. The first effort on the calibration of tem-
poral model parameters has been carried on by Ogata8, and extended later9, 16–19 to estimate the spatio-temporal 
model parameters. In addition, several attempts are made for developing improved algorithms to attain maxi-
mum likelihood estimates of ETAS parameters; e.g., the Expected-Maximization algorithm20, an improved max-
imum likelihood algorithm21, and a new algorithm based on Simulated Annealing optimization technique10, 
which allows for an automatic maximum likelihood estimation of the model parameters instead of fine-tuning of 
some algorithm parameters in advance. Adaptive model parameter estimation based on the events in the ongoing 
sequence (e.g., calibrating the parameters of MO and ETAS models based on the ongoing catalogue by employ-
ing Bayesian parameter estimation22–25) has the advantage of both tuning a sequence-specific model and also 
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capturing possible time variations of the model parameters. As the original purpose of the present paper, we 
propose a fully simulation-based method to provide a robust estimate24, 26, 27 for the spatial distribution of the 
events in a prescribed forecasting time interval after the main event. In the context of this robust estimate, the 
uncertainty in the ETAS model parameters is taken into account as the posterior joint probability distribution for 
the model parameters conditioned on the events that have already occurred (i.e., registered events in the ongoing 
seismic sequence before the beginning of the forecasting interval). The Markov Chain Monte Carlo (MCMC) 
simulation scheme24, 25, 27 is used to sample directly from the posterior probability distribution for ETAS model 
parameters (i.e., conditioned on the registered events in the ongoing sequence). Moreover, this robust estimate 
also considers the sequence of events that is going to occur during the forecasting interval (and hence affect the 
seismicity in an epidemic type model like ETAS). Although this sequence is unknown at the time of forecasting, 
we propose a stochastic procedure to generate it. The procedure leads to the stochastic spatio-temporal distri-
bution of the forecasted events and consequently to the uncertainty in the estimated number of events, corre-
sponding to a given forecasting interval. The resulting robust forecasts are directly applicable in adaptive daily 
aftershock hazard and risk assessment procedures23, 28, 29, 30.

The proposed methodology is applied to provide retrospective forecasting for seismic activities of the 2016 
Amatrice sequence by analysing the registered data of quasi real-time catalogues from INGV (Istituto Nazionale 
di Geofisica E Vulcanologia). The corresponding aftershock zone, as shown in Fig. 1a by the gray-colored area, 
is located mostly within the seismic zone 923 based on the ZS9 Italian Seismogenetic Zonation31. Fig. 1a shows 
also the seismogenic zonations surrounding the aftershock zone. It is to note that based on the Italian seismic 

Figure 1.  Amatrice 2016 seismic sequence. (a) The aftershock zone indicated by the grey-coloured box in 
perspective with the surrounding Italian seismogenic zonation. (b) The spatial distribution of aftershock events 
based on Catalogue 2 from August 24, 2016 (01:36 UTC) up to November 2, 2016 (10:32 UTC) bordering four 
neighbouring provinces in Italy. The grey-coloured box defines the considered aftershock zone and the most 
damaged towns are highlighted with green boxes. The main seismic events are illustrated as follows: M6.0 and 
M6.5 with red stars; M5.4 (24/08/16), M5.4 (26/10/16), M5.9 (26/10/16) with magenta triangles; aftershocks 
M ≥ 3.0 with grey circles. (c) The number of events (with M ≥ 3.0) in Catalogue 2 occurred within a 24-hour 
interval starting from 6:00 UTC of the desired day (MATLAB 2016b, http://softwaresso.unina.it/matlab/ is used 
to create this figure).

http://softwaresso.unina.it/matlab/
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zonations, the upper-bound magnitude for seismic zone Z923 is Mmax = 7.06. On the 24th of August 2016 at 01:36 
UTC, a Mw 6.0 earthquake struck the Central Italy between towns of Norcia and Amatrice, devastating Amatrice, 
Accumoli and several surrounding small towns and villages, causing almost 300 fatalities and leaving almost 
30,000 homeless. The seismic sequence, including a Mw 5.4 aftershock (occurred almost one hour after the main 
shock at 02:33 UTC), triggered hundreds of earthquakes per day until the mid-September. Two months after, 
on the 26th of October, a Mw 5.4 followed within a two-hour delay by a Mw 5.9 earthquake (at 17:10 and 19:18 
UTC, respectively) took place in the east of town Visso, and preceded the largest event of the sequence, a Mw 6.5 
on October 30 at 06:40 UTC, North of Norcia32. This one is the largest earthquake recorded in Italy since the Mw 
6.9 1980 Irpinia event. Fig. 1b and c illustrate the seismic activities within the aftershock zone during the first two 
months highlighting the key events taken place.

In the adaptive procedure presented in Section Method, the spatial maps can provide indications with regards 
to automatic re-sizing of the aftershock zone (if required) in case the spatial extension of the seismicity is not 
captured adequately inside a designated aftershock zone. For each forecasting interval, the spatial distribution 
of aftershock events is estimated based on equation (1) by calculating the (average) number of events N(x, y, 
m|seq, Ml) in the cell unit centered at Cartesian coordinate (x, y) with magnitude greater than or equal to m. For 
a prescribed aftershock zone extension, the boundaries of the zone would need to be adjusted if N(x, y, m|seq, 
Ml) is significantly greater than zero along the border cell units. This is a very important issue especially in case 
of Amatrice (multiple) seismic sequence 2016, where the seismicity was relocated towards north-west after two 
months from the main event on August 24. In this study, the aftershock zone is assigned a priori and the adequacy 
of its extension is monitored for each forecast.

The present study strives to perform robust forecasts for the spatio-temporal evolution of the events in spe-
cific time intervals within the very complex sequence described above that is distinguished by three main events 
(“mainshocks”) of moment magnitudes 6.0, 5.9, and 6.5, respectively (as illustrated in Fig. 1b). We divide the 
sequence into three parts: (a) from 24-August to 25-October, (b) from 26-October to 29-October, and finally (c) 
from 30-October to 1-November. We have used two different catalogues herein in order to gather data backwards 
in time. The two catalogues are distinguished by the date of access to the source database and share the time of 
origin (01:36 UTC, August 24 2016). The first one (labelled as Catalog 1) lasts until September 9, 2016 (07:23 
UTC, date of first access) when the aftershock activities are reduced considerably in the zone. The second one 
(labelled as Catalog 2 whose registered data are illustrated in Fig. 1b and c) covers until November 2, 2016 (10:32 
UTC, date of second access).

Results
Providing daily forecasts of seismicity from August 24 up to October 25.  The prediction time 
window [Tstart, Tend] indicates a 24-hour interval where Tstart is 6:00 UTC of the following day. Each forecast 
uses available information at the time when the forecast is issued, i.e., the sequence (denoted as seq in Section 
Methods) comprised of events registered in the Catalogue 1 including the main event up to the time Tstart. To 
issue the first forecast, the observation history, seq, comprises the main event with Mw 6.0 at 01:36 UTC and the 
triggered events up to 6:00 UTC of 24 August 2016, where the lower cut-off magnitude, Ml, of Catalogue 1 is equal 
to 3.0 based on the two methods discussed in Ebrahimian et al.23. It is to note that the completeness threshold of 
the catalog of aftershocks in subsequent forecasting intervals is demonstrated to be even lower than 3.0 (the pro-
cedure(s) adopted for evaluating the completeness magnitude Mc throughout the various phases of this multiple 
seismic sequence is described in detail in the Supplementary Information in a Section entitled “Discussion on the 
Completeness Magnitude Mc”). In any case, Ml = 3.0 is considered as the cut-off threshold for the computation of 
the aftershock rates for the upcoming days.

The first step towards providing seismicity forecasts (with reference to equation 9) is sampling from the distri-
bution of modal parameters θ based on posterior (target) probability distribution p(θ|seq, Ml). The vector θ = [β, 
K, Kt, KR, c, p, d, q] is updated on a daily basis by applying the Bayesian updating routine illustrated in equation 
(17) and considering that parameters K, Kt, KR are derived as function of other parameters within vector θ (see 
equations 4–7). As prior information, we assigned a normal distribution to the five model parameters [β, c, p, 
d, q], with a coefficient of variation (COV) equal to 0.30. The prior mean values for [β, c] are assigned equal to 
those provided by the MO Italian generic model parameters33, while prior mean values assigned to [p, d, q] are 
equal to the ETAS model parameters calibrated for the L’Aquila aftershock sequence15. The prior COV for each 
model parameter is set equal to 0.3 –in some cases larger than the reported prior COV’s in the above-mentioned 
references– to avoid using an over-informative prior distribution (i.e., a prior with a very low COV). Samples for 
θ are generated as a Markov Chain sequence directly from p(θ|seq, Ml), as noted in Section Methods. It should 
be noted that sampled p and q values smaller than one are rejected according to equations (4) and (5) with the 
constraint p > 1 and q > 1. One key restraint on performing operational forecasting during an ongoing sequence 
is that the procedure should be performed in a reasonably small amount of time. To address this issue, an MCMC 
procedure for updating the model parameters is carried out adaptively (see the Section Methods).

The evolution in the statistics (mean and COV) of model parameters θ = [β, K, Kt, KR, c, p, d, q] are sum-
marized in Table 1. We use Catalogue 1 for constructing seq in order to provide forecasts within the first two 
weeks after the main event (i.e., from August 24 up to September 06). The first row of Table 1 corresponds to the 
statistics for the prior marginal PDF’s for θ while the subsequent rows indicate the statistics for the posterior dis-
tributions. In addition, Supplementary Fig. S1 illustrates the sampled histograms representing the marginal prior 
and posterior PDF’s corresponding to the six model parameters [β, K, c, p, d, q]. Moreover, we have illustrated the 
PDF for K, derived as a function of other model parameters, in Supplementary Fig. S1. The marginal PDF’s for the 
other two parameters Kt and KR are not shown in the figure since they have a very straightforward relationship 
to other model parameters (see equations 4 and 5). The marginal distributions shown correspond to a 24 hours 
(1 day) forecasting interval and a magnitude 3.0 lower cut-off.

http://S1
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The sequence of events taking place during the forecasting interval, seqg, is generated (see equation 11 and 
Section Methods) given that θ and seq are known. Finally, substituting the sampled values for θ and seqg in equa-
tion (9), the robust estimate for the number of events with M ≥ m in a spatial cell units centered at (x, y) within 
the aftershock zone is obtained. This robust estimate is calculated as the expected number of events considering 
the uncertainties in the spatio-temporal distribution of the sequence of events. Fig. 2 shows the forecasted seis-
micity maps in terms of the mean plus two logarithmic standard deviation (98% confidence interval) for the 
number of events with M ≥ 3.0 within each spatial cell unit issued for the 24-hour time forecasting intervals. The 
earthquakes of interest occurred within the corresponding forecasting interval are illustrated as coloured dots 
(distinguished by magnitude). The two main events of the sequence with M ≥ 5.0 (see also Fig. 1) are identified 
with coloured stars (these events are shown for reference only and they did not necessarily take place in the illus-
trated map’s corresponding forecasting interval). We also report the forecasted daily probabilities of having earth-
quakes of magnitude equal to or larger than m = 4, 5 and 6 in the whole aftershock zone. These probabilities are 
calculated from the equation − −e1 N m Mseq( , )l  where N m Mseq( , )l  is the sum over the whole aftershock zone of 
the expected number of events N x y m Mseq( , , , )l  from equation (9).

At the right-hand side of each sub-figure, the observed (shown as a red star) vs. forecasted number of events 
(shown in an error-bar format) is illustrated for events with Ml = 3.0 for the entire aftershock zone. The error-bar 
for the forecasted number of events features: the median value (the 50th percentile, equivalent of the logarithmic 
mean in the arithmetic scale) inside a grey-filled square, the (logarithmic) mean plus/minus one (logarithmic) 
standard deviation indicating the interval between 16th and 84th percentiles (marked with blue horizontal lines), 
and the (logarithmic) mean plus/minus two (logarithmic) standard deviations indicating the interval between 2nd 
and 98th percentiles (marked with black horizontal lines). This is done to help in locating the observed number 
of events within plus or minus certain number of standard deviations from the mean estimate. It can be seen that 
the observed number of events lies within plus/minus one standard deviation of the mean estimate except for 28th 
of August and 3rd of September (for this one lies within two standard deviations away from the mean estimate).

Providing daily forecasts of seismicity from October 26 up to October 29.  As mentioned before, 
on 26th of October, a Mw 5.4, followed within a two-hour delay by a Mw 5.9 earthquake (at 17:10 and 19:18 UTC, 
respectively), took place in the east of town Visso (located in the north-western part of the aftershock zone, see 
Fig. 1b). This triggered a new aftershock sequence within the ongoing one. At this stage, given the time elapsed 
from the occurrence of the mainshock (i.e., around two months), it seemed quite tedious to consider all the events 
of interest up to the time of origin (i.e., 24th of August) for each forecasting interval. To achieve this (i.e., avoid 
considering all the events back to 24th of August), we performed a shift in the time of origin To from August 24th to 
17:10 UTC of October 26th (time of occurrence of the Mw 5.4 earthquake, see Fig. 1). In the following, we describe 
the details of the forecasting procedure for the period from 26th of October to 29th.

24-hour forecasting from 6:00 UTC of 26/10/2016.  We performed the forecasting in this period considering as 
the sequence seq all the events with magnitude greater than or equal to 3.0 that took place after 01:36 UTC of 
24/08/2016 up to Tstart which is 6:00 UTC of 26/10/2016 (including the main event of August 24th). To facilitate 
the ETAS model parameter θ estimation, we employed as prior distribution (instead of the priors considered in 
the previous section) the updated distribution of model parameters on 06-September (see the last row of Table 1); 
assuming that the model parameters did not undergo significant changes from 6th of September to 26th of October 
(the sequence activity has decayed significantly in this period). The MCMC procedure is carried out as described 

β c [day] p d [km] q K Kt KR

mean COV mean COV mean COV mean COV mean COV mean COV mean COV mean COV

Prior 2.21 0.30 0.03 0.30 1.10 0.30 1.00 0.30 1.50 0.30

24/08/2016 1.38 0.08 0.03 0.28 1.47 0.14 1.48 0.15 1.63 0.07 0.60 0.30 0.08 0.25 0.35 0.36

25/08/2016 1.53 0.07 0.03 0.27 1.44 0.08 1.60 0.11 1.70 0.06 0.35 0.17 0.08 0.14 0.47 0.43

26/08/2016 1.54 0.06 0.02 0.29 1.40 0.09 1.60 0.12 1.74 0.05 0.36 0.17 0.09 0.11 0.49 0.32

27/08/2016 1.57 0.06 0.02 0.28 1.40 0.08 1.49 0.11 1.72 0.05 0.33 0.15 0.09 0.11 0.43 0.31

28/08/2016 1.60 0.06 0.03 0.27 1.38 0.06 1.55 0.17 1.74 0.07 0.33 0.16 0.09 0.09 0.52 0.55

29/08/2016 1.59 0.06 0.03 0.30 1.34 0.10 1.54 0.12 1.75 0.05 0.36 0.19 0.09 0.08 0.48 0.35

30/08/2016 1.61 0.05 0.02 0.42 1.27 0.08 1.41 0.16 1.67 0.07 0.39 0.22 0.09 0.13 0.37 0.46

31/08/2016 1.64 0.05 0.02 0.30 1.24 0.06 1.53 0.14 1.74 0.06 0.38 0.21 0.09 0.11 0.48 0.39

01/09/2016 1.63 0.05 0.02 0.29 1.19 0.06 1.57 0.11 1.75 0.05 0.51 0.19 0.09 0.15 0.49 0.36

02/09/2016 1.64 0.04 0.02 0.33 1.18 0.06 1.60 0.15 1.76 0.06 0.49 0.24 0.08 0.21 0.54 0.42

03/09/2016 1.64 0.05 0.02 0.33 1.17 0.05 1.62 0.11 1.78 0.05 0.48 0.23 0.09 0.19 0.56 0.34

04/09/2016 1.63 0.05 0.02 0.24 1.19 0.05 1.52 0.11 1.73 0.04 0.46 0.20 0.09 0.14 0.45 0.31

05/09/2016 1.63 0.05 0.02 0.27 1.19 0.05 1.59 0.10 1.80 0.06 0.45 0.19 0.09 0.14 0.57 0.35

06/09/2016 1.65 0.05 0.02 0.29 1.17 0.05 1.57 0.09 1.75 0.04 0.46 0.23 0.09 0.16 0.49 0.27

Table 1.  Statistics (mean and COV) of ETAS model parameters θ for estimating the daily seismicity in the first 
14 days elapsed after Mw 6.0 at 24-Aug. 2016 (Supplementary Fig. S1 also illustrates the sampled histograms 
representing the marginal posterior PDF’s corresponding to the six model parameters [β, K, c, p, d, q]).

http://S1
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in the previous section. The statistics of the updated model parameters (mean and COV) are reported in the first 
row of Table 2. It can be observed (comparing with the prior distribution in the last row of Table 1) that model 
parameters remain more-or-less invariant (we could have directly used the ETAS model parameters estimated 
for 6th of September). Fig. 3a illustrates the forecasted seismicity (mean plus two standard deviations) and the 
events of interest that occurred during the 24-hour interval of interest. The estimated number of events within 
the aftershock zone (shown in the error-bar plot reported in the right-hand side of the figure) shows a substantial 

Figure 2.  Forecasted vs. observed seismicity distribution in the aftershock zone, the maps report the mean 
+2 standard deviation confidence interval for the number of events per [km2] (latitude/longitude cells of 
a 0.01° × 0.01° grid) equal to or greater than magnitude Ml = 3 in the indicated 24-hour forecasting time 
window. In the lower left corner, the daily probabilities of having earthquakes with magnitudes 4, 5, and 6 
or larger are reported. Each sub-plot also features the earthquakes (coloured dots) that occurred during the 
corresponding forecasting time window together with the two main events with M ≥ 5.0 (magenta stars). The 
sub-figures illustrate the observed (plotted in red star) vs. the error-bar for the forecasted number of events with 
m ≥ Ml corresponding to the forecasting time interval: the median value (the 50th percentile, equivalent of the 
logarithmic mean in the arithmetic scale) inside a grey-filled square, the (logarithmic) mean plus/minus one 
(logarithmic) standard deviation indicating the interval between 16th and 84th percentiles (marked with blue 
horizontal lines), and the (logarithmic) mean plus/minus two (logarithmic) standard deviations indicating 
the interval between 2nd and 98th percentiles (marked with black horizontal lines). (MATLAB 2016b, http://
softwaresso.unina.it/matlab/ is used to create this figure).

β c [day] p d [km] q K Kt KR

mean COV mean COV mean COV mean COV mean COV mean COV mean COV mean COV

26/10/2016* 1.67 0.05 0.02 0.36 1.17 0.06 1.57 0.12 1.74 0.06 0.56 0.26 0.08 0.23 0.47 0.31

26/10/2016† 1.34 0.17 0.03 0.27 1.20 0.14 1.39 0.17 1.55 0.09 9.48 0.20 0.08 0.46 0.28 0.43

26/10/2016‡ 1.53 0.13 0.03 0.27 1.38 0.16 1.53 0.15 1.58 0.08 0.70 0.39 0.08 0.29 0.32 0.46

27/10/2016 1.35 0.10 0.03 0.26 1.38 0.14 1.51 0.13 1.69 0.08 1.33 0.19 0.09 0.23 0.43 0.41

29/10/2016 1.49 0.07 0.03 0.27 1.27 0.09 1.58 0.13 1.71 0.06 0.57 0.34 0.10 0.14 0.47 0.37

Table 2.  Statistics (mean and COV) of ETAS model parameters θ for estimating the daily seismicity rate of the 
desired dates for the second part of the sequence after Mw 5.4 at 26-October 2016 (Supplementary Fig. S2 also 
illustrates the sampled histograms representing the marginal posterior PDF’s corresponding to the six model 
parameters [β, K, c, p, d, q]). *Corresponding to Fig. 3(a,b); †corresponding to Fig. 3c; ‡corresponding to Fig. 3d.

http://softwaresso.unina.it/matlab/
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reduction in the seismicity compared to the first days elapsed after the main event in August 24. The exceedance 
probabilities are calculated as P(M ≥ 4) = 0.08, P(M ≥ 5) = 0.02, and P(M ≥ 6) = 0.003. It is interesting to note that 
these probabilities are substantially higher than those provided from the calculation of the long-term seismicity 
level based on the ZS9 Italian Seismogenic Zonation31 data, estimating a daily probability of around 3.83 × 10−4 
for M ≥ 4.76. Hence, the level of (forecasted) seismicity at the desired date is more than 40 times higher than the 
base seismicity level for M ≥ 5. The distribution of seismicity forecasted for 26th of October (shown in Fig. 3a) is 
used next as an estimate of the background (base) seismicity denoted as Nb(x, y, m|Ml) in Section Methods.

6-hour forecasting from 18:00 UTC of 26/10/2016.  After the occurrence of the event with Mw 5.4 at 17:10 UTC 
of 26/10/2016, we provide a 6-hour prediction of seismicity for the forecasting interval starting from Tstart set to 
18:00 UTC of 26/10/2016 (i.e., 50 minutes after the occurrence of Mw 5.4 event). At this point, we performed a 
shift in the time of origin by setting To to 17:10 UTC of 26th of October (see Fig. 4). The sequence seq includes 
all the triggered events with M ≥ 3 occurred after 17:10 UTC of 26/10/2016 (including the main Mw 5.4 event). 
It should be noted that the event Mw 5.4 was not preceded by any foreshocks (i.e., no M ≥ 3 events took place 
between 06:00 UTC and 17:10 UTC of 26 of October). Given the very low seismic activity prior to the major event 
and given the presence of very few events in seq, we did not perform Bayesian updating on the model parameter 
θ and used the statistics provided in the first row of Table 2 issued for 26/10/2016 (the parameters updated in the 
previous step). It is important to note that the forecasted seismicity for the 24-hour interval elapsed after 06:00 
UTC of October 26 in the previous step (shown in Fig. 3a) is used herein (after proportioning it to a 6-hour fore-
casting interval) as the background seismicity Nb(x, y, m|Ml). The background seismicity usually considers the 
long-term seismicity in the calculations and was assumed to be equal to zero in our previous calculations for the 
first part of the sequence staring from 24th of August. Herein, we use this background seismicity to conservatively 
approximate the triggering effect of the events occurred in the first part of the sequence (from August 24th to 

Figure 3.  Forecasted vs. observed seismicity distribution in the aftershock zone, the maps report the mean 
+ 2 standard deviation confidence interval for the number of events per [km2] (latitude/longitude cells of a 
0.01° × 0.01° grid) equal to or greater than magnitude Ml = 3 in the indicated forecasting time window. In the 
lower left corner, the daily probabilities of having earthquakes with magnitudes 4, 5, and 6 or larger are reported. 
Each sub-plot also features the earthquakes (colored dots) that occurred during the corresponding forecasting 
time window together with the two main events with M ≥ 5.0 (magenta stars). The sub-figures illustrate the 
observed (plotted in red star) vs. the error-bar for the forecasted number of events with m ≥ Ml corresponding 
to the forecasting time interval: the median value (the 50th percentile, equivalent of the logarithmic mean in 
the arithmetic scale) inside a grey-filled square, the (logarithmic) mean plus/minus one (logarithmic) standard 
deviation indicating the interval between 16th and 84th percentiles (marked with blue horizontal lines), and the 
(logarithmic) mean plus/minus two (logarithmic) standard deviations indicating the interval between 2nd and 
98th percentiles (marked with black horizontal lines). (MATLAB 2016b, http://softwaresso.unina.it/matlab/ is 
used to create this figure).
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October 26th). The background seismicity is added as a constant term to the contribution of the triggering events 
(see Section Method). The forecasted seismicity map in terms of the mean plus two standard deviation for the 
number of events with M ≥ 3.0 is shown in Fig. 3b. Observed events with M ≥ 3.0 (coloured dots) occurred within 
the corresponding 6-hour forecasting interval are also highlighted on the map. The main two events with Mw 5.4 
at 17:10 UTC assigned as the mainshock and the Mw 5.9 event at 19:18 UTC (which lies within the 6-hour fore-
casting interval) are shown with magenta stars. According to the right-hand side error-bar plot of Fig. 3b, the total 
number of registered events within the 6-hour forecasting interval (red star) is significantly higher than the fore-
casted values. This can be attributed to very few number of observed input data in seq for preforming the robust 
estimation and to the fact that model parameters were not tuned to the newly triggered sequence. Although less 
successful in predicting the number of events, the model predicts exceedance probabilities P(M ≥ 5) and P(M ≥ 6) 
to be more than 15 times compared to the initial estimates in Fig. 3a.

4-hour forecasting from 20:00 UTC of 26/10/2016.  After the occurrence of the event with Mw 5.9 at 19:18 UTC, 
the seismicity forecast is provided again for the interval starting from 20:00 UTC (42 minutes after the Mw 5.9 
event) up to 24:00 UTC of 26/10/2016 (i.e., a 4-hour time interval). The corresponding seq includes all the events 
with M ≥ 3.0 which occurred (including the main event of Mw 5.4 at 17:10 UTC and Mw 5.9 at 19:18 UTC) after 
17:10 UTC up to the starting time (20:00 UTC) of October 26. The model parameters θ are updated based on 
the information provided by the sequence seq with Ml set to 2.5 and reported in the second row of Table 2. Note 
that the cut-off magnitude lower than 3.0 is assigned only for model updating purposes to gain more data and 
the seismicity rate is later calculated with Ml = 3.0. Fig. 3c illustrates the forecasted seismicity map in terms of the 
mean plus two standard deviation for the number of events with M ≥ 3.0 within the 4-hour forecasting interval. 
Note that for the 4-hour time interval, the exceedance probabilities P(M ≥ 5) and P(M ≥ 6) increase considerably 
in Fig. 3c after the occurrence of the event with Mw 5.9 at 19:18 UTC (compared to Fig. 3a). In addition, the 
observed number of events within the 4-hour time interval (sub-figure) lies within the plus/minus one standard 
deviation confidence interval.

6-hour forecasting from 24:00 UTC of October 26, and 24-hour forecasting from 6:00 UTC of 27th and 29th of 
October.  At this stage, seismicity forecasts are provided first for the 6-hour time interval starting from 24:00 
UTC of 26/10/2016, and later extended for issuing 24-hour forecasts with Tstart = 6:00UTC corresponding to 
the two consecutive days of October 27 and October 29. These predictions are issued based on the sequence of 
events seq including the mainshock of Mw 5.4 (considering 17:10 UTC 26th of October as time of origin To) and 
the triggered events with M ≥ 3.0 up to the associated Tstart. The last three rows of Table 2 illustrate the statistics 
of updated model parameters. The predicted seismicity distribution maps and the corresponding error-bar plots 
for the number of events (in sub-plots) are presented in Fig. 3(d–f), which manage to properly forecast the distri-
bution/number of observed events.

Providing daily forecasts of seismicity from October 30 up to November 1.  As mentioned before, on 30th of 
October, a Mw 6.5 event occurred in the North of Norcia at 6:40 UTC (located in the north-western part of the 
aftershock zone, see Fig. 1b).

24-hour forecasting from 6:00 UTC of 30th of October (starting time 40 minutes before the main event).  The fore-
casted seismicity is issued for a 24-hour time interval starting at 6:00UTC of 30/10/2016 based on the sequence 
of events seq comprising of events occurring after the time of origin To set to 17:10 UTC of 26th of October 
(time of occurrence of the Mw5.4 event). The statistics of the updated model parameters are shown in the first 
row of Table 3. The forecasted seismicity distribution for the next 24 hours for M ≥ 3 is mapped in Fig. 5a. The 
background seismicity is set to the time-invariant distributed seismicity equal to Nb(x, y, m|Ml) as defined in 
the previous section (shown in Fig. 3a). According to Fig. 5a, our blind prediction of the exceedance probability 
P(M ≥ 6) is a value around 10% which is quite high as compared to the daily probability equal to 3.83 × 10−4 for 
M ≥ 4.76 calculated based on long-term seismicity in the previous section. It is also interesting to note that the 
forecasted value for P(M ≥ 6) is equal to the forecast provided for October 29; this can be viewed as somewhat 
alarming (does not represent the expected decay with time). Nevertheless, the forecasted error-bar for the num-
ber of events (see right-hand side of Fig. 5a) is not able to properly predict the huge number of events triggered 
due to Mw 6.5 at 06:40UTC.

5-hour forecasting from 7:00 UTC of 30th of October (starting time 20 minutes after the main event of Mw 6.5).  In 
order to test the forecasting ability of the model right after the main event, we provided a forecast with starting 

Figure 4.  Schematic sketch of the shift in the time of origin To.
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time Tstart set to 7:00UTC (only 20 minutes after the main event). The same as the previous forecast, the time of 
origin is set to 17.10 UTC of 26th of October and the same invariant background seismicity Nb(x, y, m|Ml) is being 
adopted. The second row of Table 3 shows the statistics of the updated model parameters. The forecasted (5-hour) 
seismicity distribution is mapped in Fig. 5b. Moreover, the error-bar plot for the forecasted number of events is 

β c [day] p d [km] q K Kt KR

mean COV mean COV mean COV mean COV mean COV mean COV mean COV mean COV

30/10/2016* 1.52 0.06 0.03 0.27 1.22 0.08 1.67 0.13 1.76 0.06 0.70 0.22 0.09 0.16 0.58 0.40

30/10/2016† 1.42 0.06 0.03 0.26 1.17 0.07 1.64 0.12 1.70 0.06 1.16 0.26 0.08 0.30 0.48 0.36

30/10/2016‡ 1.39 0.04 0.03 0.26 1.25 0.08 1.94 0.11 1.81 0.06 0.71 0.23 0.10 0.11 0.81 0.36

30/10/2016†† 1.29 0.06 0.03 0.23 1.24 0.14 1.61 0.13 1.63 0.06 3.09 0.39 0.08 0.38 0.38 0.35

31/10/2016 1.44 0.03 0.04 0.21 1.31 0.10 1.61 0.11 1.71 0.04 0.69 0.25 0.10 0.11 0.47 0.29

01/11/2016 1.50 0.03 0.04 0.20 1.33 0.08 1.73 0.09 1.73 0.04 0.54 0.20 0.11 0.08 0.54 0.27

Table 3.  Statistics (mean and COV) of ETAS model parameters θ for estimating the daily seismicity rate of the 
desired dates for the third part of the sequence after Mw 6.5 at 30-October 2016 (Supplementary Fig. S3 also 
illustrates the sampled histograms representing the marginal posterior PDF’s corresponding to the six model 
parameters [β, K, c, p, d, q]). *Corresponding to Fig. 5a; †corresponding to Fig. 5b; ‡corresponding to Fig. 5c; 
††corresponding to Fig. 5d.

Figure 5.  Forecasted vs. observed seismicity distribution in the aftershock zone, the maps report the mean 
+ 2 standard deviation confidence interval for the number of events per [km2] (latitude/longitude cells of a 
0.01° × 0.01° grid) equal to or greater than magnitude Ml = 3 in the indicated forecasting time window. In the 
lower left corner, the daily probabilities of having earthquakes with magnitudes 4, 5, and 6 or larger are reported. 
Each sub-plot also features the earthquakes (colored dots) that occurred during the corresponding forecasting 
time window together with the main events with M ≥ 5.0 (magenta stars). The sub-figures illustrate the 
observed (plotted in red star) vs. the error-bar for the forecasted number of events with m ≥ Ml corresponding 
to the forecasting time interval: the median value (the 50th percentile, equivalent of the logarithmic mean in 
the arithmetic scale) inside a grey-filled square, the (logarithmic) mean plus/minus one (logarithmic) standard 
deviation indicating the interval between 16th and 84th percentiles (marked with blue horizontal lines), and the 
(logarithmic) mean plus/minus two (logarithmic) standard deviations indicating the interval between 2nd and 
98th percentiles (marked with black horizontal lines). (MATLAB 2016b, http://softwaresso.unina.it/matlab/ is 
used to create this figure).

http://S3
http://softwaresso.unina.it/matlab/
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reported against the observed number of events. Comparing Fig. 5b with Fig. 5a, we can appreciate the improve-
ment in the forecasted seismicity distribution and number of events based on the few events that occurred in the 
one hour that separates the two starting times (i.e., 6:00 UTC and 7:00 UTC, respectively).

18-hour forecasting from 12:00 UTC of 30th of October (starting time 5 hours and 20 minutes after the main event 
of Mw 6.5, To = 6:40 UTC of 30th of October).  The next forecasting is performed for the same day of 30/10/2016 
with Tstart set to 12:00UTC and Tend set to 06:00 UTC of 31/10/2016 (i.e., 18-hour interval). At this stage, we 
performed a shift in the time of origin To from 17:10 UTC of 26th of October to 6:40 UTC of 30th of October. The 
background seismicity Nb(x, y, m|Ml) is set (and proportioned to an 18-hour interval) to that of 30th of October 
for a 24-hour interval with starting time set to 6:00 UTC (shown in Fig. 5a). The prior distributions for the model 
parameters are taken equal to those of the original priors reported in the first row of Table 1. The fourth row of 
Table 3 shows the statistics of the updated model parameters. Fig. 5d shows the map of forecasted seismicity with 
the back-drop of events occurred in this interval. The error-bar plot for the forecasted number of events manages 
to capture the observed number of events within one standard deviation confidence interval.

18-hour forecasting from 12:00 UTC of 30th of October (starting time 5 hours and 20 minutes after the main event of 
Mw 6.5, To = 17:10 UTC of 26th of October).  To measure the effect of the shift in the time of origin, the same fore-
casting presented in the previous step is performed with time of origin set to 17:40 UTC of 26th of October. The 
third row of Table 3 illustrates the statistics of updated model parameters. Fig. 5c shows the forecasted map of seis-
micity and the error-bar for the predicted number of events. The forecasted number of events are slightly lower 
than those predicted in the previous step in Fig. 5c (after shifting the time of origin). This is to be expected since 
the latter forecast employs a time-invariant background seismicity to consider the events of interest occurred in 
the time interval between 17:10 UTC of 26th of October and 6.40 UTC of 30th of October. This is while the former 
forecast explicitly considers the triggering contribution of these events and the associated time-decay. Overall, it 
is reassuring to note that the two forecasts provide essentially the same information.

24-hour forecasting from 6:00 UTC of October 31st and November 1st.  The seismicity forecasts are provided next 
for the 24-hour time intervals starting from 6:00UTC of October 31 and November 1. These predictions are 
issued based on time of origin To set to 6:40 UTC of 30 October and the sequence of records seq including all 
the events of interest M ≥ 3.0 that occurred between the time of origin To (including the 6.5 Mw “mainshock”) 
and the time of start Tstart of each forecasting interval (6:00 UTC of each of these two days). The prior probability 
distributions are set to the original priors (whose statistics are reported in the first row of Table 1). The last two 
rows of Table 3 illustrate the statistics of updated model parameters. The seismicity forecasts (i.e, mean estimate 
plus two standard deviations) are shown in Fig. 5(e,f). The observed number of events lies within two standard 
deviation from the forecasted mean estimate.

Discussion
We have proposed a fully simulation-based procedure for both Bayesian model updating of an 
epidemiological-type aftershock spatio-temporal clustering model and robust operational forecasting of the num-
ber of events of interest expected to happen in each time frame. The adopted epidemiological model parameters 
are defined so that the model converges asymptotically (spatio-temporally speaking) to the long-term seismicity 
of the zone of interest. The forecasting is “robust” because it considers the uncertainty (i.e., the joint probabil-
ity distribution) in the model parameters. Apart from being quite efficient (the most challenging forecasting 
we performed took 45 minutes on a normal PC), the model updating and forecasting procedure is carried on 
without human interference and use of expert judgement. The model is simply “tuning-in” automatically into 
the sequence of observed events. The choice of the recent Central Italy sequence of events as a demonstration of 
this procedure, albeit quite a natural choice, proved to be very challenging. This is because the sequence embed-
ded three “sub-sequences” with different productive and decaying properties. We used the peculiarities of this 
sequence to test several different strategies for forecasting. For example, we performed a shift in the time of origin 
of the sequence by conservatively introducing a constant background seismicity (calculated by the procedure). 
This shift proved to be quite useful as it relieved us from the burden of summing up the triggering properties of 
all the events that took place in the previous “sub-sequence” (or the previous part of the sequence as we may wish 
to call it) at the small price of neglecting the time-decay in their triggering contribution. We observe that after an 
initial transition time (in the order of few hours, enough to accumulate sufficient events for updating the model 
parameters), the model quickly tunes into the sequence and provides forecasting that is reliable in most cases up 
to plus/minus one standard deviations. As expected, the procedure falls short of predicting the “mainshock” of 
26th of October (17:10 UTC) as it happened when the sequence had decayed. The procedure, however, did a better 
job for forecasting the events occurred at 19:18 UTC of 26th of October and on 6.40 UTC of 30th October. This 
relative success can be attributed to the fact that these events took place at the initial stages of the newly triggered 
sequence of 26th of October when the seismic activity was still very high. The estimated model parameters present 
some time-dependent fluctuations but after a certain number of days elapsed after the main event, they seem to 
stabilize. In general, the first sub-sequence (Mw 6 “mainshock” occurred at 1:36 UTC 24th of August) seems to be 
the mildest one in terms of the time decay in seismicity and is the least active in terms of sequence’s productivity. 
The second sub-sequence (Mw 5.4 “mainshock” occurred at 17:10 UTC 26th of October) is intermediate both in 
terms of the rate of time-decay and the productivity. The third sub-sequence (Mw 6.5 “mainshock” occurred at 
6:40 UTC 30th of October) has the steepest time-decay of seismicity and is the most active in terms of the produc-
tivity of the sequence. Last but not least, it is important to mention that the proposed procedure for robust fore-
casting is conditioned on the available catalogue of events and the epidemiological model adopted for capturing 
the spatio-temporal aftershock clustering.
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Methods
Let the aftershock occurrence be described by a non-homogenous Poisson point process over the two-dimensional 
space and time. Hence, the aftershock zone can be described as the set A in the Cartesian space discretized into 
mutually exclusive and collectively exhaustive (MECE) subsets or spatial cell units centered at (x, y) ∈ A. In this 
manner, λ(t, x, y, m|seq, Ml) represents the rate of occurrence of events in the forecasting interval [Tstart, Tend] at 
time t elapsed after the main event (a.k.a. mainshock) occurred at time of origin To with magnitude greater than 
or equal to m and in the cell unit centered at (x, y) ∈ A, given (a) the observation history seq which is the sequence 
of No events (including mainshock and the sequence of aftershocks) taken place before the forecasting interval 
(i.e. in the interval [To, Tstart)), and (b) the lower cut-off magnitude Ml. Hence, seq can be expressed as seq = {(ti, 
xi, yi, mi), ti < Tstart, mi ≥ Ml, i = 1: No}, where ti is the arrival time for the ith event with magnitude Mi and location 
(xi, yi) ∈ A. The average number of events in the spatial cell unit centered at (x, y) with magnitude greater than or 
equal to m in the forecasting interval [Tstart, Tend] can then be calculated as:

∫ λ| = | + |N x y m M N x y m M t x y m M tseq seq( , , , ) ( , , ) ( , , , , )d
(1)l b l

T

T
l

start

end

where Nb(x, y, m|Ml) is a constant representing the background seismicity of the area. Let θ denote the vector of 
model parameters for λ(t, x, y, m|seq, Ml). Given a particular space-time model and a realization of the vector 
of model parameters θ, one can calculate a plausible value for the rate of occurrence denoted as λ(t, x, y, m|θ, 
seq, Ml). Note that we have not included the conditioning on the model assumptions34 for the sake of brevity. A 
robust estimate24, 26, 27, 35, 36 of the average number of events in the spatial cell unit centered at (x, y) with magnitude 
greater than or equal to m in the forecasting interval [Tstart, Tend], and over the domain of the model parameters 
Ωθ can be calculated as:

 ∫ ∫ λ θ θ θ| = | + | ⋅
Ω θ
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(2)l b l

T

T
l l

start

end

where p(θ|seq, Ml) is the conditional probability distribution function (PDF) for θ given the seq and the lower 
cut-off magnitude Ml.

An epidemiological model for space-time clustering of aftershocks.  The ETAS model is an epi-
demiological stochastic point process in which every earthquake is a potential triggering event for subsequent 
earthquakes8, 9, 16–19. According to the general ETAS model, we adopt the spatio-temporal triggering effect of a 
given sequence on the seismicity rate, denoted as λETAS, as:
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where seqt = {(tj, xj, yj, Mj), tj < t, Mj ≥ Ml} is the observation history up to the time t; parameter β is related to 
Gutenberg-Richter seismicity; parameters c and p are similar to those of the Modified Omori’s Law12, 13 defining 
the decay in time of short-term triggering effect; d and q characterize the spatial distribution of the triggered 
events; rj is the distance between the location (x, y) ∈ A and the epicenter of the jth event (xj, yj); parameters K, Kt 
and KR satisfy the achievement of asymptotic compatibility between ETAS predictions and the long-term seismic-
ity. Thus, the vector of model parameters λ can be defined as θ = [β, K, Kt, KR, c, p, d, q]. The integral of λETAS over 
infinite space and time needs to converge in limit to the number of events predicted by the Gutenberg and Richter 
model with magnitude greater than m, denoted generally as Koe−βm; note that Ko is different from K. Herein, such 
compatibility is achieved by making sure that the following three conditions are satisfied:

	 1)	 The normalizing coefficient Kt is obtained such that integrating the time-dependent term over infinite time 
will in limit be equal to unity (see also Lippiello et al.21, 37):
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	 2)	 The coefficient KR is normalized such that integrating the spatial term over infinite space will in limit be 
equal to unity (see also Lippiello et al.21, 37):
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	 3)	 The coefficient K is calibrated such that the number of events with magnitude greater than or equal to Ml 
taking place in time interval t ∈ [To, Tstart] over the whole aftershock zone A is equal to No:
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where To defines the mainshock occurrence time; the term λETAS(t, x, y, Ml|θ, seqt, Ml) is obtained by substitut-
ing m = Ml in equation (3), and denotes the rate of events with magnitude greater than or equal to Ml. Since No 
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denotes the events occurred within the aftershock zone A, the integration over the whole aftershock zone can be 
approximated with that over infinite space. Thus, according to equation (5), K can be derived as follows:
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Since the integral with respect to time in equation (7) cannot be calculated analytically over the interval [To, Tstart], 
we approximated it by summing over the sub-intervals [ti−1, ti] (where i = 2:No) and the last interval [tNo, Tstart] 
(where tNo is the arrival time of the No

th event).
It is to note that parameters K, Kt, and KR are derived as a function of other model parameters in θ; therefore, 

the main parameters of the ETAS model include [β, c, p, d, q]. The rate of events in the ETAS model with mag-
nitude (exactly) equal to m, denoted herein as μETAS herein, is calculated by taking the derivative of equation (3) 
with respect to magnitude m:

µ λ β λθ θ= |∂ ∂ | = β− −t x y m M m e t x y M Mseq seq( , , , , , ) / ( , , , , , ) (8)t l
m M

l t lETAS ETAS
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l

Robust estimation for the number of aftershock events.  As mentioned above, seq denotes the 
sequence of events taking place before the beginning of the forecasting interval (i.e., in the interval [To, Tstart)). 
However, the triggering effect of the events taking place during the forecasting interval [Tstart, Tend] is expected 
to play a major role. The sequence of events taking place during the forecasting interval denoted as seqg, which 
is unknown at the time of forecasts, is simulated/generated herein. Let us assume that a plausible seqg is defined 
as the events within the forecasting interval defined as seqg = {(IATi, xi, yi, mi), Tstart ≤ ti ≤ Tend, mi ≥ Ml}, where 
IATi = ti − ti−1 stands for the inter-arrival time. The robust estimate for the number of aftershock events in equa-
tion (2) should also consider all the plausible sequences of events seqg (i.e., the domain Ωseqg) that can happen 
during the forecasting time interval:
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where p(seqg|θ, seq, Ml) is the PDF for the generated sequence seqg given that θ and seq are known and λ(t, x, y, 
m|seqg, θ, seq, Ml) is the space-time clustering ETAS model considering also the sequence of events taking place 
within the forecasting interval. The integral with respect to time in equation (9) cannot be calculated analytically 
over the entire interval [Tstart, Tend], and is approximated by summing over the sub-intervals [ti−1, ti] within seqg:
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where λETAS has the functional form presented in equation (3), and seqgi−1 is the previous (i − 1) events within 
the generated sequence. In the following sections, it is described first how sequence of events seqg for the fore-
casting interval is sampled based on p(seqg|θ, seq, Ml). Later on, the method for sampling θ from the distribution 
p(θ|seq, Ml) is discussed.
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Generating sequences according to p(seqg|θ, seq, Ml).  The probability distribution p(seqg|θ, seq, Ml) can be 
written as follows (based on the probability product rule, see e.g. Jaynes38):

∏θ θ= −p M p IAT x y M Mseqg seq seqg seq( , , ) ( , , , , , , )
(11)l

i
i i i i i l1

where seqgi is the generated sequence up to the ith event, where seqgi = {seqgi−1, (IATi, xi, yi, mi)}, and the 
sequence of events that precede the ith generated event is {seq, seqgi−1}. The probability distribution p(IATi, xi, yi, 
mi|seqgi−1, θ, seq, Ml) can be further expanded (again using the probability product rule) as follows:

θ θ
θ
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where p(mi|seqgi−1, θ, seq, Ml) is the marginal PDF for the magnitude mi given the sequence of events that 
precede it, θ, and Ml; p(IATi|mi, seqgi−1, θ, seq, Ml) is the (conditional) marginal PDF for inter-arrival time IATi 
given that the value of magnitude is equal to mi; finally, the term p(xi, yi|IATi, mi, seqgi−1, θ, seq, Ml) is the condi-
tional joint PDF for the spatial position (xi, yi) ∈ A given that IATi and mi are known. It should be noted that the 
break-down into the product of several conditional PDFs is necessary during the sequence generation process.

To generate a plausible sequence of events during the forecasting interval, the procedure, illustrated by the 
flowchart in Supplementary Fig. S4, is adopted. The ith event within the sequence seqg is generated through the 
following steps:

	 1)	 Generate the magnitude of the ith event, mi, within seqg according to the following truncated Exponential 
PDF with rate β23 (see Phase 1 in Supplementary Fig. S4).

βθ θ≅ =
−

β

β β−

−

− −p m M p m M e
e e

seqg seq seq( , , , ) ( , , ) (13)i l l
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where Mmax is the upper-bound magnitude of the site. This truncated Exponential PDF has a cumulative 
density function equal to β β

β
− − − − − −

− − −


m M
F

m M
M M

1 exp( ( )) 1 exp( ( ))
1 exp( ( ))

l

M

l

lmax max
; hence, a generated/sampled mi can 

analytically be drawn as = +
β

− − ⋅
m Mi

F r
l

log(1 )Mmax rand  where rrand (as shown also in the flowchart of 
Supplementary Fig. S4) is a random number generated from a Uniform distribution in the interval (0, 1).

	 2)	 Generate the inter-arrival time of the ith event within seqg (given that its magnitude mi is already known 
from previous step) by using the Thinning algorithm39, 40. The algorithm, as shown in Phase 2 in Supplemen-
tary Fig. S4, consists of a two-stage process. First, the temporal Poisson rate over the entire aftershock zone is 
calculated for an event with magnitude equal to mi at time t = ti − 1, and denoted by μmax using equation (8) 
as follows:

µ µ θ=
∈

− −∬ t x y m M x yseqg seq( , , , , , , )d d
(14)x y A

i i i lmax , ETAS 1 1

Note that for generating the first event within the forecasting interval [Tstart, Tend], ti−1 is set to Tstart. In the 
next stage of Thinning algorithm, the inter-arrival time IATgen is sampled/generated from a homogeneous 
Exponential PDF with the form µ µ− IATexp( )max max  which is equivalent to generating it as 

=
µ

− −IAT r
gen

log(1 )rand

max
. The Poisson rate at time tgen = ti−1 + IATgen and denoted by μgen can then be calculated 

from equation (14) by substituting ti−1 with tgen. The generated inter-arrival time can then be (1) either ac-
cepted with probability p =

µ

µ
gen

max
 and thus ti = tgen and the procedures continues by generating the next inter-

arrival time until ti > Tend; (2) or rejected with probability 1-p. Let us denote the rejected tgen as tgen
(−) (in or-

der to keep track of it for the next simulation). Also in the case of rejection, the procedure continues by 
sampling a new inter-arrival time IATgen from the homogeneous Exponential PDF with rate μmax. The new 
generated arrival time is calculated as tgen = tgen

(−) + IATgen, tgen < Tend. The quantities μgen and p are calculated 
again to test whether the newly generated interarrival time is accepted or rejected.

	 3)	 Generate/sample the Cartesian coordinates (xi, yi) for the ith event, given that the magnitude mi, the time 
of occurrence ti, and the previous (i − 1) events within the generated sequence seqgi-1 are known (see Sup-
plementary Fig. S4, Phase 3), according the following joint PDF using the probability product rule:
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The nominator p(IATi, x, y, mi|seqgi−1, θ, seq, Ml) in equation (15) can be calculated as:
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where μETAS is calculated from equation (8), and the integral in the sub-interval [ti−1, ti] has the similar analytical 
expression shown in equation (10) being multiplied by β in order to account for μETAS.

Sampling θ from the distribution p(θ|seq, Ml).  The probability distribution p(θ|seq, Ml) can be calculated using 
Bayesian parameter estimation:

θ θ θ| = | |−p M C p M p Mseq seq( , ) ( , ) ( ) (17)l l l
1

where p(seq|θ, Ml) denotes the likelihood of the observed sequence given the vector of model parameters θ and 
lower cut-off magnitude Ml, p(θ|Ml) is the prior distribution for the vector θ, and C −1 is a normalizing constant. 
In lieu of additional information (e.g., statistics of regional model parameters), the prior joint distribution p(θ|Ml) 
can be estimated as the product of marginal uniform probability distributions for each model parameter. In order 
to sample from p(θ|seq, Ml), Markov Chain Monte Carlo (MCMC) simulation routine is employed which is 
particularly useful for cases where the sampling needs to be done from a probability distribution that is known 
up to a constant value27 (herein, C−1). The MCMC routine uses the Metropolis-Hastings (MH) algorithm41, 42 
in order to generate samples as a Markov Chain sequence used first to sample from the target probability dis-
tribution p(θ|seq, Ml), and later to estimate the robust reliability in equation (9). The MH routine, as shown in 
Supplementary Fig. S5, functions by generating a Markov chain that produces a sequence of samples [θ1→θ2→…
→θn→…], where θn represents the state of Markov chain at nth iteration (the first few samples are often discarded 
to reduce the initial transient effect). This procedure continues until the ns Markov chain samples were simulated. 
It can be shown that the samples from the chain after the initial transient ones reflect samples from the target 
distribution p(θ|seq, Ml). Given the Markovian nature of this simulation scheme, we limit ourselves to describe 
how the (n + 1)th sample θn+1 is generated given that the nth sample θn is already known:

•	 Generate a candidate sample θ* from a proposal (candidate) distribution ζ(θ|θn). It is important to note that 
there are no specific restrictions about the choice of ζ (·) apart from the fact that it should be possible to cal-
culate both ζ (θi + 1|θi) and ζ (θi|θi + 1).

•	 Accept the candidate sample with the probability paccept = min(1, r) (where r is defined in equation (18) as 
follows) and set θn+1 = θ*; otherwise, θn+1 = θn:
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It can be shown27 using the Total probability theorem that, if the current sample θn is distributed as p(·|seq, 
Ml), also the (n + 1)th sample θn+1 is distributed as p(·|seq, Ml):
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Equation (19) is derived using the arithmetic property that for any positive numbers A and B, the identity min(1, 
A/B)∙B = min(1, B/A)∙A holds. Having the proposal PDF ζ centered around the current sample renders the MH 
algorithm similar to a local random walk that adaptively leads to the generation of the target PDF. In order to 
improve the rate of convergence of the simulation process, we have used an adaptive MH algorithm (as proposed 
by Beck and Au27) that introduces a sequence of intermediate evolutionary candidate PDF’s that resemble more 
and more the target PDF.

Calculating the likelihood of the observed sequence p(seq|θ, Ml).  The likelihood for the observed sequence, 
seq = {(ti, xi, yi, mi), ti < Tstart, mi ≥ Ml, i = 1: No}, with No events, including the mainshock (with i = 1) and the 
sequence of aftershocks, can be calculated as:
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where λ(∙) and μ(∙) are ETAS rates calculated from equations (3) and (8), respectively. The first term of the likeli-
hood function in equation (20) is calculated by multiplying the probabilities that the ith arrival time (i = 2:No) is 
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equal to the observed value, ti = ti−1 + IATi, occurred at spatial position (xi, yi) ∈ A with magnitude mi assuming a 
non-homogenous Poisson process (i.e., the inter-arrival times are independent) with a rate equal to μETAS (equa-
tion 8). Accordingly

∫ ∑µ β
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−
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where the term I0 is previously defined in equation (7) and rji indicates the distance of the ith event to the previ-
ously occurred jth event. The last probability term in equation (20) is the probability that no event with magni-
tude greater than the cut-off level Ml takes place over the entire aftershock zone A in the time interval between 
the No

th event at tNo and Tstart.
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