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Network robustness assessed 
within a dual connectivity 
framework: joint dynamics of the 
Active and Idle Networks
Alejandro Tejedor   1, Anthony Longjas1, Ilya Zaliapin2, Samuel Ambroj3 & Efi Foufoula-
Georgiou1

Network robustness against attacks has been widely studied in fields as diverse as the Internet, power 
grids and human societies. But current definition of robustness is only accounting for half of the story: 
the connectivity of the nodes unaffected by the attack. Here we propose a new framework to assess 
network robustness, wherein the connectivity of the affected nodes is also taken into consideration, 
acknowledging that it plays a crucial role in properly evaluating the overall network robustness in terms 
of its future recovery from the attack. Specifically, we propose a dual perspective approach wherein 
at any instant in the network evolution under attack, two distinct networks are defined: (i) the Active 
Network (AN) composed of the unaffected nodes and (ii) the Idle Network (IN) composed of the affected 
nodes. The proposed robustness metric considers both the efficiency of destroying the AN and that of 
building-up the IN. We show, via analysis of well-known prototype networks and real world data, that 
trade-offs between the efficiency of Active and Idle Network dynamics give rise to surprising robustness 
crossovers and re-rankings, which can have significant implications for decision making.

Recent developments in understanding the structure and dynamics of networks have transformed research in 
many fields, ranging from protein interactions in a cell to page connectivity in the World Wide Web, to landscape 
drainage patterns and relationships in human societies1–10. Although these complex networks have different evo-
lution rules, many exhibit a universal scale-free topology wherein the highly-connected nodes, although sparse, 
dominate the connectivity of the network2. Network robustness is commonly defined as the capacity of the net-
work to maintain functionality (or connectivity) when a sequential node removal strategy (attack) is performed. 
Attacks can encode the action of very diverse processes acting on a network (ranging from actions of external 
agents to competing processes within the network) that result in binary outcomes bringing active nodes to an 
idle state. The robustness of networks with different topologies to different attacks has been widely studied, and 
different strategies to manage perturbation spread within the network have been suggested3–6, 11–30. Those studies 
have proposed a wide spectrum of methodologies and metrics to quantify the robustness of the networks, albeit 
focusing mainly on the connectivity of the nodes unaffected (Active Network) by the attack, while the connectiv-
ity of the affected nodes (Idle Network) has received minimal attention.

In this paper, we present a rationale behind the necessity of considering the connectivity of the Idle Network 
to suitably assess network robustness. To do this, we answer three basic questions. (1) Is it important to know the 
connectivity of the Idle Network? (2) Can the evolving properties of the Idle Network be inferred from those of 
the Active Network alone? (3) How sensitive is the assessment of robustness to the structure of the Idle Network?

Is it important to know the connectivity of the Idle Network?
We motivate, via three examples, the necessity of using a dual perspective approach to assess robustness, where 
the connectivity of the Idle Network is also considered.
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	(a)	 Stabilization of damage. The dynamics of competing species, e.g., native vs. invasive, in an ecosystem can 
be also modeled as an attack. Notwithstanding that the robustness (e.g., survival capacity) of native species 
requires connectivity, connected loci dominated by the invasive species (Idle Network) can stabilize their 
population and hence diminish the overall long term robustness of the native community (e.g., native 
mussel vs. zebra mussels31).

	(b)	 Community Structures. Many networks exhibit community structures, wherein nodes within the same 
community have higher connectivity among themselves than with nodes outside of their community32 
(e.g., employees within a department). This characteristic topology often responds to the specialized func-
tionality and dynamics of those communities (e.g., different departments in a company), and therefore the 
disconnection of a significant number of within-community nodes (Idle Network) can affect the function-
ality of the whole network, even if the overall connectivity of the network is not significantly affected (e.g., 
the effect of the same number of people absent in a company can instigate a much larger decline in network 
functionality when they belong to the same department–highly connected nodes–since the specialized 
function assigned to their department can be compromised, jeopardizing the functionality of the whole 
system).

	(c)	 Cascading Failures. In power grids, after the failure of a node or a link, the electric currents are instanta-
neously diverted to neighboring active nodes due to the impossibility of storage. The subsequent failure of 
formerly active nodes (Idle Network) that were connected in a locality can provoke excess current in the 
surrounding nodes that might lead to cascading failures in the whole network (e.g., 1996 blackout originat-
ed in Oregon, which affected eleven U.S. states and two Canadian provinces33).

These three examples demonstrate that the connectivity of the Idle Network can be crucial in assessing 
the overall network robustness. However, a fair question can be raised at this point: Since the Active and Idle 
Networks both emerge from the action of the same attack on a network, can the information contained in the Idle 
Network be inferred from the connectivity in the Active Network? We address this question in the next section.

Can the evolving properties of the Idle Network be inferred from those of the Active 
Network alone?
To answer this question let us define formally both the Active and Idle Networks. Consider a network N that con-
sists of nodes {ni}, i = 1, …, T connected by edges {(ni, nj)} (here considered undirected). We focus on a process 
of sequential node removal, also called an attack. The process starts at t = 0 with the original network N. At each 
discrete time step t > 0 it eliminates a suitably chosen node ni and all edges (ni, ·) connected to this node, resulting 
in the set of nodes and edges, called the Active Network NA(t), that have been unaffected and thus are active at t. 
This sequential node removal operation can mimic a multitude of actual processes acting on networks and having 
a binary outcome, e.g., healthy species in a biological community that may become sick, clean streams in a river 
network that may become contaminated, people that may learn particular information, etc. We also consider the 
Idle Network NI(t) that consists of the nodes that have been removed from N up to time t, together with all the 
edges from N among these idle nodes. Accordingly, a sequential node removal process D results in the following 
decomposition of the network N:

→ = … .D N N t N t t T: { ( ), ( )}, 1, , (1)A I

Observe that the union of the nodes in the NA(t) and NI(t) networks matches the set of nodes in the original 
network N. At the same time, the union of edges from NA(t) and NI(t) is only a subset of the edges in the original 
network, since the latter may also include some edges that bridge across the evolving NA(t) and NI(t) networks. In 
other words, the pair {NA(t), NI(t)} cannot be used in general to reconstruct N; although NA(t) is uniquely deter-
mined by {N, NI(t)} and NI(t) is uniquely determined by {N, NA(t)}.

We assert that the dynamics of NA(t) and NI(t) are not trivially related and therefore, a robustness metric of the 
network N should consider both of them. We illustrate the importance of this dual perspective by considering an 
example of node removal in a simple line-connected network of length T = 7 shown in Fig. 1. The connectivity 
of the network is assessed here by the size S(t) of its largest cluster; this is a conventional metric used in many 
previous studies5, 11–30. We implemented a strategy of node removal that is the most efficient in decreasing the size 
SA(t) of the maximal cluster of the AN (Fig. 1a). During the first three time steps the max cluster size decreased 
from 7 to 1. However, this particular strategy of node removal is not at all efficient with respect to building-up 
the connectivity of the IN (Fig. 1b): in the first three time steps the maximum cluster size SI(t) merely increased 
from 0 to 1.

Quantitatively, the efficiency EA of a node removal strategy in destroying the AN can be defined as:
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here AA is the area between SA(t) and the diagonal staircase (T − t) as in Fig. 1c and Amax is the area below the 
diagonal staircase. Similarly, the efficiency EI of building the Idle Network can be defined as (Fig. 1d):
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where AI is the area below the curve SI(t). Obviously EA ≠ EI highlighting that the evolution of the connectivities 
in the Active and Idle networks are distinct.
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Figure 1.  Dual connectivity perspective in a simple line network. (a) At time t = 0 the line network consists 
of seven nodes, all belonging to the Active Network (AN) shown as solid squares. At each time step, one node 
is removed to destroy the connectivity of the AN in the most efficient way. (b) Each removed node in the AN 
creates a node in the Idle Network (IN) shown as stripped squares. The largest cluster size SA (SI) in the AN 
(IN) is shown by a solid line in panels (c) and (d). It is observed that SA and SI, evolve asymmetrically: the 
most efficient procedure to reduce SA is not the most efficient to increase SI. The efficiency of an attack has two 
components, EA and EI, one for each perspective, and their values are proportional to the gray area in panels 
(e) and (f) respectively. This illustrates that defining robustness in terms of only efficiency EA or in terms of both 
efficiencies EA and EI could make a significant difference in assessing the overall system robustness.
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Below we examine the proposed dual perspective connectivity approach when three different strategies of 
node elimination (attack strategies) are applied to three widely used types of networks. Specifically, the networks 
that we employ in our analysis are: Network 1–A square lattice of T = 10,000 nodes arranged in a Von Neumann 
neighborhood (i.e., each node having four neighbors); see Fig. 2a; Network 2–A Tokunaga self-similar tree34 
(T-tree) of order Ω = 6, where each Horton-Strahler branch7, 35 in the tree represents a node, and parameters (a, 
c) = (1, 2) (see Fig. 2e); Network-3: A Barabasi-Albert (BA) scale-free network2, with parameters (m0, m) = (3, 2) 
and T = 1,000 nodes (Fig. 2i). For further details about the examined networks see Methods. The aforementioned 

Figure 2.  Dual connectivity perspective evolution of networks under attack. Evolution of the largest cluster 
size in the Active Network, AN (red) and Idle Network, IN (blue) for homogeneous (yellow panels) and 
heterogeneous (blue panels) networks with respect to three different sequential node removal strategies: panels 
(b,f,j) random failure, (c,g,k) targeted attack, and (d,h,l) random spreading. The largest cluster size and time are 
normalized by the system size. Three main observations are made: (i) the rate of decrease of the largest cluster 
size in the AN is not the same as the rate of increase of the largest cluster size in IN (asymmetric evolution); (ii) 
for homogenous networks and networks under random failure, there is a symmetry with respect to the vertical 
axis at 0.5 implying a complementarity in the efficiencies of destroying AN and building-up IN, i.e., EA + EI ≈ 1; 
and (iii) for heterogeneous networks (T-Trees and BA networks) and heterogeneous attacks (TA and RS) no 
symmetry is observed at all; there is a necessity to monitor both networks (AN and IN) since it is not possible to 
predict the value of the efficiency of building-up the IN from the efficiency value of destroying the AN and vice 
versa.
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networks are classified according to the node degree distribution into homogeneous (lattice) and heterogeneous 
(T-tree and BA network).

In each system, we examine three strategies of node removal. Strategy 1- A random failure (RF) removes 
nodes at random using a discrete uniform distribution over all the active nodes. Strategy 2- A targeted attack (TA) 
assigns a removal probability to a vertex proportional to its degree of connectivity in the AN. Strategy 3- A ran-
dom spreading (RS) removes the first node at random as in RF; afterwards, at each time step one node connected 
to an eliminated node is randomly removed. The evolution of the largest cluster size S under progressive node 
removal is examined using 100 simulations. Figure 2 shows S(t) as a function of time in the AN and IN for a rep-
resentative realization from all the simulations for each network and attack; the time t is normalized to be equal 
to the fraction of the removed nodes. The first observation is that the rate of increase of the largest cluster size in 
the IN is not the same, in general, as the rate of decay of the largest cluster size in the AN. A lattice network under 
RS is an exception–the symmetry here (with respect to S(t) = 0.5) is expected by construction and it can only be 
altered by abrupt jumps in S(t) due to finite size effects. We also notice symmetry of SA(t) and SI(t) with respect to 
the vertical axis t = 0.5 that is only observed for a homogeneous lattice network (under any attack) and random 
failure (applied to any network) and as a consequence EA + EI ≈ 1 (see Table 1). The symmetry is not obvious in 
Fig. 2f due to the large jumps of the largest cluster size; although it can be shown statistically via the efficiency val-
ues (Table 1). Having the complementary values of EA and EI has an obvious but important implication: the more 
efficient a strategy is according to one perspective (e.g., destroying the connectivity in the AN), the less efficient 
it is according to the other (e.g., building-up the connectivity in the IN). Another important observation is that 
for T-trees, the connectivity of the AN is destroyed faster, and the connectivity of the IN is built up slower, than 
in the BA network. Finally, the perfect efficiency of the random spreading in the Idle Network is a consequence 
of its definition (SI grows linearly).

Although the size of the largest cluster is a standard metric in network robustness studies5, 11–30, other statistics 
have been proposed to monitor the decay of the connectivity of networks under attack11, 15, 18, 20, 36–43. Each of 
these metrics have certain limitations in their assessment of network robustness, for instance, the evolution of the 
largest cluster size can be insensitive to attack strategies that sparsify networks without fragmenting the largest 
component. In such cases, the size of the largest cluster would decrease linearly with time concealing important 
transitions in the system connectivity. The proposed dual perspective approach is not limited to the utilization 
of the largest cluster size as a proxy for connectivity. Symmetries (and asymmetries) similar to those reported in 
Fig. 2 are observed with other metrics such as the diameter11, 18, 36, inverse geodesic distance15, 37–40, average cluster 
size11, 18, 20 and number of clusters41–43 (see Figs S1–S4 in the Supplementary Information).

The simultaneous analysis of the evolution of connectivity in the AN (decaying) and in the IN (building-up) 
reveals critical information that is not attainable from the analysis of the AN alone, calling for the development of 
a new framework to assess network robustness.

How sensitive is the assessment of robustness to the structure of the Idle Network?
We propose a dual perspective network robustness metric RN as a function of both the efficiency EA of destroying 
the connectivity of the AN and efficiency EI of building-up the connectivity of the IN:

R f E E( , ) (4)N A I=

For illustrative purposes and in the absence of specific reasons for non-linearity of the function f(EA, EI), a 
simple metric of network robustness would be comprised of a weighted average of the two efficiencies, i.e.,

R E E( ) (1 ) (1 ) (1 ) (5)N A Iα α α= − + − −

where α is the weight given to the efficiency of the AN while (1 − α) is the complementary weight given to that 
of the IN. Using α = 1 leads to a particular definition that is currently used in the literature to guide, for example, 
decisions on most effective strategy of attack or to assess recovery rates under a given attack5, 11–30, 36–43. While this 
may be a good approximation for some systems, it is restrictive for many others as we discussed in section 1. Thus, 
α < 1 values are needed to capture possible trade-offs on the relative importance of the connectivity of the AN and 
IN in assessing the overall system robustness to the attack.

To illustrate the consequences of implementing this dual perspective framework for network robustness 
assessment, we show in Fig. 3 (top panels) the values of network robustness (as defined in equation 5) as a 
function of the parameter α for the three different networks and attacks analyzed in section 2. Notably, the 
robustness may deviate substantially from the case α = 1 (marked by stars in Fig. 3), which is examined in 

Attack Lattice T-Tree BA Network

Random Failure 
(RF)

EA = 0.35 ± 0.01 
EI = 0.65 ± 0.01

EA = 0.58 ± 0.10 
EI = 0.39 ± 0.10

EA = 0.17 ± 0.02 
EI = 0.83 ± 0.02

Targeted Attack 
(TA)

EA = 0.42 ± 0.00 
EI = 0.58 ± 0.01

EA = 0.87 ± 0.04 
EI = 0.75 ± 0.04

EA = 0.48 ± 0.02 
EI = 0.94 ± 0.01

Random Spreading 
(RS)

EA = 0.02 ± 0.02 
EI = 1

EA = 0.76 ± 0.09 
EI = 1

EA = 0.19 ± 0.02 
EI = 1

Table 1.  Efficiencies for the three attack strategies applied to the Lattice, Tokunaga Tree (T-Tree) and Barabasi 
Albert (BA) networks. EA(EI) is the efficiency of an attack strategy in destroying (building) the Active (Idle) 
network. Values in bold represent complementary efficiencies (EA + EI ≈ 1).
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most of the existing studies5, 11–30, 36–43. It is worth noting that our definition of robustness (equation 5) not 
only gives different numerical values, but also may result in crossovers–alternative ranking of attack strat-
egies depending on the value of α. For example, in a lattice network, a crossover occurs at α = 0.5, with 
RN,RS > RN,RF > RN,TA for α > 0.5, and RN,TA > RN,RF > RN,RS for α < 0.5 (here the second lower index refers to 
the attack type). A crossover between RN,TA and RN,RS is also observed for T-trees at α ≈ 0.68 as well as for 
the BA network at α ≈ 0.17. Hence, an interplay between the AN and IN introduces a whole new dimension 
in the study of robustness, which cannot be reproduced by exclusively examining the AN. At the same time, 
some general observations remain consistent with previous works when α = 1, in particular those showing 
that networks are more robust under random failure than targeted attack. Other observations for α = 1 are: 
(1) for both the heterogeneous networks, RN is highest for random failure, followed by random spreading and 
targeted attack; (2) the robustness in homogeneous networks is highest for random spreading, followed by 
random failure and targeted attack; (3) the RN -value for random spreading and homogeneous networks is 
approximately equal to 1 since SI grows linearly by definition and the efficiencies are complementary (EA = 0, 
EI = 1).

The results presented so far considered that the same node removal rules (time-invariant attack) oper-
ated on the system until its complete destruction. In many systems however, an adaptive “attack and recovery 
strategy” is applied, i.e., system performance is evaluated periodically, and especially in the early stages of the 
attack, to guide future actions. It is understood, for example, that an attack strategy, which is optimal when 
evaluated over a long period of time might be suboptimal relative to a shorter time horizon. Figure 3 (bot-
tom panels) shows the results of the robustness-based ranking of attack strategies defined with respect to a 
partial (10%) system destruction. Although both the strong dependence of robustness on α and the presence 
of crossovers is still observed, the crossover location moves closer to α = 1 with substantial divergence in the 
attack strategy rankings for α < 1. The practical implications of this finding can be substantial; for example, in 
a BA network α = 0.7 (which gives 70% weight to the AN and 30% to the IN) would remarkably re-rank the 
robustness of different attack strategies which for α = 1 would be indistinguishable (rightmost bottom panel 
plot of Fig. 3).

To further illustrate the importance of the Idle Network in assessing system robustness, we consider data 
from the second largest European airline, RyanAir44. The examined network consists of 186 airports and 1507 
edges that represent the existence of at least one weekly flight between the respective airports (Fig. 4a). Figure 4b 
shows the robustness values for a sequential removal of airports until all of them are inoperative (100% removal), 
according to the three previously implemented attack strategies: RF, TA and RS. The results are consistent with 

Figure 3.  Robustness, RN, as a function of the relative weight given to the connectivity of the Active Network 
(AN), α. The robustness defined exclusively in terms of the AN (α = 1) is shown by stars. For the top panels, 
the robustness of a homogeneous network subject to any attack and heterogeneous networks under random 
failure, is equal to 0.5 for α = 0.5 due to the property EA + EI ≈ 1. For all cases, notice (i) a strong dependence 
of robustness on α, (ii) robustness crossovers–changes in ranking (ordering of respective RN values) of different 
attack strategies depending on α and (iii) shift of the robustness crossovers towards α = 1 with substantial 
divergence in the attack strategies when the system is evaluated not at the time of complete destruction but at its 
early stages of attack (bottom panels).
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our simulations: (1) Random Failure generates complementary efficiencies (EA + EI ≈ 1). (2) Robustness rank-
ing for the different strategies is similar to the BA network (see Fig. 3) and the crossover between TA and RS is 
observed near α = 0. Figure 4c shows the network robustness when the attack strategies act only until 19 airports 
are removed (10% node removal). Qualitatively, we have the same behavior as in the BA network (c.f. Fig. 3). 
However there exist significant quantitative differences, expressed in much lower values of robustness for α < 1. 
This is due to the structure of the airline network (point-to-point), which has numerous connections among all 
the airports and hence relatively high connectivity degree for all nodes, not only the hubs. Thus, it is more likely 
to build-up clusters in the IN than hub-and-spoke scale-free networks.

To highlight why a value of α < 1 might be imperative to consider, in Fig. 5 we display two transportation 
networks whose operative airport (AN) connectivity is indistinguishable under two different attacks but that 
of their inoperative airports (IN) is drastically different. Since the largest cluster size in the Active Network 
under both attacks is the same, SA = 167 airports, the standard metric of robustness (α = 1) would rank them 
equally robust (see also Fig. 5c). However, the largest cluster size in the IN of Fig. 5a (attack 1) is more than 
6 times smaller compared to the one shown in Fig. 5b (attack 2). This results in RN(α = 0) ≈ 1 for attack 1 
and RN(α = 0) ≈ 0 for attack 2 (See Fig. 5c). It is obvious that these two scenarios are significantly different in 
view of economic, logistic, security, and other aspects. Consider for instance the monetary losses, conceptually 
approximated by the amount of traffic lost due to removal of airports (temporarily due to natural hazards, or 
permanently due to structural airline reorganization). We roughly approximate the lost traffic by the number 
of lost edges in the network, and use the largest cluster size in IN as a proxy for this quantity. Naturally, losing 
a certain number of interconnected airports leads to more severe traffic losses than losing the same number 
of disconnected airports. Incorporating more realistic scenarios, by including a gradual recovery of affected 
airports, demands that the connectivity of the idle airports must be considered to correctly assess network 
robustness. Thus, the reactivation of a disconnected airport in the Idle Network would lead to a restoration 
of its total functionality, while if the affected airport belongs to a cluster of formerly connected airports (Idle 
Network), its activation would not signify a recovery of its functionality, which would remain diminished until 
all its connections are brought back online as well (e.g., consider as an extreme case a recovered airport, where 
all its connections remain offline).

Furthermore, we highlight the prospective use of this framework to detect critical nodes in networks. Critical 
nodes are defined as nodes whose removal is detrimental for the overall network connectivity45–49, as for example, 
nodes whose removal results in the largest decrease of the pairwise connectivity among the remaining nodes. 
However, currently the assessment of critical nodes is not informed by the change in the IN connectivity under an 

Figure 4.  Robustness, RN, of the second largest airline network in Europe. (a) The map shows the connectivity 
of the second largest airline in Europe (RyanAir), operating in 186 airports (black squares), with more than 1500 
routes (red lines). The map was generated using the Google Maps API and Map Data ©2014 Google. (b) shows 
the robustness of that network under three different attacks (Random Failure (RF), Targeted Attack (TA), and 
Random Spreading (RS)), which act until all the airports are removed. In panel (c), the robustness is evaluated 
under partial attack (10 % airports removed). Note that for α = 1, the network is equally robust under any of 
the three attacks. However, for α < 1 the robustness values for different attack strategies significantly differ, 
highlighting the importance of the Idle Network in assessing the robustness of the system.
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attack. Thus, we argue that critical nodes should be assessed by considering both the effect of their removal from 
the AN and the implication of this removal on the IN, and thereby defining a general functional that properly 
weighs both effects similar to the one used to define network robustness in Eqs. 4 and 5.

Networks are ubiquitous in natural, social and human-designed systems. The robustness of those systems, 
i.e., their capacity to maintain functionality, is a fundamental property that is critical to be correctly assessed, 
especially in the case wherein the system is subject to stressors that can trigger cascading failures. In this paper, 
we argue that a critical property–the connectivity of the affected nodes (Idle Network)–has been consistently 
neglected in network robustness analyses, leading to potentially misleading assessments. We have shown that 
in general the information content of the connectivity of the idle nodes is not redundant with respect to the 
connectivity in the Active Network. We illustrate the dual perspective framework of robustness assessment by 
introducing a simple (linear) generalization of robustness, and showing its significant quantitative and quali-
tative implications, such as re-ranking of network robustness under different attacks. Finally, we emphasize the 
potential of this framework for prospective studies where recovery processes acting on the affected nodes (Idle 
Network) are implemented. In those cases, the underlying connectivity in-between the Active and Idle Networks 
might also be revealed as important components for recovery rate assessments.

Figure 5.  Importance of the dual connectivity perspective framework in assessing network robustness. The 
maps illustrate the result of two different attacks, Attack 1 and Attack 2, applied to the network until 19 airports 
are disconnected (10% removal). The two resulting networks have the same largest cluster size in the Active 
Network (SA = 167), but different largest cluster size in the Idle Network: (a) SI = 3 for Attack 1 and (b) SI = 19 
for Attack 2. Considering connectivity of the Idle Network in assessing the system robustness reveals significant 
differences in these two attacks, as quantified in (c). The maps were generated using the Google Maps API and 
Map Data ©2014 Google.
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Methods
We propose a dual perspective approach in assessing the robustness of networks wherein at any instant in the 
network evolution under attack, two distinct networks are defined: (i) the Active Network (AN) composed of the 
unaffected nodes and (ii) the Idle Network (IN) composed of the affected nodes. We test the validity of our frame-
work by analyzing three prototype networks and an airline network under sequential node removal.

Prototype networks.  Three prototype networks are used: (i) a square lattice consisting of T = 10,000 nodes 
arranged in a Von Neumann neighborhood (i.e., each node having four neighbors); (ii) Tokunaga self-similar 
trees34 (T-tree), which are known to describe critical binary Galton-Watson processes50 and level-set tree rep-
resentation of symmetric random walks or regular Brownian motion51. Tokunaga trees with a broad range of 
parameter values have found wide applicability in describing the topology of river networks34, 35, 52, biological 
networks (leaves and cardiovascular systems)53 and clustering of earthquake aftershocks54. In this paper, we use 
Tokunaga trees of order Ω = 6, where each Horton-Strahler branch7, 35 in the tree represents a node, and param-
eters (a, c) = (1, 2); (iii) and Barabasi-Albert (BA) scale-free network2, a system with heterogeneous node degree 
distribution that exhibits high connectivity and contains intricate structures due to the presence of loops. The 
BA network incorporates preferential attachment and growth mechanisms. We construct a BA network using an 
initially connected network of m0 = 3 nodes and adding a new node with m = 2 links per time step, until T = 1,000 
nodes are added.

Airline network.  We also analyzed a real-world network corresponding to the flight connections of the 
second largest European airline, RyanAir44 as of February 17, 2014. The examined network consists of 186 air-
ports and 1,507 edges that represent the existence of at least one weekly flight between the respective airports. 
The maps used in the network illustrations were generated using the Google Maps API and Map Data ©2014 
Google.

Sequential node removal.  We examined three different strategies of node elimination, where at each time 
step one node is removed from the Active Network: (i) Random Failure (RF) nodes are removed at random using 
a discrete uniform distribution over all the active nodes; (ii) Targeted Attack (TA) assigns a removal probability to 
each vertex proportional to its initial degree of connectivity in the Active Network; and (iii) Random Spreading 
(RS) where the first node is removed at random as in RF, and afterwards, at each time step one node connected to 
an eliminated node is randomly removed.
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