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Involvement of Transient Receptor 
Potential Cation Channel Member 
A1 activation in the irritation and 
pain response elicited by skin-
lightening reagent hydroquinone
Yan Tai1, Chuan Wang2, Zhihua Wang2, Yi Liang3, Junying Du3, Dongwei He4, Xiaoyan Fan5, 
Sven-Eric Jordt6 & Boyi Liu3

Hydroquinone (HQ) is one of the most frequently used and effective skin-lightening products to treat 
skin hyperpigmentation disorders, including postinflammatory hyperpigmentation, melasma and solar 
lentigines. HQ is also widely used in cosmetic products for skin whitening. However, HQ treatment can 
evoke substantial skin irritation, a side effect that remains poorly understood. Here we demonstrate 
that HQ is an activator of the peripheral irritant receptor transient receptor potential (TRP) cation 
channel member A1 (TRPA1). HQ failed to activate TRPV1, TRPV4 or TRPM8. HQ-induced TRPA1 
activation was dependent on essential redox-sensitive cysteine and lysine residues within N-terminus 
of channel protein. HQ elicited Ca2+ influx in a subpopulation of mouse sensory neurons sensitive to 
the TRPA1 agonist, mustard oil. HQ-induced neuronal responses were significantly reduced by TRPA1 
inhibitors, and reduced in neurons isolated from Trpa1-deficient mice. In mice, intraplantar injection of 
HQ at clinically relevant concentrations elicited both acute pain and persistent mechanical hyperalgesia 
which were almost completely abolished by TRPA1 inhibitors. These findings identify TRPA1 as a 
molecular target for HQ and provide insights into the mechanism of HQ-induced skin irritation. These 
findings also suggest that selective TRPA1 antagonists may be useful to counteract HQ-induced skin 
irritation.

Although common and mostly benign, skin hyperpigmentation disorders, including postinflammatory hyper-
pigmentation (PIH), melasma and solar lentigines, oftentimes present significant cosmetic or psychological 
challenges to the patient1, 2. Hydroquinone (HQ) is the active ingredient in the most frequently used and effec-
tive skin-lightening products for the treatment of skin hyperpigmentation disorders on the market3–5. HQ is 
also widely used in North America, Europe, Asia, and Africa countries for cosmetic skin whitening purpose6. It 
has been estimated that 10–15 million tubes of skin-lightening formulations containing HQ are sold worldwide 
annually7. HQ exerts its therapeutic effects via multiple mechanisms, including: 1) inhibition of the enzymatic 
oxidation of tyrosine and phenol oxidases; 2) covalent binding to histidine and interaction with the active site of 
tyrosinase; 3) inhibition of RNA and DNA synthesis7. These effects result in selective damage of melanocytes and 
suppression of melanin pigment production7. Although some concerns of possible carcinogenicity and disfigur-
ing ochronosis have been raised in association with long term HQ usage, analysis has remained inconclusive3. 
The US FDA has classified formulations with 1.5–2% HQ content as over the counter (OTC) treatments, whereas 

1Laboratory and Equipment Administration, Zhejiang Chinese Medical University, Hangzhou, 310053, China. 
2Department of Pharmacology, Hebei Medical University, Shijiazhuang, 050017, China. 3Department of 
Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, 
Hangzhou, 310053, China. 4Department of Clinical Bio-Cell, 4th Hospital, Hebei Medical University, Shijiazhuang, 
050000, China. 5Department of Oncology, Hebei General Hospital, Shijiazhuang, 050000, China. 6Department of 
Anesthesiology, Duke University School of Medicine, Durham, North Carolina, 27710, United States of America. 
Yan Tai and Chuan Wang contributed equally to this work. Correspondence and requests for materials should be 
addressed to S.-E.J. (email: sven.jordt@duke.edu) or B.L. (email: boyi.liu@foxmail.com)

Received: 23 March 2017

Accepted: 30 June 2017

Published: xx xx xxxx

OPEN

mailto:sven.jordt@duke.edu
mailto:boyi.liu@foxmail.com


www.nature.com/scientificreports/

2Scientific Reports | 7: 7532  | DOI:10.1038/s41598-017-07651-5

treatments with >4% HQ are only available by prescription4, 5. HQ remains the gold standard treatment for PIH, 
melasma and solar lentigines3, 4.

Despite the beneficial effects on skin hyperpigmentation, HQ can cause substantial skin irritating side 
effects among patients8–10. Topical HQ often causes local irritation, including burning, pruritus and erythema3. 
Oftentimes formulations contain topical steroids to suppress HQ-elicited irritation2, 3. However, long-term usage 
of topical steroids can cause skin side effects as well, including skin atrophy11. Animal studies have confirmed that 
topical HQ caused obvious skin irritation12. The molecular and cellular mechanisms mediating HQ-induced skin 
irritation remain largely unknown. Understanding the mechanisms underlying HQ-induced irritation may facil-
itate the development of effective methods to counteract the irritating side effects of HQ treatment and improve 
the patients’ compliance.

TRPA1 is a non-selective cation ion channel exclusively expressed in nociceptive sensory neurons where it acts 
as molecular sensors for painful, irritating and pruritic stimuli13. Mammalian TRPA1 can be robustly activated by 
a wide variety of endogenous/exogenous substances that elicit pain, itch and irritation14–17. TRPA1 contributes to 
the perception of noxious stimuli and plays an important role in sensory transduction. Activation of TRPA1 can 
further produce neurogenic inflammation, which is elicited by neuropeptides released from sensory nerve end-
ings, including substance P (SP) and calcitonin gene-related peptide (CGRP)13, 18, 19. Pharmacological blockage or 
genetic ablation of TRPA1 can reduce the acute response caused by many painful or irritating substances15, 16, 20, 21.

In the present study we examined the effects of HQ on TRPA1 heterologously expressed in HEK 293 cells 
in vitro by means of Fura-2 based ratiometric Ca2+ imaging and whole-cell patch clamp recording. We further 
examined the effects of HQ on cultured sensory neurons derived from wild-type and TRPA1-deficient mice. 
Lastly, we investigated whether TRPA1 contributes to HQ-induced irritation and nocifensive responses in mice 
in vivo. Our study demonstrates that HQ is a potent agonist of TRPA1 and produces pain or irritation mainly 
through activation of TRPA1. Local pharmacological block of TRPA1 may provide an efficient way to reduce the 
skin irritation caused by HQ, thereby improving patients’ compliance when treated with HQ-containing skin 
therapeutics.

Results
HQ dose dependently and selectively activates human TRPA1 ion channels heterologously 
expressed in HEK 293 cells.  HQ is a phenolic compound chemically known as 1, 4-dihydroxybenzene 
(Fig. 1A). We aimed to explore whether HQ could act as an activator of the irritation/pain-sensing TRPA1 or 
TRPV1 ion channels in vitro. Live cell Ca2+ imaging was used to investigate the effects of HQ on HEK 293 cells 
expressing either human TRPA1 (hTRPA1) or human TRPV1 (hTRPV1). Fura-2AM was used as Ca2+ indicator. 
Ca2+ imaging demonstrated that HQ (100 µM) caused significant influx of Ca2+ in HEK 293 cells expressing 
hTRPA1 (Fig. 1B). Subsequent application of mustard oil (MO, 70 µM), a well-established TRPA1 agonist, caused 
further influx of Ca2+ in HQ-responsive cells, demonstrating that HQ exclusively acted on TRPA1-expressing 
cells (Fig. 1B). In contrast, HQ had no effect on HEK 293 cells expressing hTRPV1, whereas the TRPV1 specific 
agonist capsaicin robustly activated TRPV1-expressing cells (Fig. 1C).

We continued to explore whether HQ activated hTRPA1 in a dose-dependent manner. TRPA1-mediated Ca2+ 
influx was increased at higher HQ concentrations, while HQ had no effect on TRPV1 within the concentration 
range (10–100 µM) being tested (Fig. 1D). The EC50 of HQ-induced hTRPA1 activation deduced from the curve 
was determined to be 17.1 µM (Fig. 1D). We proceeded to study the selectivity of HQ by comparing its effects on 
TRPV4 and TRPM8, two other TRP ion channels expressed in sensory nerves or skin cells, using empty vector 
(pCDNA3.1) as control. Result showed that HQ only activated TRPA1, but none of the other TRP channels or the 
empty vector-transfected cells (Fig. 1E).

To confirm that HQ activated TRPA1, we examined the effects of HQ on TRPA1-expressing HEK 293 cells 
by whole-cell patch-clamp electrophysiological recordings. To avoid TRPA1 channel inactivation, channel cur-
rents were recorded using Ca2+-free extracellular solution22. As shown in Fig. 2A, HQ (10 µM) induced robust 
activation of the hTRPA1-mediated cellular currents with strong inward and outward currents measured at −70 
and +70 mV, respectively (Fig. 2B). The inward and outward currents induced by HQ were strongly inhibited by 
ruthenium red (RR, 10 µM), a nonspecific TRP channel blocker (Fig. 2A and B). As a negative control, HQ had 
no effect on HEK 293 cells transfected with empty vector (pCDNA3.1) alone (Fig. 2C and D). On average, the 
amplitudes of inward and outward currents induced by HQ (10 µM) in HEK 293 cells expressing hTRPA1 reached 
133 and 192 pA/pF, respectively, whereas HQ induced no detectable currents in cells expressing the vector alone 
(Fig. 2E). Taken together, the Ca2+ imaging and patch clamp recording data demonstrate that HQ specifically and 
dose-dependently activates hTRPA1 heterologously expressed in HEK 293 cells.

HQ activates TRPA1 through covalent modification of reactive residues located in the 
N-terminus of the channel protein.  It is well established that TRPA1 channel can be activated by a vari-
ety of reactive chemicals through covalent modification of cysteine and lysine residues in the N-terminus of 
the channel protein. Therefore, we aimed to ask whether HQ activated TRPA1 via similar mechanisms. We first 
examined the effects of dithiothreitol (DTT), a reducing reagent, on HQ-induced TRPA1 activation in HEK 293 
cells by Ca2+ imaging. As shown in Fig. 3A, HQ (30 µM) induced robust activation of hTRPA1. Pretreatment of 
cells with DTT (3 mM) almost totally abolished HQ-induced hTRPA1 activation (Fig. 3A and B). Next, we exam-
ined whether cysteine and lysine residues in the N-terminus of the channel protein were involved in HQ-induced 
TRPA1 activation. HEK 293 cells were transfected with a mutant TRPA1 channel in which critical reactive sites 
(C619, C639, C663, and K708, termed as TRPA1–3CK) were replaced by inert residues. These mutations have 
been shown to significantly reduce TRPA1 activation by many reactive chemicals15–17. As shown in Fig. 3C and D, 
TRPA1-3CK transfected cells showed almost no response to HQ, compared with wild type hTRPA1-transfected 
cells. For comparison, the effect of mustard oil (70 µM), a typical reactive TRPA1 agonist, was significantly 
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reduced in TRPA1-3CK-transfected cells, in confirmation with previous studies (Fig. 3D). TRPA1-3CK chan-
nel remained functional since carvacrol (300 µM), a nonreactive agonist that activated TRPA1 via non-covalent 
mechanism, robustly activated the channel (Fig. 3C)23. Therefore, the above results demonstrate that HQ activates 
TRPA1 via covalent modification of cysteine and lysine residues in the N-terminus of the channel protein.

0 40 80 120 160

1.0

1.5

2.0

2.5

3.0

Time, s

R
at

io
 (3

40
/3

80
)

100

80

60

40

20

0

0.1 1 10 100 1000
Concentration, µM

%
 o

f i
on

om
yc

in
 re

sp
on

se

+HQ +MO
+Iono

+HQ +Cap
+Iono

hTRPA1 hTRPV1

TRPA1

TRPV1

A

C

D E

hT
R

P
V

1

hT
R

PA
1

Control +HQ +MO Control +HQ +Cap

%
 in

cr
ea

se
 in

 R
34

0/
38

0

B

Hydroquinone

**

Vec
tor

TRPV1

TRPV4

TRPM8

TRPA1

250

200

150

100

50

0

200

3.5

0.5

1.0

2.0

3.0

R
at

io
 (3

40
/3

80
)

4.0

0 40 80 120 160
Time, s

200

Figure 1.  HQ selectively and dose-dependently actives TRPA1 channel heterologously expressed in HEK 
293 cells. (A) Molecular structure of HQ. (B) Top: Representative pseudo color images from Fura-2-loaded 
HEK 293 cells expressing human TRPA1, displaying intracellular Ca2+ resonses. Cells are shown in resting 
state (left), followed by response to HQ (HQ, 100 µM, middle) and to mustard oil (MO, 70 µM, right), used as 
positive control to stimulate TRPA1. Bottom: Average Ca2+ responses plotted against stimulus. As final stimulus 
ionomycin (1.5 µM) was used to stimulate all live cells. (C) Examination of responsiveness of human TRPV1 to 
HQ (HQ, 100 µM) and capsaicin (Cap, 300 nM), as positive control. (D) Dose-response analysis showing the 
effects of different concentrations of HQ on TRPA1 and TRPV1 expressed in HEK 293 cells. The response to 
HQ was normalized to that to ionomycin (1.5 µM). (E) Effects of HQ (30 µM) on hTRPA1 compared to effects 
on human TRPV1, TRPV4, TRPM8 and empty vector (pcDNA3.1) in Ca2+ imaging tests. n = 20–40 cells/
group. **p < 0.01 vs. vector group.
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TRPA1 expressed in mouse primary sensory neurons is a molecular target of HQ.  We proceeded 
to explore whether HQ stimulated primary sensory neurons through activation of TRPA1 in vitro. Cultured 
mouse dorsal root ganglion (DRG) neurons were loaded with Fura-2 for ratiometric Ca2+ imaging. We observed 
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Figure 2.  HQ evokes TRPA1 channel currents in HEK 293 cells expressing TRPA1. (A) Current-voltage (I-V) 
curve recorded from a representative HEK 293 cell expressing human TRPA1 before HQ application (green), 
during HQ application (red) and inhibition by ruthenium red (10 µM, black) in the patch clamp whole-cell 
configuration. Currents were measured by applying a voltage ramp ranging from −80 to + 80 mV. (B) Time 
courses of the inward (measured at −70 mV, black) and outward current (measured at +70 mV, red) recorded 
in (A). (C) I-V curve recorded under the same configuration as in (A), except that the cell was transfected 
with empty vector. (D) The time course of the inward (measured at −70 mV) and outward current (measured 
at +70 mV) as recorded in (C). (E) Summary of the inward and outward current density recorded at −70 
and +70 mV, respectively, in HEK 293 cells expressing hTRPA1 or empty vector. **p < 0.01 vs. vector group.
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that HQ (30 µM) induced robust Ca2+ signals in a subset of mouse DRG neurons (Fig. 4A and B). A majority of 
the HQ-responsive neurons showed further Ca2+ responses upon subsequent application of a saturating dose 
of TRPA1 agonist MO (100 µM) (Fig. 4B). To further investigate if HQ-induced Ca2+ responses were predom-
inately distributed in neurons expressing TRPA1, we evaluated the correlation of MO-induced Ca2+ response 
with HQ-induced Ca2+ response in mouse DRG neurons. Pearson correlation analysis revealed that a significant 
positive correlation existed between the magnitude of Ca2+ responses induced by HQ and MO (r = 0.74 and 
p < 0.000001, Fig. 4C). Venn diagram analysis revealed a >80% overlap of the HQ-responsive neuronal popula-
tion (HQ+) with the MO-responsive neuronal population (MO+).

We next used additional pharmacological tools to examine whether TRPA1 was involved in HQ-induced 
Ca2+ responses in DRG neurons. HQ-induced Ca2+ responses were completely abolished when experiments were 
performed in Ca2+-free extracellular solution (Fig. 5A,B). The broad spectrum TRP channel blocker ruthenium 
red (RR, 10 µM) significantly reduced the magnitude of HQ-induced Ca2+ response (Fig. 5C). Furthermore, the 
selective TRPA1 inhibitor HC-030031 (100 µM) significantly reduced the magnitude of the HQ-induced Ca2+ 
response to a similar extent as RR (Fig. 5D). Minor residual Ca2+ responses remained during inhibitor treatments 
with RR or HC-030031 (Fig. 5C and D). The TRPV1-specific inhibitor, AMG-9810, at the effective dosage that 
blocked TRPV1 in vitro (6 µM) had no effect on HQ-induced Ca2+ responses (Fig. 5E)24, 25. The magnitudes of 
HQ-induced Ca2+ responses during different pharmacological treatments are summarized in Fig. 5F.
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Figure 3.  Covalent modification sites of TRPA1 are essential for the effects of HQ. (A) Representative Ca2+ 
imaging traces showing the effects of reducing reagent DTT on HQ-induced hTRPA1 activation in HEK 293 
cells. Cells were pretreated with dithiothreitol (DTT, 3 mM) for 3 min before recording and then recorded under 
the continued presence of DTT. Cells were challenged with HQ (30 µM) and subsequently with ionomycin 
(Iono, 1.5 µM). (B) Summary of the effects of DTT on HQ-induced Ca2+ responses in HEK 293 cells. n > 40 
cells/group. **p < 0.01 vs. Control group. (C) Representative Ca2+ imaging traces showing responses of 
hTRPA1 and hTRPA1 mutant (3CK mutant)-expressing HEK293 cells following application of HQ (30 µM) and 
carvacrol (300 μM). (D) Averaged Ca2+ responses induced by HQ and mustard oil (MO, 70 µM) in hTRPA1 and 
hTRPA1–3CK. The response was normalized to that of a saturating dose of carvacrol (300 μM). n > 40 cells/
group. **p < 0.01 vs. hTRPA1 group.
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We further evaluated the contribution of TRPA1 in HQ-induced Ca2+ responses using TRPA1-deficient 
(Trpa1−/−) mice. DRG neurons were isolated and cultured from WT and Trpa1−/− mice and subjected to Ca2+ 
imaging. We found that the percentage of HQ-responsive neurons and the amplitude of HQ-induced Ca2+ 
responses were both significantly reduced in neurons isolated from Trpa1−/− mice compared with WT neurons 
(Fig. 6A–D). For control, the neurons cultured from Trpa1−/− mice showed significantly reduced MO-induced Ca2+ 
response compared with WT, while the effect of capsaicin (acting via TRPV1) remained unaltered (Fig. 6A–D).  
Overall, the above results demonstrate that TRPA1 is critically involved in the Ca2+ responses induced by HQ in 
DRG neurons in vitro.

HQ induces both acute and persistent nocifensive behavior in vivo through TRPA1-dependent 
mechanism.  Since HQ can stimulate mouse primary sensory neurons via TRPA1 activation in vitro, we car-
ried out animal behavioral assays to examine whether HQ could actually elicit irritation or pain-related behavior 
in mice in vivo and if so, whether it was related to TRPA1 activation. Intraplantar injection of HQ (3 to 30 mM, 
in 20 µl volume) dose-dependently elicited biting, lifting and flinching behavior in mice, all signs of acute pain 
(Fig. 7A). In contrast, vehicle (PBS)-injected mice showed minimal responses (Fig. 7A). These acute nocifensive 
behaviors occurred immediately after HQ injection and gradually declined within 5 min (Fig. 7B and C). The total 
time the mice spent biting, lifting and flinching the injected paw after HQ or vehicle injection is summarized in 
Fig. 7A.

We next examined whether administration of the TRPA1 specific inhibitor, HC-030031, could reduce 
HQ-induced acute nocifensive behavior in mice. Co-injection of HC-030031 (10 µg) dramatically reduced HQ 
(10 mM, in 20 µl volume)-induced biting, lifting and flinching behavior. The effect of HC-030031 on HQ-induced 
acute nocifensive behavior is summarized in Fig. 7D. We proceeded using von Frey hair-analysis to investigate 
whether HQ could produce persistent pain through activation of TRPA1 in vivo. The mice still exhibited obvious 
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signs of mechanical hyperalgesia measured 1.5 h after HQ injection (10 mM, Fig. 7E). The persistent mechanical 
hyperalgesia induced by HQ was strongly reduced by the TRPA1 antagonist, HC-030031 (Fig. 7E). Therefore, 
the above results demonstrated that HQ could cause both acute pain and persistent mechanical hyperalgesia via 
activation of TRPA1.

Discussion
In the present study, we identified hTRPA1 as a novel molecular target for the skin-lightening reagent HQ both 
in vitro and in vivo. HQ elicited robust pain or irritation responses in mice through a TRPA1-dependent mech-
anism. These conclusions are based on the following findings: First, HQ dose-dependently activated hTRPA1 
heterologously expressed in HEK 293 cells. This effect on TRPA1 was specific since HQ exerted no obvious effect 
on other TRP channels, including TRPV1, TRPV4 or TRPM8. Second, HQ only activated a subpopulation of 
mouse DRG neurons, which correlated closely with mustard oil-responsive neurons. Third, HQ-induced Ca2+ 
responses in mouse DRG neurons were significantly attenuated by pharmacological blockage of TRPA1 or by 
genetic deletion of TRPA1. Lastly, in vivo animal behavioral tests showed that HQ induced both acute pain and 
persistent mechanical hyperalgesia in mice. These nocifensive behaviors were almost completely attenuated by 
locally treating animals with TRPA1 specific antagonist HC-030031.

HQ is usually applied in ointments or creams to the skin for hyperpigmentation disorder treatment. A pre-
vious study investigated the intradermal concentration of clinically used HQ (5.0%) after its permeation using 
rat skin26. In that study, it was reported that the intradermal concentrations at 2 h after application of the HQ 
ointments were 358 mM in stratum corneum and 51.7 mM in epidermis plus dermis tissue26. In the present study, 
we found that HQ can robustly activate TRPA1 currents in HEK 293 cells at concentrations as low as 10 μM and 
the estimated EC50 by Ca2+ imaging is 17.1 μM, which is far less than the concentration of HQ detected in the 
skin treated with a clinical ointment. Therefore, it can be expected that topically applied HQ ointment will lead 
to local HQ concentrations that by far exceed the threshold needed for TRPA1 activation. Our study did not test 
whether topical application of an HQ-containing ointment can cause irritation or pain response in the hind paw 
of mice, because mice usually lick, bite and scratch the application site to remove the ointment. Previous studies 
using black guinea pigs have demonstrated that topical HQ application can cause skin irritation. Furthermore, 
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our in vivo studies demonstrated that intraplantar injection of HQ at a concentration range of 1 to 30 mM can 
readily produce both acute pain and persistent mechanical hyperalgesia in mice. This concentration range is 
much lower than the concentration of HQ found in stratum corneum and epidermis plus dermis tissue (358 and 
51.7 mM, respectively) when 5% clinically used HQ ointment is applied on the skin26. Therefore, it is quite likely 
that topically applied HQ ointment in patients, containing much higher amounts of HQ, will activate TRPA1 and 
cause irritation and pain.

Although TRPA1 specific inhibitors or TRPA1 gene deficiency significantly reduced HQ-induced Ca2+ 
responses in mouse DRG neurons, residual Ca2+ responses remained under these conditions. This observation 
suggests that other mechanisms, in addition to TRPA1 activation, contribute to the HQ-induced Ca2+ responses 
in DRG neurons. The cellular HQ-induced Ca2+ response does not derive from intracellular Ca2+ release since it 
can be completely blocked by removing extracellular Ca2+. The broad spectrum TRP channel blocker ruthenium 
red could not completely block HQ-induced Ca2+ responses, suggesting that the residual response is not medi-
ated by TRP channels. While we are currently unable to pinpoint the molecular identity of this residual activity, it 
may contribute to the painful and irritating effects of HQ by eliciting neuronal excitation and neurogenic release 
of pro-inflammatory neuropeptides. While not being the sole molecular target of HQ in sensory neurons, in vivo 
pharmacological blockage of TRPA1 resulted in an almost complete abolishment of HQ-induced acute irritation/
pain response and persistent mechanical hyperalgesia in mice. Therefore, the present results suggest that TRPA1 
acts as a major molecular target of HQ and plays a predominant role in mediating the irritation or pain response 
induced by HQ.

Previous studies identified TRPA1 immune reactivity in cells of the human skin, implying that TRPA1 may 
act as an irritant receptor in skin cells27. However, other studies, including ours, did not detect significant TRPA1 
expression in neither skin cells nor cells of the immune system, while abundant expression is observed in sen-
sory nerves28–30. To validate these findings we recently applied a systematic approach using real-time PCR and 
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digital droplet PCR that failed to detect the presence of TRPA1 mRNA in skin samples from mice and humans. 
Expression of other TRP channels, such as TRPV4, was readily detectable14. While further detailed analysis of 
TRPA1 expression in skin or skin cells is needed, these data suggest that skin cells produce minimal amounts of 
TRPA1, and the majority of TRPA1 in the skin is localized to sensory nerve endings.

It is interesting to note that zinc, which also has effects on melanogenesis31, 32 and, similar to HQ, is used for 
treatment of skin hyperpigmentation, robustly activates TRPA1 and causes irritation as well33. While zinc likely 
affects melanocytes directly, it remains to be investigated whether TRPA1 activation is essential for the skin light-
ening effects of both zinc and HQ, potentially by triggering neuropeptide release that may affect melanogenesis. 
Recent studies observed that CGRP and Substance P, both neuropeptides known to be released from nerve end-
ings upon TRPA1 stimulation, inhibit melanogenesis and induce melanocyte apoptosis29, 34, 35. The mechanisms 
of TRPA1 activation by these two chemicals are significantly different. We identified cysteine and lysine residues 
in the N-terminus of the channel protein (C619, C639, C663, and K708) as crucial residues for TRPA1 activation 
by HQ, whereas cysteine and histidine residues (C1021, H983 in the C-terminus and C641 in the N-terminus) 
are crucial for TRPA1 activation by zinc33. Therefore, HQ and zinc activates TRPA1 via different mechanisms.

HQ exerts its therapeutic effects mainly in melanocytes with active tyrosinase activity, such as epidermal 
hyperactivated melanocytes36. The oxidation products of hydroquinone are quinones and reactive oxygen species, 
which lead to an oxidative damage of membrane lipids and proteins of melanocytes, including tyrosinase, which 
is the main enzyme regulating melanin synthesis37, 38. In addition, HQ may interfere with skin pigmentation even 
through multiple mechanisms, including (i) the covalent binding to histidine or interaction with coppers at the 
active site of tyrosinase, (ii) the inhibition of DNA and RNA synthesis and (iii) the alteration of melanosome 
formation and melanization extent7.

However, due to the widespread use of HQ in prescription, OTC and cosmetic formulations, there is consid-
erable concern about its potential dermatological and systemic side effects, especially during long term usage. 
Especially nephrotoxicity, carcinogenicity and disfiguring ochronosis may be associated with HQ use7. Therefore, 
HQ is banned in the European Union (EU) as an ingredient in cosmetics with HQ medication only available upon 
prescription7. However, concrete evidence supporting these side effects is still lacking7, 39.
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The US FDA lists some HQ-containing treatments as OTC drugs3. HQ remains one of the most frequently 
used and most effective skin-lightening products to treat skin hyperpigmentation disorders5. Topical HQ applica-
tion is often accompanied with local skin irritation, which causes discomfort and hinders its usage among certain 
patients10. A recent double-blind randomized comparative study showed that skin irritation occurred in over 30% 
of patients who received topical HQ treatment for PIH8. Topical steroids are oftentimes co-applied with HQ to 
help reduce its irritancy2, 3. However, long term usage of topical steroid is associated with side effects, including 
skin atrophy11, 40. Our study revealed for the first time that HQ can cause irritation or pain through TRPA1 acti-
vation. Furthermore, pharmacological blockage of TRPA1 almost completely abolished HQ-induced nocifensive 
behavior in mice. Therefore, our findings suggest that blocking TRPA1 by topical application of TRPA1 specific 
inhibitors may offer a novel and efficient method to reduce the irritation caused by topical HQ treatment.

In summary, our study identifies TRPA1 as a molecular target for the widely used skin-lightening reagent HQ 
and provides novel insights into HQ-evoked skin irritation. Our study also suggests that topical application of 
selective TRPA1 antagonist might be potentially used to counteract HQ-induced skin irritation.

Methods
Animals.  Experimental procedures were approved by the Institutional Animal Care and Use Committees of 
Duke University. Mice were housed at facilities accredited by the Association for Assessment and Accreditation 
of Laboratory Animal Care (USA) in standard environmental conditions (12-hour light–dark cycle and 23 °C). 
Food and water were provided ad libitum. Male C57BL/6 mice (6–8 weeks old) were purchased from Jackson 
Laboratory (Bar Harbor, ME) and used in the present study. Procedures were approved by the Institutional 
Animal Care and Use Committee of Duke University, protocol A052-17-02, approved on 03/17/2017. All meth-
ods were performed in accordance with the relevant guidelines and regulations of Duke University and Zhejiang 
Chinese Medical University.

Chemicals.  HQ, ionomycin, capsaicin and mustard oil were obtained from Sigma-Aldrich (St. Louis, MO, 
USA). HC-030031 and AMG-9810 were obtained from Tocris (Minneapolis, MN, USA).

Cell culture.  Human embryonic kidney (HEK) 293 cells (ATCC, CRL-1573) were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM, Lonza, Belgium) supplemented with 10% fetal bovine serum (Lonza, 
Belgium), 2 mM L-glutamine, 100 units/mL penicillin, and 100 μg/mL streptomycin. Cells were transfected by 
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA).

Adult mouse dorsal root ganglia (DRGs) were dissociated using 0.28 Wünsch units/ml Liberase Blendzyme 1 
(Roche Diagnostics, Mannheim, Germany), as described previously41. Neurons were cultured in Neurobasal-A 
medium (Invitrogen, Grand Island, NY) with B-27 supplement, 0.5 mmol/L glutamine, and 50 ng/mL nerve 
growth factor (Calbiochem, La Jolla, CA) on an 8-well chambered coverglass coated with poly-D-lysine (Sigma, 
St. Louis, MO) and mouse laminin (Invitrogen, Carlsbad, CA, USA).

Ca2+ imaging.  For Ca2+ imaging of HEK293 cells, cells were used within 48 h after transfection. For DRG 
neurons, neurons were used 24 h after dissociation. Cells were loaded with Fura 2-AM (10 μM, Invitrogen) 
for 45 min in a loading buffer containing: NaCl 140, KCl 5, CaCl2 2, MgCl2 2, HEPES 10 (pH 7.4 adjusted 
with NaOH). Cells were subsequently washed three times and imaged in the loading buffer. Ratiometric 
Ca2 + -imaging was performed on an Olympus IX51 microscope with a Polychrome V monochromator (Till 
Photonics) and a PCO Cooke Sensicam QE CCD camera and Imaging Workbench 6 imaging software (Indec). 
Fura-2 emission images were obtained with exposures of 0.5 ms at 340 nm and 0.3 ms at 380 nm excitation wave-
lengths. Ratiometric images were generated using ImageJ software. A cell was considered responsive if the peak 
Ca2+ response is above 20% of the baseline.

Electrophysiological recording.  Details of patch clamp recording have been described previously22. 
Briefly, recordings from HEK293T cells were performed with borosilicate glass pipettes with an initial series 
resistance of 2–4 MΩ after loading the pipette solution. Currents were filtered at 2.3 kHz and digitized at 100 
μs intervals using an EPC-10 amplifier and PatchMaster acquisition software (HEKA, Germany). Perforated 
whole-cell hTRPA1 currents in HEK293 cells were recorded by patch-clamp recordings with a pipette solution 
containing (in mM): CsAsp 140, MgCl2 2, HEPES 10, EGTA 10, pH 7.4 (CsOH) with ~30 pM amphotericin B 
added. The perfusion solution (in mM) contained: NaCl 140, KCl 4, EGTA 2, MgCl2 2, HEPES 10, and glucose 
8, pH 7.4 (NaOH).

Nocifensive behavioral assay.  Mice were placed into transparent chambers and habituated for 30 minutes 
before testing. HQ (1–30 mM, 20 µl/paw, dissolved in PBS) was injected into the hind paw of mice using 1-mL 
syringe and 30-gauge needle in a volume of 20 µl. Acute nocifensive behavior (licking, flinching, or biting of 
injected paw) was recorded with a video camera for 10 minutes and quantified thereafter.

Mechanical hyperalgesia was examined by von Frey hair analysis. Mice were habituated for 30 minutes to 
the wire mesh surface before testing. Paw withdrawal thresholds were determined using a series of von Frey 
filaments (0.008–6.00 g) pressed against the plantar surface of the hind paw in ascending order beginning with 
the finest fiber following standard procedures17, 42–44. The minimum force (g) that caused the mouse to withdraw 
its hind paw away from the filament was considered as the withdrawal threshold. For each paw, a von Frey hair 
was applied 5 times at 10-second intervals. The threshold was determined when paw withdrawal was observed 
in more than 3 of 5 applications. A withdrawal response was considered valid only if the hind paw was removed 
completely from the platform. If the paw withdrawal response was ambiguous, the application was repeated. All 
behavioral tests were performed by an experimenter blinded to experimental conditions.
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Statistics.  Student’s t-test was used for comparison of data between 2 groups. One-way or two-way ANOVA 
followed by Tukey post hoc test was used for comparison of ≥3 groups. Comparison is considered significantly 
different if the p value is less than 0.05. Data in bar graphs are expressed as means ± S.D.
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