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Prediction of aboveground 
grassland biomass on the Loess 
Plateau, China, using a random 
forest algorithm
Yinyin Wang1,2, Gaolin Wu1, Lei Deng1, Zhuangsheng Tang3, Kaibo Wang4, Wenyi Sun1 & 
Zhouping Shangguan1,2

Grasslands are an important component of terrestrial ecosystems that play a crucial role in the carbon 
cycle and climate change. In this study, we collected aboveground biomass (AGB) data from 223 
grassland quadrats distributed across the Loess Plateau from 2011 to 2013 and predicted the spatial 
distribution of the grassland AGB at a 100-m resolution from both meteorological station and remote 
sensing data (TM and MODIS) using a Random Forest (RF) algorithm. The results showed that the 
predicted grassland AGB on the Loess Plateau decreased from east to west. Vegetation indexes were 
positively correlated with grassland AGB, and the normalized difference vegetation index (NDVI) 
acquired from TM data was the most important predictive factor. Tussock and shrub tussock had the 
highest AGB, and desert steppe had the lowest. Rainfall higher than 400 m might have benefitted 
the grassland AGB. Compared with those obtained for the bagging, mboost and the support vector 
machine (SVM) models, higher values for the mean Pearson coefficient (R) and the symmetric index of 
agreement (λ) were obtained for the RF model, indicating that this RF model could reasonably estimate 
the grassland AGB (65.01%) on the Loess Plateau.

Grasslands are indispensable terrestrial ecosystems1–4 for maintaining the ecological balance of arid and semi-arid 
regions under global climate change5–7. Increases in land-use intensity along with the uncertain risks from 
extreme climate events8, 9 have disturbed the native grassland successional processes. The Loess Plateau is an eco-
logically vulnerable area in China that is experiencing one of the most rapid rates of soil erosion in the world10, 11.  
Soil and water conservation and ecological restoration projects on the Loess Plateau have been widely valued by 
all sectors of society; in particularly, the “Grain for Green” project has been implemented by the Chinese govern-
ment since 1999 to restore vegetation on steep, previously farmed lands and convert them to forests and grass-
lands12, 13. As a result of vegetation restoration on the Loess Plateau, sediment discharge into the Yellow River had 
declined to approximately 0.2 billion tons by 201314, but researchers have found that revegetation was threatening 
the sustainability of water resources15. Assessment of the plant aboveground biomass (AGB) on the Loess Plateau 
is necessary to achieve sustainable vegetation restoration.

Remote sensing (RS) technology is a popular tool for estimating grassland AGB due to its ability to rapidly and 
continuously collect data over large areas16–19. Barrachina et al.20 employed Landsat TM-5 data to estimate the AGB 
in mountain meadows and pastures, and Li et al.21 developed a pure vegetation index model to predict the grass-
land AGB in the Inner Mongolian region of China. These studies indicated that AGB assessment using RS data 
is feasible, but the study areas were so different from the Loess Plateau that the fit of these models in that context 
cannot be validated. Newly launched satellites, such as Landsat 8, can potentially be used for quantifying ecosys-
tem biomass22. For example, Dong et al.23 utilized Landsat 8 data to assess winter wheat biomass, and Dube et al.24  
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applied Landsat 8 images to estimate forest biomass. However, these authors focused on small-scale biomass 
estimation, and the existing Landsat 8 images of sufficient quality in 2013 could not cover the entire area of the 
Loess Plateau. Therefore, we utilized Landsat 5 images to acquire the vegetation index values used in this study.

A random forest (RF) model25, 26, which is a combination of multiple decision trees, is one example of a 
machine learning algorithm. Idowu et al.27 found that a machine learning algorithm might be more effective than 
a linear regression model for multi-variable models. Thus, it might be possible to effectively predict grassland 
AGB by combining an RF model with RS data. Previous researchers have measured the grassland AGB based on 
field experiments28, 29 but have not assessed the grassland AGB of the entire Loess Plateau because grasslands are 
widely distributed in this region30.

We attempted to predict the grassland AGB across the Loess Plateau, to understand the large-scale spatial 
characteristics of grasslands in this region by addressing the following questions. (1) Can an RF model be used 
to predict the grassland AGB on the Loess Plateau using meteorological and RS data? (2) What is the spatial 
distribution of the grassland AGB on the Loess Plateau? (3) How does the grassland AGB vary along the rainfall 
gradient? (4) How well does an RF model perform based on an accuracy assessment?

Results
Spatial distribution of the grassland AGB on the Loess Plateau.  Figure 1 shows the spatial distri-
bution of the predicted grassland AGB on the Loess Plateau. The predicted grassland AGB decreased from east 
to the west across the plateau and ranged from 19.782 g m−2 to 401.73 g m−2, and it varied less in the longitudinal 
direction than in the latitudinal direction. The tussock and shrub tussock vegetation types had the highest AGB, 
followed by forest steppe; in general, the AGB in forest steppe is higher than the AGB in typical steppe, which is 
higher than the AGB in desert steppe. Both desert steppe and steppe desert had a relatively small AGB compared 
with the other vegetation types, and the lowest AGB was observed in the desert steppe.

Rainfall affected the grassland AGB on the Loess Plateau.  We divided the annual average rainfall 
from 2011 to 2013 (RM) into four types: arid (0–200 mm); semiarid (200–300 mm); alternate drying – wetting 
(300–400 mm) and semi-humid (>400 mm). Considering that rainfall might affect the grassland AGB in different 
ways under different percentages of bare area, we also categorized bare land into five types based on the percent-
age of the total area: B1 (<20%), B2 (20–40%), B3 (40–60%), B4 (60–80%), and B5 (>80%).

The observed and predicted grassland AGB varied with the rainfall gradient (Fig. 2), and highest values for 
both of these variables were obtained when the rainfall was greater than 400 mm (Fig. 2d). If the rainfall was lower 
than 400 mm (Fig. 2a–c), the grassland AGB showed only slight changes along the rainfall gradient.

When the rainfall was in the range of 300 to 400 mm (Fig. 2c), the grassland AGB exhibited obvious patterns 
in response to different percentages of bare land, i.e., the lower the percentage of bare land, the higher the grass-
land AGB (both observed and predicted). However, this pattern was not apparent under other rainfall conditions 
(Fig. 2a,b and d).

RF model validation.  To validate the accuracy of the grassland AGB predicted by the RF model, we used 
Pearson’s coefficient (R) and the symmetric index of agreement (λ)51 to assess the correlation and agreement 
among the predicted and observed grassland AGB values. We also employed the mean error (ME), mean aver-
age error (MAE) and root mean square error (RMSE) to quantify the deviations among the predictions and 
observations. The observed grassland AGB (considered as 100%), which was randomly sampled as the validation 
set (from 10%~90%, at the intervals of 10%), and the training set was the remainder of the total set minus the 

Figure 1.  Spatial variation in the grassland AGB on the Loess Plateau. The map was generated using ArcMap 
Version 10.0 (http://www.esri.com/) and R Version 3.1.3 (https://www.r-project.org/).

http://www.esri.com/
https://www.r-project.org/
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validation set. Other machine learning models, such as bagging, mboost, and support vector machine (SVM), 
were also compared with the RF model.

In the training set (Fig. 3a and b), the RF model had the highest mean R and λ, followed the mboost model, 
the bagging model, and the SVM model, which had the lowest value. In the validation set (Fig. 3c and d), the RF 
model had the highest mean R and λ, which were higher than those of the bagging model, and the bagging model 
values were higher than the SVM model values, which were higher than the mboost model values.

In the training set (Fig. 3e and g), the RF model had the lowest mean MAE and RMSE, and the same find-
ing was obtained for the validation set (Fig. 3h and j). However, the mean ME of the four models (RF, bagging, 
mboost, and SVM) showed slight differences. Furthermore, the differences in the MAE, ME and RMSE of these 
four models were less easily distinguishable than the differences in the R and λ values.

Partial dependence of various factors on grassland AGB.  The factors used in the RF model made 
different contributions to the grassland AGB on the Loess Plateau, and their partial dependencies reflected their 
relationship to the grassland AGB. The predictive factors can be grouped into five categories: the normalized 
difference vegetation index (NDVI), the leaf area index (LAI), the fraction of photosynthetically active radiation 
(FPAR), rainfall and geographical location (longitude: x).

When the grassland AGB fell within the range of 160 to 220 g/m2, the NDVI and LAI were positively corre-
lated with the grassland AGB (Fig. 4a,f and g). Ullah et al.31 found that the grassland AGB was positively corre-
lated with the NDVI (R2 = 0.51), and Liang et al.32 concluded that an NDVI-based AGB model would be the most 
appropriate in their case study of the Three-River Headwaters Region in China. The above-mentioned results 
indicate that NDVI is an important factor in predicting the grassland AGB despite the low vegetation greenness 
of arid lands.

Previous researchers have used LAI and FPAR for crop modelling33, 34; thus, we used these variables in the 
grassland AGB model in this study. When the grassland AGB was higher than 180 g/m2, it was positively corre-
lated with the FPAR (Fig. 4e), which showed that the FPAR could be a useful parameter in the estimation of AGB.

Grassland AGB was negatively correlated with rainfall when rainfall was lower than 400 mm and was pos-
itively correlated with rainfall when rainfall was higher than 400 mm (Fig. 4d). This result reveals that rainfall 
could be beneficial to grass growth in the semi-humid region of the Loess Plateau (rainfall >400 mm), but in the 
arid region (rainfall <200 mm), it might be difficult for grass to utilize rainfall. Extreme rainfall in the semi-arid 
region of the Loess Plateau (200 mm <rainfall <300 mm) might remove loose soil and hinder grass growth. 
Because rainfall is the only source of soil moisture on the Loess Plateau, soil moisture is closely related to rainfall 
gradients35, 36. Under wet conditions, the surface soil moisture is mainly controlled by rainfall, but under dry 
conditions, it is controlled by the plant water content and soil texture37, 38. This finding might explain why rainfall 
affected the grassland AGB of the arid/semiarid region and the semi-humid region of the Loess Plateau in differ-
ent ways.

As shown in Fig. 4c, the grassland AGB increased with increasing longitude. At a large scale, the geographical 
location determines rainfall, and rainfall affects the soil water. The increase in soil water from the northwest to the 
southeast on the Loess Plateau39 could explain the spatial patterns of the grassland AGB.

Image sources might affect the prediction accuracy.  The spatial resolution of the predicted grassland 
AGB map in this study was 100 m, but the TM images (30 m), rainfall images (100 m) and MODIS images (500 m) 
had different spatial resolutions, which might result in error propagation. Over a large area, it is relatively difficult 
to collect all data at the same spatial resolution, and we usually tend to set the image resolution as high as possible. 

Figure 2.  Observed and predicted grassland AGB in several of rainfall gradients (RM was annual average 
rainfall of 2011, 2012 and 2013) and bare land percentages (The total = 100%. B1: <20%; B2: 20–40%; B3: 
40–60%; B4: 60–80%; B5: >80%).
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Considering the extensive computation requirements of this study, the spatial resolution was as high as could be 
expected, although it could be improved in future research.

As mentioned above, all of the images were collected on different dates in summer; thus, the grass conditions 
might have varied and could be another reason for the deviation of the predicted grassland AGB from the obser-
vational AGB. Data assimilation provided a way to integrate the RS images acquired from different satellites40–42; 
thus, the prediction accuracy might be improved if we consider this in the RF model.

Comparison with other research.  Jia et al.43 estimated the grassland biomass in northern China. 
Specifically, they collected field measurements and RS data during 2001-2005 and calculated the R2 values of the 
observations and predictions (R2: 0.54–0.66). The data collected in this study were more current (2011–2013). 
Liang et al.32 modelled the alpine grassland AGB and found that their multi-factor approach (latitude, longitude 
and grass cover) could reasonably estimate the AGB (63%); in this study, these factors explained 65.01% of the 
variation in the grassland AGB on the Loess Plateau. Næsset et al.44 estimated the forest biomass in a 365.6-km2 
region based on Lidar data and attained R2 values in the range of 0.05 to 0.64 range, and Fayad et al.45 studied the 
forest AGB based on data from the optical geoscience laser altimeter system (GLAS) and found that R2 varied 
from 0.12 to 0.66. These results indicated that changes should be applied to the new RS platform and techniques 
for estimating the AGB of both forest and grassland, particularly the grassland AGB on the Loess Plateau because 
it is sensitive to environmental changes.

Figure 3.  RF model validation and comparison with other machine learning models.
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Methods
Study area.  The Loess Plateau covers an area of 0.64 million square km in central China and exhibits the typ-
ical characteristics of severe soil erosion and severe drought46. This region is dominated by a continental monsoon 
climate, with an average annual temperature ranging from 4.3 °C to 14.3 °C47 and a mean annual precipitation 
ranging from 200 mm to 750 mm48. In addition, extreme climate events have exacerbated the ecological imbal-
ances in this region, but a reasonable increase in the AGB could mitigate environmental deterioration to a certain 
extent. The study area was the grassland on the Loess Plateau, which covers an area of 240,948 square km and 
accounts for nearly 1/3 of the total area of the plateau (Fig. 5).

Collected data.  The data used for the prediction of the grassland AGB on the Loess Plateau were a combi-
nation of observational data from a quadrat inventory and remote-sensing data, which can be summarized as 
follows:

	(1)	 Grassland inventory data A total of 233 grassland samples were collected across the Loess Plateau (Fig. 1) 
in summer from 2011 to 2013, and the study sites were located far from roads and villages to avoid human 
disturbance. At each sampling site, we assessed a 100-m line transect to identify a representative section 
and established 1 × 1-m quadrats at 20-m intervals. For each quadrat, the latitude, longitude, elevation, 
grass species, plant coverage and grass types were recorded. The aboveground parts of the green plants 
were then collected and dried at 65 °C for biomass determination by weight. The measured AGB ranged 
from 13.89 g m−2 to 716.17 g m−2, and the tested biomass data were split into two parts, one for training the 
RF model and the other for validating the predicted grassland AGB.

	(2)	 Thematic Mapper (TM) data (Table 1) Thematic Mapper data were acquired from the Landsat 5 satellite 
platform with a spatial resolution of 30 m (visible wavelengths), and images covering the Loess Plateau were 
downloaded from the United States Geological Survey (USGS) website (http://earthexplorer.usgs.gov/).  

Figure 4.  Partial dependence of various factors on observed grassland AGB. The meaning of factors referred to 
Table 2.

http://earthexplorer.usgs.gov/
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All of the TM data were processed using the quick atmosphere correction within the Environment for Visu-
alizing Images (ENVI 5.0) software package. The red band (wavelength: 620 nm~690 nm) and infrared band 
(wavelength: 760 nm~960 nm) were used to calculate the NDVI49 as follows:

= − +NDVI (infrared band red band)/(infrared band red band) (1)

	(3)	 MODIS-Terra, MOD15A2H FPAR and LAI data (Table 1) Moderate-resolution imaging spectroradiom-
eter (MODIS) data (MOD15A2H version 6, MODIS Level 4) were acquired during the morning from the 
MODIS-Terra satellite. We downloaded eight-day composite products (500-m resolution) for 2011, 2012 
and 2013 from the National Aeronautics and Space Administration (NASA) website (http://www.nasa.gov/). 
The downloaded data were used to extract the FPAR and LAI products using the MODIS Reprojection 
Tool (MRT).

	(4)	 Topographic data Digital elevation modelling (DEM) data with a 30-m horizontal spatial resolution from 
the ASTER GDEM version 2.0 product covering the Loess Plateau were downloaded from the USGS web-
site (http://earthexplorer.usgs.gov/). We processed the data using the ArcGIS10.0 toolbox (Environmental 
Systems Research Institute, Inc., ESRI) to determine the slope of the Loess Plateau.

	(5)	 Climate data Quality-controlled climate data collected during 2011~2013 from 64 meteorological stations 
on the Loess Plateau were available from the National Climate Centre of the China Meteorological Admin-
istration (http://www.nmic.gov.cn). The data included the average monthly temperature, average monthly 
precipitation, and annual maximum and annual minimum temperature. The meteorological station point 
data were interpolated to fitted surfaces (100-m pixel cells) over the Loess Plateau using the ANUSPILN 
package, which contains FORTRAN programmes to fit the surfaces of one or more independent vari-
ables50. The average summer temperature and average summer precipitation were calculated using the 
monthly average temperature and precipitation values for June, July and August.

	(6)	 Auxiliary data A total of 24,094,252 control points were generated in the grassland to set the spatial resolu-
tion of the predicted AGB map to 100 m. The longitude and latitude of the control points were considered 
auxiliary data in this study, and the geographic projections of all maps were WGS 1984.

Landsat 5 TM (Applied to calculate NDVI)
Terra MODIS (Applied to 
calculate FPAR and LAI)

Date of image 
acquisition

WRS2 
path

WRS2 
row

Date of image 
acquisition

WRS2 
path

WRS2 
row

Date of image 
acquisition

Horizontal 
and vertical 
tile number

2011-08-18 124 32 2011-06-27 128 34 2011-07-04

h25v05
h26v04
h26v05
h27v05

2010-08-15 124 33 2010-09-12 128 35 2011-07-12

2010-08-15 124 34 2011-06-27 128 36 2011-07-20

2011-06-15 124 35 2011-06-27 128 37 2011-07-28

2011-06-15 124 36 2011-06-18 129 31 2011-08-05

2011-06-15 124 37 2011-06-02 129 32 2011-08-13

2010-07-05 125 32 2011-06-18 129 33 2011-08-21

2010-09-23 125 33 2011-06-02 129 34 2011-08-29

2011-08-09 125 34 2010-07-17 129 35 2012-06-01

2011-07-08 125 35 2010-07-17 129 36 2012-06-09

2011-07-08 125 36 2011-08-05 129 37 2012-06-17

2011-07-08 125 37 2011-08-28 130 31 2012-06-25

2011-09-01 126 31 2011-08-28 130 32 2012-07-03

2011-06-13 126 32 2011-08-28 130 33 2012-07-11

2010-07-12 126 33 2011-08-28 130 34 2012-07-19

2010-07-12 126 34 2011-07-27 130 35 2012-07-27

2011-07-15 126 35 2009-08-06 130 36 2012-08-04

2011-07-15 126 36 2011-07-18 131 33 2012-08-12

2011-09-01 126 37 2009-08-13 131 34 2012-08-20

2011-06-04 127 31 2009-07-28 131 35 2012-08-28

2011-07-22 127 32 2009-07-28 131 36 2013-08-05

2011-08-07 127 33 2011-08-26 132 33 2013-08-13

2011-08-07 127 34 2011-08-10 132 34 2013-08-21

2010-06-17 127 35 2009-06-17 132 35 2013-08-29

2011-06-04 127 36 2011-08-26 132 36

2011-06-27 128 31 2011-08-01 133 33

2011-07-13 128 32 2011-06-14 133 34

2011-06-11 128 33 2011-06-14 133 35

Table 1.  Acquisition dates and locations of TM and MODIS images.

http://www.nasa.gov/
http://earthexplorer.usgs.gov/
http://www.nmic.gov.cn
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RF model prediction.  Variable selection for the RF model.  The RF model was run using R 3.1.3 (http://
www.r-project.org/) software26, and two parameters were involved in the optimization process: mtry and ntree. 
The parameter mtry represents the number of splits per node in each tree during the building process, and ntree 
is the number of decision trees or the number of bootstrap samples. The default mtry value is set to 1/3 of the 
number of independent variables26. In this study, the original data were log transformed to achieve normalization 
prior to model building.

A total of 38 primary variables were used at the beginning of the model-building process (Table 2). According 
to the importance value and the accumulated degrees of explanation of the variables calculated by the RF model, 
seven variables were finally selected using a stepwise method (Fig. 6); mtry was set as the default, and ntree was 
set to 300.

Factors Definition Description

Elev Digital Elevation Model (DEM) on the Loess Plateau Elevation (m)

Slope Slope calculated by DEM on the Loess Plateau Slope

TNDVI NDVI calculated by TM data Normalized difference vegetation index (NDVI)

L2011/L2012/L2013 Average LAI of 2011/2012/2013 summer Leaf area index (LAI)

F2011/F2012/F2013 Average FPAR in 2011/2013/2013 summer
Fraction of Photosynthetically Active Radiation (FPAR)

FM (F2011 + F2012 + F2013)/3

R2011/R2012/R2013 Average rainfall of 2011, 2012,2013

Rainfall (mm)
RM (R2011 + R2012 + R2013)/3

SR2011/SR2012/SR2013 Average rainfall in 2011/2012/2013 summer

SRM (SR2011 + SR2012 + SR2013)/3

HT2011HT2012/HT2013 Average of the high temperature in 2011,2012,2013

Temperature(°C)

HTM (HT2011 + HT2012 + HT2013)/3

LM (L2011 + L2012 + L2013)/3

LT2011/LT2012/LT2013 Average of the low temperature in 2011/2012/2013

LTM (LT2011 + LT2012 + LT2013)/3

ST2011/ST2012/ST2013 Average temperature in 2011, 2012,2013 summer

ST (ST2011 + ST2012 + ST2013)/3

T2011/T2012/T2013 Average temperature in 2011, 2012, 2013

TM (T2011 + T2012 + T2013)/3

x Longitude
Geographic location (°)

y Latitude

Table 2.  Variable definitions in this study.

Figure 5.  Sampling sites and grassland types on the Loess Plateau. The map was generated using ArcMap 
Version 10.0 (http://www.esri.com/).

http://www.r-project.org/
http://www.r-project.org/
http://www.esri.com/
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Accuracy assessment.  Error statistics were calculated for the predicted grassland AGB, and the residuals of the 
RF model were compared with the predictions obtained using other machine learning models (bagging, mboost, 
and SVM). The error statistics included the ME, MAE and RMSE, and their formulas are as follows:

∑= −
=N

Y XME 1 ( )
(2)i

N

1

∑= −
=N

Y XMAE 1
(3)i

N

1

∑= −
=N

Y XRMSE 1 ( )
(4)i

N

1

2

In addition, R and λ were used to measure the correlation and agreement51 between the predicted grassland AGB 
and the observed values. The formula for R is as follows:

Figure 6.  Variable selection for the RF model. The meaning of factors referred to Table 2.
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1
2

1
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σ σ σ σ σ σ
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+ + −
⋅

X Y
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/ / ( ) / (6)X Y Y X X Y
2

In the above formulas, Y is the predicted grassland AGB, and X is the observed grassland AGB. The original data 
were split into several percentages for validation (10%~90% at 10% intervals). The error statistics and R values of 
the RF model were calculated within each percentage for comparison with the bagging, mboost and SVM models.
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