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Singularity in the matrix of the 
coupled Gross-Pitaevskii equations 
and the related state-transitions in 
three-species condensates
Y. M. Liu1,3, Y. Z. He2 & C. G. Bao2

An approach is proposed to solve the coupled Gross-Pitaevskii equations (CGP) of the 3-species BEC in 
an analytical way under the Thomas-Fermi approximation (TFA). It was found that, when the strength 
of a kind of interaction increases and crosses over a critical value, a specific type of state-transition will 
occur and will cause a jump in the total energy. Due to the jump, the energy of the lowest symmetric 
state becomes considerably higher. This leaves a particular opportunity for the lowest asymmetric 
state to replace the symmetric states as the ground state. It was further found that the critical values 
are related to the singularity of either the matrix or a sub-matrix of the CGP. These critical values are 
not arising from the TFA but inherent in the CGP, and they can be analytically expressed. Furthermore, 
a model (in which two kinds of atoms separated from each other asymmetrically) has been proposed 
for the evaluation of the energy of the lowest asymmetric state. With this model the emergence of the 
asymmetric ground state is numerically confirmed under the TFA. The theoretical formalism of this 
paper is quite general and can be generalized for BEC with more than three species.

Accompanying the progress in techniques, the research into the 2-species Bose-Einstein condensates (2-BEC) is 
gaining an increasing attention in recent years in both the experimental aspect1–7 and theoretical aspect8–26. Many 
distinguished features have been found, say, the existence of various phases, the critical value in the inter-species 
interaction and the related instability, the emergence of asymmetric ground state (g.s.)9, 11, 12, the appearance 
of vortex, and so on. The study for BEC with three species (3-BEC) has also started27–30. It is very interesting to 
see how the phenomena found in 2-BEC would recover in 3-BEC and whether new phenomena would emerge. 
Note that, for multiband superconductivity, the interband couplings among a set of different band condensates 
are important to the critical behavior of the system. Critical temperatures are thereby substantially affected (not 
determined alone by the Cooper-pair amplitude of a single band)31–33. Thus, it is reasonable to expect that the 
critical phenomena found in 2-BEC (say, a state-transition has been found to take place when the strength of the 
inter-species interaction arrives at a critical value34) might also be affected and new critical phenomena might 
emerge. Since the BEC with more than two species are experimentally achievable, it is meaningful to perform 
theoretical research at this stage.

This paper is dedicated to a primary theoretical study on the 3-BEC based on the coupled Gross-Pitaevskii 
equations (CGP). Although exact numerical solutions of the CGP are very valuable, it is not easy to extract 
the underlying physics simply via numerical results. In order to gain more insight into the physics, it is help-
ful to obtain approximate analytical solutions. Therefore, the Thomas-Fermi approximation (TFA) has been 
adopted. Under the TFA, we provide an approach for obtaining analytical solutions. Thereby the wave func-
tions and the total energies can be obtained in an analytical form, and these quantities can relate directly to the 
parameters involved. This facilitates greatly related physical analysis. We found that the singularity of the (sub)
matrix-of-equations is crucial to the behavior of the BEC. Specific state-transitions will be induced when the 
parameters vary and cross over a singular point of the matrix. This will be studied in detail below.
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Furthermore, based on the analytical formalism and the singularity of the equations, effort is made to divide the 
whole parameter-space into zones, each supports a specific spatial configuration. This provides a primary frame for 
plotting the phase-diagrams in the future. Besides, a model for calculating the total energies of asymmetric states 
has also been proposed. The possibility of the emergence of asymmetric g.s. has been primarily evaluated.

The theoretical formalism of this paper is quite general and can be generalized for the K-BEC with K larger than 3.

Hamiltonian and the coupled Gross-pitaevskii equations
We assume that the 3-BEC contains NS S-atoms with mass mS and interacting via δ= ∑ −< ′ ′V c r r( )S S i i i i , (S = A, 
B and C). The particle numbers are assumed to be huge (say, ≥10000). The inter-species interactions are 

δ= ∑ ∑ −′ ′ = =
′V c r r( )SS SS i

N
j
N

i j1 1
S S  with the strength css′. These atoms are confined by the isotropic harmonic traps 

ωm rS S
1
2

2 2 We introduce a mass mo and a frequency ω. Then, ħω and λ ω≡ m/( )o  are used as units for energy 
and length. The spin-degrees of freedom are assumed to be frozen. The total Hamiltonian is
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where γA = (mA/mo)(ωA/ω)2. HB and HC are similarly defined.
We assume that no spatial excitations are involved in the g.s. Thus, each kind of atoms are fully condensed 

into a state which is most advantageous for binding. Accordingly, the total many-body wave function of the g.s. 
can be written as
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where u1, u2 and u3 are for the A-, B-, and C-atoms, respectively.
In the set of the CGP, the one for u1 is
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where εA is the chemical potential. Via cyclic permutations of the three indexes (A, B, C) together with (u1, u2, u3). 
From eq. (3) we obtain the other two for u2 and u3. It is emphasized that the normalization ∫ =u dr 1l

2  (l = 1, 2 
and 3) is required.

Formal solutions under the Thomas-Fermi approximation
Since NA, NB and NC are considered to be large, TFA has been adopted. The applicability of this approximation 
has been evaluated via a numerical approach given in refs 22 and 35 and will be discussed later. Under the TFA, 
the CGP become
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where α11 = NAcA/(4πγA), α22 = NBcB/(4πγB), α33 = NCcC/(4πγC), α12 = NBcAB/(4πγA), α21 = NAcAB/(4πγB), α13 = NCcCA/
(4πγA), α31 = NAcCA/(4πγC), α23 = NCcBC/(4πγB), α32 = NBcBC/(4πγC), they are called the weighted strengths 
(W-strengths) and they are related as α12α23α31 = α21α32α13. ε1 = εA/γA, ε2 = εB/γB, ε3 = εC/γC, they are the weighted 
energies for a single particle. Recall that there are originally 15 parameters (NS, mS, ωS, cS, css′). Their combined effects 
are fully represented by the nine αll′ (only eight of them are independent). Thus, based on the W-strengths, related 
analysis could be simpler. In this paper all the interactions are considered as repulsive. Accordingly, all the W-strengths 
are positive. Furthermore, it is safe to assume that all the three ul/r ≥ 0 (because they do not contain nodes).

The set of W-strengths forms a matrix M (i.e., the matrix-of-equations) with matrix elements α=′ ′M( )ll ll . 
The determinant of M is denoted by D. The set of equation (4) has four forms of formal solutions, each would 
hold in a specific domain of r:

 (i) Form III: When all the three wave functions are nonzero in a domain, they must have the unique form as

= −u r X Yr/ (5)l l l
2 2 2
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where

= D DX / (6)l Xl

DXl
 is a determinant obtained by changing the l column of D from (α1l, α2l, α3l) to (ε1, ε2, ε3).

= D DY / (7)l Yl

DYl
 is also a determinant obtained by changing the l column of D to (1/2,1/2,1/2). Once all the parameters 

are given, the three Yl are known because they depend only on αll′. However, the three Xl have not yet been 
known because they depend also on (ε1, ε2, ε3). When Yl is positive (negative), ul/r goes down (up) with r. 
This point is notable because the main feature of the formal solution depends on the signs of {Yl}.
The set {Xl} and the set {εl} are related as

ε α= Σ ′ ′ ′X (8)l l ll l

α ε= Σ ′ ′ ′X (9)l l ll l

where α =′ ′d D/ll l l , and ′dl l is the algebraic cominor of αl′l.
 (ii) Form II: When one and only one of the wave functions is zero inside a domain (say, un/r = 0), the other two 

must have the unique form as

= −

= −

u r X Y r

u r X Y r

/

/ (10)
l l

n
l

n

m m
n

m
n

2 2 ( ) ( ) 2

2 2 ( ) ( ) 2
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Once the parameters are given, the six ′Yn
n( ) (n′ ≠ n) are known, while the six ′Xn

n( ) have not yet. When ′Yn
n( ) is 

positive (negative), ′u r/n  goes down (up) with r. When the Form II has un/r = 0, a more precise notation 
Form IIn is adopted for the detail.

 (iii) Form I: When one and only one of the wave functions is nonzero in a domain (say, ul/r ≠ 0), it must have 
the unique form as

α
ε= −u r r/ 1 ( /2)

(12)l
ll

l
2 2 2

Obviously, ul/r in this form must descend with r. For the case ul/r ≠ 0, the more precise notation Form Il is 
adopted.

 (iv) Form 0: In this form all the three wave functions are zero.

If a wave function (say, ul/r) is nonzero in a domain but becomes zero when r = ro, then a downward 
form-transition (say, from Form III to II) will occur at ro. Whereas if ul/r is zero in a domain but becomes 
nonzero when r = ro, then a upward form-transition (say, from Form II to III) will occur at ro. ro is named a 
form-transition-point, and it appears as the boundary separating the two connected domains. In this way the 
formal solutions serve as the building blocks, and they will link up continuously to form an entire solution. 
They must be continuous at the form-transition-points because the wave functions satisfy exactly the same set of 
nonlinear equations at those points. However, their derivatives are in general not continuous at the boundaries.

An approach for obtaining analytical solutions of the CGP
In this section we consider the case that all the parameters are given and the values of the three {εl} have been 
presumed. In this case all the formal solutions are known. We will propose an approach to link up the formal 
solutions to form a chain as a candidate of an entire solution. To this aim we first introduce a number of features 
related to the linking.

 (i) For Form I to III, at least one of the wave function is descending with r.
The proof of this feature is referred to ref. 36, where it is proved that at least one of Yl (or Yl

n( ) for a given n) 
is positive.
This feature implies that, when r increases, the occurrence of a downward form-transition is inevitable, un-
less a upward form-transition takes place prior to the downward transition. In any cases a formal solution 
must transform to another form somewhere (except Form 0).
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 (ii) For a formal solution existing in a domain, the right boundary of the domain and the successor (the suc-
cessive formal solution) in the next domain have been prescribed when the three {εl} have been presumed.
To prove this feature, as an example, we assume that u1/r and u3/r are nonzero in a domain while u2/r is 
zero. This assumption implies that we have assumed − ≥X Y r 01

(2)
1
(2) 2  and − ≥X Y r 03

(2)
3
(2) 2  when r is 

given inside the domain (refer to eq. (10)). We define =r X Y/1
2

1
(2)

1
(2) or ∞ (if >Y 01

(2)  or ≤ 0). Similarly, we 
define =r X Y/3

2
3
(2)

3
(2) or ∞ (if >Y 03

(2)  or ≤ 0), and =r X Y/2
2

2 2 or ∞ (if both X2 and Y2 are negative or 
otherwise). Then, the smallest one among r1, r2, and r3 is just the right boundary of the domain. Say, if r1 is 
the smallest, then u1/r → 0 when r → r1, and the successor will have the Form I3. If r2 is the smallest, then 
u2/r will emerge at r2, and the successor will have the Form III, and so on. Since r1, r2, and r3 are prescribed, 
the right boundary and the successor are prescribed

 (iii) Once the formal solution in the first domain (starting from r = 0) is prescribed, the formal solutions will 
link up one-by-one to form a chain in a unique way. There are seven types of formal solutions (say, in Form 
II2, or in Form I3, and so on). Each type can appear in a chain at most once.
Obviously, since the successor in each step of linking is uniquely prescribed, the whole chain is prescribed. 
Since the right boundary of a type is prescribed, the type can not appear twice.

 (iv) Once a formal solution in a chain is in Form 0, the chain will end.

This is because no wave functions can emerge from an empty domain. Otherwise, if u1/r emerges alone, it 
must have the form as eq. (12). This form prohibits the uprising of u1/r. If u1/r and u2/r emerge at the same place, 
Y1

(3) and Y2
(3) must both be negative. This violates the feature (i). If all the {ul/r} emerge at the same place, all the 

three {Yl} must be negative. This violates also the feature (i).
Based on the above features, we propose an approach as follows: First, we design a chain for a type of entire 

solutions denoted as, for an example, II2-III-II1-I3 (it implies that the first domain has a Form II2, the next domain 
has a Form III, the third domain has a Form II1, while the last domain has a Form I3). The prescription on the 
linking appears as a number of requirements (inequalities) imposing on the W-strengths and the presumed {εl}. 
When all the α ′{ }ll  and the {εl} are given inside a specific scope, all the requirements can be met and the designed 
chain as a candidate can be achieved. At this stage the normalization has not yet been considered. When the three 
equations ∫ =u dr 1l

2  are further introduced, not only the scope but the values of the set {εl} can be fixed. Then, 
the candidate will be a realistic entire solution of the CGP. In general, the three equations can uniquely determine 
the three unknowns {εl}, unless the design itself is not reasonable. Thus, when the parameters are given in a rea-
sonable scope, we can uniquely find out a realistic entire solution, which is a chain of formal solutions with a 
specific linking. A detailed practice of this approach for miscible states is given in ref. 36.

State-transition and the singularity of the matrix
Based on the above approach, numerical calculations for two types of examples are performed. Related wave 
functions are plotted.

 (1) State-transition occurring at the singular point of the matrix-of-equations

Figure 1(b–e) is for II2-III-II1-I3, while (a) and (f) are for III-II1-I3. From (a) to (f) cAB is increasing while the 
other parameters remain unchanged. Thus these patterns demonstrate the effect of cAB.

For 1b as an example, the second domain is in Form III. For this form both {Xl} and {Yl} are proportional to 
D1/ . Therefore, when →D 0, the wave functions will become extremely steep and the second domain will 

become extremely narrow as shown in (c). It turns out that, when ωλ= . × ≡−c c7 02 10AB AB
crit4 3 (3) , the 

matrix-of-equations becomes singular and accordingly =D 0. When cAB is close to and crosses over this critical 
value (from (c) to (d)), {Yl} will suddenly change their signs. It implies a down-falling wave function suddenly 
becomes up-rising, and accordingly the whole pattern is changed greatly. This is definitely associated with a 
state-transition in which all the A-atoms suddenly jump from a core to a shell, while all the B-atoms jump in a 
reverse way as clearly shown in (c) and (d). Accompanying the great change, a remarkable increase in the total 
energy is expected (this expectation is confirmed below).

From the equality =D 0, it is straight forward to obtain

= ±c
c

c c p p1 ( )
(13)AB

crit

C
BC CA BC CA

(3)

where

≡ −p c c c (14)BC BC B C
2

Similarly, pCA and pAB can be defined by permuting the indexes.
Note that:

 (i) When pBCpCA < 0, cAB
crit(3) does not exist (i.e., the matrix will not become singular). Therefore, even a Form III is 

contained in a chain, the variation of cAB does not assure the occurrence of the state-transition. Only if the 
other five strengths are so chosen that pBCpCA ≥ 0, the critical point could exist and the transition could occur.

 (ii) cAB
crit(3) deviates remarkably from the well known critical value =c c cAB

crit
A B

(2)  for 2-BEC. Thus, the 
state-transition is remarkably affected by the influence of the third kind of atoms. However, if both cBC → 0 
and cCA → 0 (i.e., the influence is removed), one can prove from eq. (13) that →c cAB

crit
AB
crit(3) (2).
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 (iii) cAB
crit(3) depends on the other five strengths but not on the particle numbers, trap frequencies, and masses. 

This feature is the same as what has found in 2-BEC. Thus, in an experiment, the variation of the parame-
ters other than the strengths will not change the critical values.

 (iv) The state-transitions caused by the variation of other strengths can be similarly deduced. For an example, 
for the intra-species interaction of the A-atoms, when cA increases and arrives at a critical value

= − − −c
P

c c c c c c c c c c1 ( ( ) ( ))
(15)A

crit

BC
CA AB BC B CA AB AB C BC CA

(3)

the matrix will become singular and the transition will occur.
In summary, for an entire solution contains a Form III, when the variation of the strengths leads to a cross-over 

of the singular point of the matrix, a state-transition will occur. Since the singularity of the matrix is inherent in 
the CGP but not a product of the TFA, thus the occurrence of the state-transitions at the critical values holds 
beyond the TFA. In fact, in the earliest study of the 2-BEC, the instability in the neighborhood of the critical value 

=c c cAB
crit

A B
(2)  (the singular point of the two-rank matrix) has been pointed out8.

 (2) State-transition occurring at the singular point of a sub-matrix-of-equations

When an entire solution contains a Form II, another type of state-transition might occur. In Fig. 2, the entire 
solution is III-II3-I2 in (a) to (c), and is III-II3-I1 in (d) to (f), where the second domain has the Form II3 (namely, 
only the A- and B-atoms are contained in this domain). For the Form II3 the critical value of cAB is 

ωλ= = . × −c c c 8 944 10AB
crit

A B
(2) 4 3 , which is the singular point of the sub-matrix of the equations for u1/r and 

u2/r only. When cAB is close to this value ((c) and (d)) the second domain becomes very narrow, and the two wave 
functions become very steep. During the cross-over, Y1

(3) and Y2
(3) change their signs and a transition occurs as 

shown in (c) and (d). Nonetheless, different from the one found in Fig. 1, only a part of the A- and B-atoms are 
actively taking part in this transition, namely, a part of A-atoms rush out from the core and form a shell, while a 
part of outward B-atoms rush from the shell into the core. Thus, the corresponding change in spatial configura-
tion is relatively milder. The change appears essentially in the second and the third domains where the C-atoms 
are absent. Accordingly, the critical value is not at all affected by the C-atoms and is identical to the value of 

Figure 1. Wave functions u1/r (in solid line), u2/r (in dash line), and u3/r (in dash-dot line) against r. ħω and 
λ ω≡ m/( )o  are used as units for energy and length. cAB is given at six values marked in the panels. Other 
parameters are fixed and are chosen quite arbitrary but having pBC and pCA both being negative. They are 
NA = 30000, NB = 11000, NC = 29000, cA = 4 × 10−4 (in ħωλ3, the same for other strengths), cB = 1.4 × 10−3, 
cC = 1.2 × 10−3, cBC = 3.8 × 10−4, cCA = 4.2 × 10−4, γA = γB = γC = 1. In 1b, the Forms of the solutions are marked 
in the associated domains separated by the vertical dotted lines.
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2-BEC. Incidentally, although the Form III is contained in Fig. 2, cAB
crit(3) does not exist in this case due to 

pBCpCA < 0.

Total energy of symmetric states and the great jump
When the total energy of the lowest symmetric state Etot is higher than the total energy of the lowest asymmetric 
state Etot

asym, the g.s. will be asymmetric. Thus, >E Etot tot
asym is the discriminant to judge whether the g.s. is 

asymmetric.
When the wave functions are known we can obtain the total energy as (the kinetic energy has been omitted)

∑= + + Σ < ′ ′E P E E( )
(16)tot

i
i i i i ii

where i = 1, 2 and 3. They are associated with A–, B–, and C– atoms, respectively. ∫=
γ

P u r dr
N

1 2 1
2 2A A , 

∫=
π

E u r r dr( / )N c
1 8 1

4 2A A
2

, ∫=
π

E u r u r r dr( / ) ( / )N N c
12 4 1

2
2

2 2A B AB , and so on. Let N = NA + NB + NC. Examples of Etot/N 
versus cAB are plotted via the solid lines shown in Fig. 3. The other parameters in (a) and (b) are the same as in 
Figs 1 and 2, respectively. A distinguished feature is the appearance of the great jump at cAB

crit(3) (a) and cAB
crit(2) (b). 

Note that, in Fig. 3(a), the crossing over cAB
crit(2) does not cause an effect because the associated transition could 

occur only if the chain contains the building block II3, this building block is absent in Fig. 1. While in Fig. 3(b) 
cAB

crit(3) does not exist because pBCpCA < 0 as mentioned.
Figure 3 confirms that the state-transition has caused a great change in Etot. For the transition shown in 

Fig. 1(c,d), when the B-atoms rush in, E2 will increase (because a more compact distribution leads to the increase 
of the factor ∫ u r r dr( / )2

4 2 ) while P2 will remarkably decrease. The decrease over takes the increase. We found 
that, for each B-atom, (E2 + P2)/NB decreases from 1.80 to 1.41. On the other hand, for each A-atom, (E1 + P1)/NA 
increases from 1.08 to 1.50. Since N NA B in this example, totally, Etot increases remarkably. This examples 
demonstrates that, although the critical value for the transition depends only on the strengths, the magnitude of 
the energy gap depends also on other parameters. The magnitude can be very large or quite small (say, in the 

Figure 2. The same as in Fig. 1 but the parameters are so given that pBC and pCA are in opposite signs. The details 
of parameters are NA = NB = NC = 30000, cA = 4 × 10−4 (in ħωλ3, the same in the follows), cB = 2 × 10−3, cC = 1 ×  
10−3, cBC = 11.5 × 10−4, cCA = 10.5 × 10−4, γA = γB = γC = 1.
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above examples, the magnitude can be tuned by varying NA and/or NB). Since all the A- and B- atoms are involved 
in the transition, the excitation is collective in nature.

Asymmetric states and their total energy
We know from the study of the 2-BEC9, 11, 12 that, when VAB is sufficiently strong, the A- and B-atoms might give 
up the symmetry of the trap for lowering the g.s. energy. Therefore, we propose a model where only the distribu-
tions of the A- and B-atoms are asymmetric, while the C-atoms are symmetric. Let O denotes the center of the 
trap. Let a sphere with radius RAB centered at O be divided into two parts by a plane perpendicular to the Z-axis. 
The plane intersects the Z-axis at z = z0 (−RAB < z0 < RAB). Let the A-atoms be distributed in the lower part of the 
sphere, and the B-atoms in the upper part. Let the C-atoms be symmetrically distributed in another sphere with 
radius RC and centered also at O. Then, we assume

= −u r d r R/ 1 ( / ) (17)AB1 1
2

if r ≤ RAB and z ≤ z0. Otherwise, it is zero. Where = + − + − −( )d R R z z R zAB AB AB1
1

15
3 1

8
2

0
1

12 0
3 1

40
2

0
5 1/2

 is for the 
normalization.

= −u r d r R/ 1 ( / ) (18)AB2 2
2

if r ≤ RAB and z > z0. Otherwise, it is zero. Where = − + − − −( )d R R z z R zAB AB AB2
1

15
3 1

8
2

0
1

12 0
3 1

40
2

0
5 1/2

 and

= −u r d r R/ 1 ( / ) (19)C3 3
2

if r ≤ RC. Otherwise, it is zero. Where =
−( )d RC3

2
15

3 1/2
 When the values of RAB, RC, and z0 are assumed, from eqs 

(16, 17, 18 and 19), the total energy for the asymmetric state (with the kinetic energies neglected), denoted as 
Etot

asym, can be obtained. The parameters RAB, RC, and z0 are considered as variable. Eventually, they fixed at the 
values that lead to the minimum of Etot

asym. The Etot
asym obtained via such a variational procedure is in general higher 

than its actual value. Thus, in any cases, if we found <E Etot
asym

tot, the asymmetric state will inevitably replace the 
symmetric g.s.

The comparison of the two energies are shown in Fig. 3, where (a) and (b) are associated with Figs 1 and 2, 
respectively.

Figure 3a demonstrates clearly that Etot
asym is remarkably lower than Etot when >c cAB AB

crit(3). Thus the jump pro-
vides a good opportunity for the lowest asymmetric state to replace the symmetric g.s. Whereas when <c cAB AB

crit(3), 
although Etot

asym is remarkably higher than Etot as shown in the figure and Etot will decrease further with the 

Figure 3. Etot/N (in solid line for the lowest symmetric state) and E N/tot
asym  (in horizontal dash line for the lowest 

asymmetric state) versus cAB. Other parameters in (a,b) are the same as in Figs 1 and 2, respectively. The unit ħω 
is used for energy, and 10−4ħωλ3 for cAB. Note that the ranges of cAB in (a,b) are different.
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decrease of cAB, we can only say that the g.s. is very probable to be symmetric. This is a point to be further 
studied.

Division of the parameter-space
If the whole parameter-space Σ, in which a point is associated with a set of parameters, can be divided into 
zones each supports a specific configuration, various phase-diagrams could be plotted. Thereby the essential 
features of the system and the effects of the parameters can be visualized. Due to having so many parameters, the 
phase-diagrams of a 3-BEC would be very complicated. At this moment we are not able to plot them. The follow-
ing is a primary attempt along this line.

There are four well defined and important surfaces in Σ. They are expressed via the equations =D 0 and 
=d 0ii  (i = 1 to 3). In other words, each surface is an aggregation of a kind of singular points. We have proved 

under the TFA that a crossing over these surfaces may cause a state-transition and accordingly an increase of Etot. 
When the TFA is removed, in a domain of r in which all the {ui/r} are nonzero, the exact CGP can be written as
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where ″ui  is the second-order derivative of ui against r. The appearance of the common factor D1/  at the right side 
implies that the left-side (namely, the wave functions) is extremely sensitive against the parameters when they are 
given in the neighborhood of the surface =D 0. This is an important feature of the CGP. When a point in Σ 
crosses over =D 0, the factor D1/  changes from ∞ to ±∞. Therefore, the entire solutions (if it contains a Form 
III) will undergo a dramatic change, and the occurrence of the state-transition (found before under the TFA, refer 
to Fig. 1) is inevitable Thus, this kind of transition is inherent in the CGP. For the kind of entire solutions contain-
ing a Form III, once the variation of the parameters leads to a crossing over the surface =D 0, the transition 
(denoted as trans-III) happens definitely.

Similarly, in a domain of r in which un/r = 0, the exact CGP can be written in a form in which both (ul/r)2 and 
(um/r)2 are proportional to a common factor d1/ nn. Thus, for the type of entire solutions containing a Form IIn, the 
crossing over the surface =d 0nn  will also lead to a great change in ul/r and um/r, and accordingly another kind of 
state-transition (denoted as trans-IIn) occurs as shown in Fig. 2.

Let us define a subspace ΣIII as follows. When a set of parameters leads to an entire solution containing a Form 
III, then the associated point belongs to ΣIII, otherwise belongs to its complement. Let the part of the surface 

=D 0 located inside ΣIII be denoted as σIII. Then, σIII appears as a boundary, the crossing over this boundary 
leads to the trans-III. Similarly, let ΣII3

 denotes the subspace containing the points each leads to an entire solution 
containing a Form II3. Let the part of the surface =d 0nn  located inside the subspace ΣII3

 be denoted as σII3
. Then, 

the crossing over σII3
 leads to the transition trans-II3. We can further define σII1

 and σII2
 in a similar way. These four 

surfaces (σIII and the three σIIi
) together form the boundaries and provide a primitive division of Σ. At the two 

sides of each boundary, the entire solutions are greatly different.
Nonetheless, these boundaries are not the actual boundaries for the phase-diagrams of the g.s. The latter can 

be made certain only if exact calculations on both the lowest symmetric and asymmetric states have been per-
formed. However, since the crossing over the above boundaries leads to an increase of Etot and the increase may 
be large (as shown in Fig. 3). Thus the increase provides an excellent opportunity for the lowest asymmetric state 
to replace the lowest symmetric state and become the g.s. Therefore, we believe that the exact boundaries for the 
phase diagrams would partially overlap the boundaries from singularity.

Final remarks

 (1) A general approach is proposed to solve the CGP for 3-BEC in an analytical way. TFA has been adopted. 
The essence of this approach is to find out the building blocks, i.e., the formal solutions, and the rules for 
their linking. The entire solutions of the CGP appear as a chain of them. This approach is applicable for 
obtaining solutions with their chains in various types, and can be generalized to K-BEC with K larger than 
three. For examples, in a domain where all the K {ul/r} are nonzero, the formal solution has exactly the 
same expressions as shown in eqs (5, 6 and 7) except that the related matrixes are K-rank.

 (2) The main result of this paper is the finding of the state-transitions caused by the singularity of the (sub)
matrix-of-equation and the associated increase of Etot during the transition. The singularity is not a 
by-product of the TFA, but an important feature inherent in the CGP. Note that the critical behavior of the 
multiband superconductors was found to be substantially affected by the interband coupling31–33. Similarly, 
the critical point for the state-transition found in this paper differs remarkably from the one of the 2-BEC 
(refer to Fig. 1) due to the inter-species coupling. Note that the 3-BEC contains three subsystems, each con-
tains two species. Similar to the hidden criticality found also in multiband superconductivity32, the critical 
points of the three subsystems appear as the hidden critical points of the 3-BEC. Under specific conditions 
state-transitions will also occur at these hidden points (refer to Fig. 2).
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 (3) A model for asymmetric states has been proposed. Via numerical calculations on some examples, it is 
demonstrated that the lowest asymmetric state replaces the symmetric states and become the g.s. when the 
strength of an inter-species interaction arrives at and exceeds its critical value.

 (4) The whole parameter-space is primitively divided into zones separated by four surfaces as boundaries, 
each is an aggregation of a kind of singular points. The spatial configurations at the two sides of a bound-
ary are greatly different due to the state-transition occurring during the crossing over the boundaries. The 
transition is accompanied with an energy increase, the amount of increase might be very large. Thus the 
state-transition provides an excellent opportunity for the emergence of the asymmetric g.s. Therefore, it is 
expected that the exact boundaries designating the zones of asymmetric g.s. would overlap partially with 
the boundaries arising from the singularity. This remains to be confirmed.
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