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Observed trends in the magnitude 
and persistence of monthly 
temperature variability
Timothy M. Lenton1, Vasilis Dakos2,3, Sebastian Bathiany4 & Marten Scheffer4

Climate variability is critically important for nature and society, especially if it increases in amplitude 
and/or fluctuations become more persistent. However, the issues of whether climate variability is 
changing, and if so, whether this is due to anthropogenic forcing, are subjects of ongoing debate. 
Increases in the amplitude and persistence of temperature fluctuations have been detected in 
some regions, e.g. the North Pacific, but there is no agreed global signal. Here we systematically 
scan monthly surface temperature indices and spatial datasets to look for trends in variance and 
autocorrelation (persistence). We show that monthly temperature variability and autocorrelation 
increased over 1957–2002 across large parts of the North Pacific, North Atlantic, North America and 
the Mediterranean. Furthermore, (multi)decadal internal climate variability appears to influence trends 
in monthly temperature variability and autocorrelation. Historically-forced climate models do not 
reproduce the observed trends in temperature variance and autocorrelation, consistent with the models 
poorly capturing (multi)decadal internal climate variability. Based on a review of established spatial 
correlations and corresponding mechanistic ‘teleconnections’ we hypothesise that observed slowing 
down of sea surface temperature variability contributed to observed increases in land temperature 
variability and autocorrelation, which in turn contributed to persistent droughts in North America and 
the Mediterranean.

While the magnitude of long term change in the climate is important, society and ecosystems are particularly sen-
sitive to climate variability and its extremes. In this study we set out to explore observed trends in the magnitude 
and persistence of climate variability. These are of interest from both a social and an ecological perspective. The 
magnitude of climate variability clearly affects the magnitude of social1 and ecological2 impacts, but so too can 
the persistence (or time correlation) of variability. This is true not just because a longer event accumulates more 
impacts, but also because it can have impacts greater than the sum of its parts. For instance, a long heat wave can 
have greater impacts on human mortality than the sum of individual hot days3, and multi-year droughts can have 
greater agricultural economic impacts than the sum of individual dry years4. Persistent drought and its impact on 
agriculture and food prices can in turn contribute to social unrest5. In ecology, time-correlated disturbance affects 
the magnitude of ecosystem change6, 7 and the possibility that ecosystems are pushed across tipping points for 
irreversible change7, 8. Furthermore, trends in variance and temporal correlation can help to diagnose important 
underlying changes in the ‘resilience’ of parts of the climate system – meaning the strength of restoring negative 
feedbacks. In particular, a combined increase in autocorrelation and variance are a signal that restoring negative 
feedbacks in a system are getting weaker (i.e. declining resilience), and they may also indicate (in extreme cases) 
an approach to a bifurcation-type ‘tipping point’9–11.

Existing work has sought to address whether temperature variability is changing at the global scale due to cli-
mate change12–14, but with no firm conclusion as yet. Inter-annual temperature variability has increased in some 
regions but decreased in others13. However, several published calculations of changes in variability are biased by 
normalising to a fixed reference interval15. Trends in the persistence of temperature variability, as measured by 
e.g. changing lag-1 autocorrelation, are generally less studied. One exception is recent work showing a marked 
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slowing down of inter-monthly sea surface temperature variability in the North Pacific7, comprising increases 
in both autocorrelation and variance. Here we seek to extend previous global analyses that examined variance 
in annual mean temperature data12, 13, by studying monthly temperature data for trends in lag-1 autocorrelation 
as well as variance (measured as standard deviation). This also extends previous regional analysis7, of monthly 
sea surface temperature data and the Pacific Decadal Oscillation index, to other regions and climate indices. 
Wherever possible we seek to avoid the biasing caused by normalising to a fixed reference interval15.

Our analysis focuses on monthly mean temperature datasets with the seasonal cycle and long-term warming 
trend removed (see Methods). The longest temperature records come from regions with early weather stations 
and early ship-borne thermometer measurements – with the best data coverage over the oceans in the North 
Atlantic and North Pacific where there have been regular ship routes, especially since the 1950s. Here we focus 
on the well-characterised interval of the ERA-40 atmospheric reanalysis16, 1957–2002 (a focus of previous global 
inter-annual temperature analysis)13. Several different temperature reconstructions exist over this interval and we 
seek to compare these to check the robustness of our results. We pay particular attention to Northern Hemisphere 
ocean regions, corresponding climate indices, and those parts of the land surface they are known to influence.

The paper is organised as follows: First we examine trends in autocorrelation and variance in Northern 
Hemisphere climate indices. Then we consider whether existing historically forced model runs reproduce these 
trends. Next we analyse the spatial pattern of observed autocorrelation and variance trends in monthly temper-
ature data. Finally we review existing studies in an attempt to mechanistically link some observed trends in the 
persistence of ocean surface temperature variability to observed extreme events on land.

Results
Northern Hemisphere climate indices.  We started by analysing climate indices that have been derived 
from the dominant spatial patterns of variability in Northern Hemisphere sea surface temperature data, specif-
ically the Pacific Decadal Oscillation (PDO), the Atlantic Multi-decadal Oscillation (AMO), and the Atlantic 
Tripole. The latter represents the lagged response of ocean surface temperatures to the dominant mode of North 
Atlantic pressure variability, the North Atlantic Oscillation (NAO), which we also analyse for completeness (not-
ing that atmospheric pressure variability has far less memory – i.e. much lower autocorrelation – than sea surface 
temperatures).

We find consistent trends in the character of fluctuations in the chosen climate indices (Fig. 1). Standardising 
the interval of comparison to the ERA-40 reanalysis16 interval 1957–2002 (Fig. 1), relative to longer original 
datasets (Figs S1–S5), has little qualitative effect on the results (compare Figs 1 and S5), with the exception that 
variance in the PDO index increases more markedly over 1957–2002 than over 1948–2016 (as an interval of high 
initial variance is removed). The signs of the autocorrelation and variance trends are generally robust to choice 
of filtering bandwidth and sliding window size used in the analysis, although their magnitude varies (Figs 1 and 
S5–6). Over 1957–2002 (Figs 1 and S6 and Table 1), the PDO index shows a strong increase in autocorrelation 
(median Kendall τ = 0.84) and variance (τ = 0.68), as examined previously7. The AMO index shows increases in 
both autocorrelation (τ = 0.47) and variance (τ = 0.53). The Atlantic tripole index also shows increases in both 
autocorrelation (τ = 0.36) and variance (τ = 0.61), whereas the NAO index shows no overall trend in autocorre-
lation (τ = 0.04) and a strong decline in variance (τ = −0.68).

Figure 1.  Autocorrelation and variance trends in climate indices. For the ERA-40 interval (09/1957-08/2002). 
Distribution of Kendall τ trends in AR(1) and standard deviation for all combinations of sliding window and 
bandwidth size in observational climate indices (blue-green) and null models (red; from 1000 time-series with 
same frequency spectrum) (see Methods sections Sensitivity analysis, Significance testing). The percentages 
represent the fraction of results from the observational indices that are significantly different to the null models 
(p = 0.1 two tailed).
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To establish whether these trends in autocorrelation and variance are significant we test against a null model 
of 1000 time-series of surrogate data with the same frequency spectrum (see Methods). Over 1957–2002 (Fig. 1), 
the increase in autocorrelation in the observed PDO index is the most significant, with 100% of the trends from 
different filtering bandwidth-sliding window combinations significantly different to those from the null model. 
91% of the increasing variance trends in the PDO index are significant. For the increases in autocorrelation and 
variance in the AMO index, 46% and 56% respectively of the trends are significant. For the increases in autocor-
relation and variance in the Atlantic Tripole index 30% and 67% respectively of the trends are significant. For the 
decline in variance in the NAO index 87% of the trends are significant.

Interestingly, when shortening the interval in which autocorrelation and variance trends are calculated to 22.5 
years (half the 1957–2002 series) and varying the timing of that 22.5 year interval, the sign of calculated auto-
correlation and variance trends can vary (Figs 2, S7 and S8). The PDO autocorrelation trend is strongly positive 
initially, weakens then strengthens again, whereas the PDO variance trend starts weakly positive, switches to 

Index AR1 median (5,95) SD median (5,95)

AMO 0.47 −0.21 0.69 0.53 0.09 0.79

Atlantic tripole 0.36 −0.15 0.72 0.61 0.29 0.85

NAO 0.04 −0.17 0.35 −0.68 −0.94 −0.44

PDO 0.84 0.56 0.92 0.68 −0.47 0.83

Table 1.  Autocorrelation and variance trends in observational climate indices (1957–2002). Trends expressed 
as Kendall τ values. Medians as well as 5 and 95 percentiles from the estimated distributions (varying filtering 
bandwidth and sliding window length) are reported.

Figure 2.  Decadal variability in autocorrelation and variance trends in climate indices. For 22.5 year intervals 
(within 1957–2002) analysed with filtering bandwidth and sliding window length of half the interval (11 years 3 
months). Also plotted is the mean value of the climate index over the same 22.5 year intervals. (top left) AMO, 
(top right) Atlantic Tripole, (bottom left) NAO, (bottom right) PDO.
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weakly negative then recovers to strongly positive. The AMO autocorrelation trend is generally positive but weak 
and fluctuates in strength with a ~15 year period. The AMO variance trends switches from strongly negative to 
strongly positive then back to strongly negative, in antiphase with the index itself – indicating that an interval of 
negative AMO is associated with increasing short-term variability of North Atlantic SST fluctuations. The Atlantic 
Tripole autocorrelation trend switches between positive and negative on a ~15 year period (somewhat similar to 
AMO autocorrelation trends). The Atlantic Tripole variance trend is more predominantly positive but follows a 
similar pattern. The NAO autocorrelation trend switches from negative to positive roughly in phase with the over-
all negative to positive shift in the index itself, whereas the variance trend is initially strongly negative, switches to 
positive then returns to strongly negative.

Whilst some of the (multi)decadal variability in autocorrelation and variance trends could occur by chance 
in a red-noise system (due to finite sampling), the results (Figs 2, S7 and S8) also suggest that the low-frequency 
internal modes of climate variability themselves may cause changes in the autocorrelation and variance of 
shorter-term fluctuations. This seems mechanistically plausible if, for example, a shift within a mode of variability 
is accompanied by systematic regional changes in wind strength and/or ocean mixed layer depth, which affect 
the decay rate of sea surface temperature fluctuations17. Despite the decadal variability in autocorrelation and 
variance trends there are still overall positive trends over the full 1957–2002 interval, especially in the PDO index 
(which also shows increasing autocorrelation and variance over longer intervals)7, leaving open the possibility of 
a forced component to such longer term trends.

Model historical simulations.  To examine further whether any anthropogenic forced component is appar-
ent in observed autocorrelation and variance trends, we analysed fluctuations in the AMO and PDO indices 
simulated by nine climate models from the CMIP5 database over the same historical interval 1957–2002 (see 
Methods). The results (Fig. 3 and Table 2) show generally weak and mixed autocorrelation and variance trends 
in the modelled AMO and PDO indices, as may be expected by chance (without a strong forced component). 
None of the models reproduce the strength of positive trend in autocorrelation in the observed AMO index 
(median τ = 0.47), although one model (GISS-E2-H) produces a comparable positive trend in variance (τ = 0.58) 
to the observations (τ = 0.53). None of the models reproduce the strength of positive trends in autocorrelation 
(τ = 0.84) and variance (τ = 0.68) seen in the observed PDO index, and only one model (HadGEM2-ES) pro-
duces robustly positive trends in both autocorrelation (τ = 0.48) and variance (τ = 0.54) in its modelled PDO 
index.

Figure 3.  Modelled historical trends in autocorrelation and variance in the PDO and AMO indices. Results 
for nine models in the CMIP5 database under historical forcing (followed by RCP8.5) for the ERA-40 interval 
(09/1957-08/2002). Distribution of Kendall τ trends in AR(1) (red) and standard deviation (purple) for 
all combinations of sliding window and bandwidth size (see Methods section Sensitivity). The percentages 
represent the fraction of results from the modelled indices that are significantly different to null models (p = 0.1 
two tailed).
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Thus, there is no consistent signal of an anthropogenic forced trend in either autocorrelation or variance in 
either the AMO or PDO as simulated across these model runs. This could be because the models fail to respond 
to forcing correctly. The models are known to be of varying quality in their ability to capture internal (multi)
decadal variability and in no case would the timing of low-frequency variability be expected to match the real 
system because these are not data-assimilated model runs. Hence given the small number of model realisations, 
the results are consistent with the interpretation that historical trends in autocorrelation and variance in the 
climate indices are influenced by (multi)decadal internal variability of the climate system. The fact that there are 
significant long-term positive trends in autocorrelation and variance in the observations (Fig. 1), most strongly 
for the PDO index, but also in the AMO and Atlantic Tripole indices, leaves open the possibility that there is a 
forced component to these trends which the models are failing to capture.

Spatial trends in persistence and variance.  Having established that there have been some long-term 
trends in autocorrelation and variance of key Northern Hemisphere climate indices as well as (multi)decadal 
modulation of those trends, we considered the spatial pattern of trends in autocorrelation and variance. For 
this we analysed the HadCRUT418 and GISTEMP19 surface temperature datasets and the atmospheric reanaly-
sis dataset ERA-4016 again over the common interval 1957–2002. Whilst the two temperature datasets come as 
anomalies relative to a baseline period, which can bias estimates of variance outside of the reference period15, 
the reanalysis dataset comes in absolute values allowing us to remove a running mean and thus avoid biasing the 
variance estimates15.

The analysis of spatial temperature data over 1957–2002 shows somewhat different global spatial patterns of 
trends for either autocorrelation or variance across different datasets, but also large regions of agreement (Fig. 4). 
Focusing on the HadCRUT4 regions (where there is good raw data coverage), the different datasets agree that 
autocorrelation increased across large parts of the North Pacific, the North Atlantic, North America, and the 
Mediterranean, and in the Arabian Sea. They agree that variance increased in broadly the same regions, with 
the increase in variance being more widespread (than increasing autocorrelation) across the North Atlantic and 
Europe. (The spatial pattern of change in inter-monthly temperature variance is also broadly similar to the previ-
ously published pattern of change in inter-annual temperature variability)13.

Within individual temperature datasets, there are thus typically consistent increases in both autocorrelation 
and variance across large parts of the North Pacific, North America, in a SW-NE band across the North Atlantic, 
and through the Mediterranean (Fig. S9). In other regions, e.g. much of Siberian Russia, there are consistent 
decreases in autocorrelation and variance. Within each dataset there are also cross-over regions with inconsistent 
trends in autocorrelation and variance. Trends in autocorrelation and variance are thus not related globally in a 
systematic way.

Examining the strength of the autocorrelation and variance trends in each dataset (Fig. 5), the strongest 
increasing trends in variance and autocorrelation (i.e. ‘slowing down’) are typically around 30–40°N in the North 
Pacific, in a SW-NE band across the North Atlantic, in a SW-NE band across North America, and in the central 
Mediterranean. The North Pacific and North Atlantic spatial signals are broadly consistent with the increasing 
autocorrelation and variance trends seen in the PDO, AMO and Atlantic Tripole indices. Tests for significance of 
the spatial trends (see Methods) suggest they are significant at the 90% confidence level in many places, including 
the increasing autocorrelation and variance across SW-NE North America and in the Mediterranean.

We also analysed HadCRUT4, GISTEMP19 and the ERA-Interim20 reanalysis over its interval 1979–2015. The 
spatial results (Fig. S10) show an overall shift toward more negative trends in autocorrelation and variance com-
pared to the earlier overlapping interval (1957–2002), although some regions, e.g. in the NE Pacific, show strong 
increases in both autocorrelation and variance. Such (multi)decadal variability in autocorrelation and variance 
trends, particularly in the North Atlantic sector, is consistent with the behaviour seen in aggregate climate indices 
(Figs 2 and S8). The persistence of positive autocorrelation and variance trends in the North Pacific region is also 
consistent with results for the PDO index (Fig. S1) and previous work7.

Model

ΑΜΟ PDO

AR1 
median (5,95)

SD 
median (5,95)

AR1 
median (5,95)

SD 
median (5,95)

bcc-csm1-1 0.41 −0.16 0.65 0.37 0.01 0.71 0.10 −0.50 0.43 −0.52 −0.78 −0.19

CCSM4 0.14 −0.22 0.44 0.40 0.06 0.66 0.25 −0.11 0.58 0.32 −0.06 0.79

CNRM-CM5 0.15 0.01 0.27 0.37 0.22 0.62 0.19 −0.37 0.69 0.41 −0.03 0.71

CSIRO-Mk3-6-0 −0.48 −0.82 −0.06 −0.25 −0.84 0.45 −0.25 −0.53 0.53 0.00 −0.38 0.51

GISS-E2-H 0.35 −0.01 0.59 0.58 0.22 0.75 −0.01 −0.80 0.26 0.13 −0.54 0.33

GISS-E2-R 0.07 −0.11 0.50 0.40 0.12 0.73 0.01 −0.53 0.44 0.13 −0.47 0.46

HadGEM2-ES −0.04 −0.49 0.56 −0.13 −0.55 0.39 0.48 0.20 0.70 0.54 0.26 0.77

IPSL-CM5A-LR 0.21 −0.02 0.66 −0.20 −0.65 0.42 −0.09 −0.46 0.14 0.30 −0.08 0.69

MPI-ESM-LR −0.27 −0.61 0.01 −0.20 −0.56 0.22 −0.23 −0.77 0.19 −0.04 −0.44 0.52

Table 2.  Autocorrelation and variance trends in model simulations of the AMO and PDO climate indices 
(1957–2002). Trends expressed as Kendall τ values. Medians as well as 5 and 95 percentiles from the estimated 
distributions (varying filtering bandwidth and sliding window length) are reported.
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Discussion
The very limited ‘memory’ of the atmosphere (e.g. limited heat capacity of the planetary boundary layer) and the 
limited memory of the land surface (linked to its water holding capacity) suggest that much of the persistence 
of inter-monthly temperature fluctuations over land must be linked to the large heat capacity, long-timescale 
dynamics, and associated long memory of the ocean21. Much previous work has linked the sign and magnitude 
of SST fluctuations in particular regions of the ocean to the incidence and magnitude of extreme events on land, 
including meteorological drought22, 23. Where such remote causal teleconnections have been established, one 
might intuitively expect that the persistence of SST fluctuations in the relevant ocean regions would influence the 
persistence of tele-connected (causally linked) extreme events on land. Furthermore, we may expect the ampli-
tude and duration of extreme events to be positively correlated, as is seen for El Niño and La Niña events24. 
Having detected positive trends in autocorrelation and variance in SST fluctuations and corresponding climate 
indices over 1957–2002, we suggest that these are linked to detected positive trends in autocorrelation and vari-
ance in land temperatures in regions where there are established spatial correlations and associated mechanistic 
ocean-land teleconnections. In particular we focus on the North Pacific and North Atlantic ocean regions and 
their influence on the North American and Mediterranean land regions. First we discuss the ocean regions before 
turning to the land regions.

Our results show that monthly temperature variability and autocorrelation increased over 1957–2002 across 
large parts of the North Pacific and North Atlantic, and in the corresponding PDO and AMO indices. Spatially, 
where the trends in autocorrelation and variance have the same sign this can be interpreted as a change in system 
timescale (either ‘slowing down’ or ‘speeding up’). Where they have opposing signs alternative explanations are 
required, for example changes in ocean mixed layer depth and associated heat capacity may be expected to cause 
opposing changes in autocorrelation and variance7, 25, 26. We find evidence of slowing down of SST variability over 
1957–2002 across large parts of the North Pacific and North Atlantic, which could be described as a loss of resilience 
(a weakening of restoring negative feedbacks). More recently, these autocorrelation and variance trends have weak-
ened or reversed in the North Atlantic, whereas they are more consistently positive over time in the North Pacific.

Figure 4.  Consistency in autocorrelation and variance trends between temperature datasets. Monthly 
temperature datasets HadCRUT4, GISTEMP and ERA-40 in the interval 1957–2002, processed with filtering 
bandwidth 10 years and sliding window length 25 years. (a) AR(1). (b) Standard deviation. Red (3) indicates all 
3 datasets agree on a positive trend, dark blue (−3) indicates all 3 datasets agree on a negative trend, green (2) 
indicates 2 datasets give a positive trend, 1 gives a negative trend, cyan (−2) indicates 2 datasets give a negative 
trend, 1 gives a positive trend. Maps were created using NCAR Command Language (Version 6.2.1) [Software]. 
(2014). Boulder, Colorado: UCAR/NCAR/CISL/TDD. http://dx.doi.org/10.5065/D6WD3XH5.
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Turning to the North American land region, previous work has linked SST variability including ENSO, the 
PDO and AMO to the spatial pattern and frequency of drought conditions across North America23, 27, 28. For 
example, multiyear droughts in the 1950s and at the turn of the 21st century have been attributed to SST forc-
ing28 and since the mid-1990s shifts in the PDO and AMO to a cold tropical Pacific-warm Atlantic have pro-
duced “ideal” conditions for North American drought23, 28. Our analysis of 1957–2002 shows increasing SST 
variance in the tropical North Atlantic and large parts of the North Pacific, and increases in autocorrelation and 
variance in the PDO and AMO indices. We hypothesise that these trends were at least partly responsible for 
observed increases in autocorrelation and variance of temperature fluctuations in parts of North America. This 
increased variance and persistence of land temperature fluctuations can in turn be linked to the persistence and 
extremity of droughts at the turn of the 21st century, including in the southern Great Plains and in southwest 
North America. However, it should be noted that over 1979–2015 the autocorrelation and variance trends are 
much weaker (Fig. S10), yet the southwest North American drought is ongoing, especially in California. This can 
happen because SST forcing only explains a fraction of Californian winter precipitation variance, with internal 
atmospheric variability also playing a major role29. A further contributing factor may be anthropogenic forcing 
and associated record high temperatures, which are now playing a greater role in surface moisture deficits in the 
2011–2014 Californian drought than previous drought episodes29, 30.

Turning to the Mediterranean, previous work has linked decadal variability in the AMO and NAO to decadal 
climate anomalies31. Mediterranean SST variability and summer (but not winter) land surface air temperature 
anomalies are strongly correlated with AMO variability31 over 1960–2000 with positive AMO associated with 

Figure 5.  Trends in autocorrelation and variance in different temperature datasets 1957–2002. Monthly 
temperature datasets processed with filtering bandwidth 10 years and sliding window length 25 years: (a,b) 
HadCRUT4; (c,d) GISTEMP; (e,f) ERA-40. Trends in: (a,c,e) AR(1) and (b,d,f) standard deviation, measured as 
Kendall τ values. Significance at the 90% confidence interval relative to a null model (see Methods) is indicated 
with cross-hatching. Maps were created using NCAR Command Language (Version 6.2.1) [Software]. (2014). 
Boulder, Colorado: UCAR/NCAR/CISL/TDD. http://dx.doi.org/10.5065/D6WD3XH5.
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warmer than usual Mediterranean summers. Warm temperature anomalies in the Indian Ocean also promote 
Mediterranean drying, and we find evidence for increased autocorrelation and variance of SST anomalies in the 
Arabian Sea over 1957–2002 (Figs 4 and 5). Hence we suggest that increasing persistence and variance of SST 
fluctuations in neighbouring parts of the North Atlantic, in the corresponding AMO and Atlantic Tripole indices, 
and in the Arabian Sea, contributed to observed increases in autocorrelation and variance of Mediterranean tem-
peratures over 1957–2002 (Figs 4 and 5). This increased persistence of Mediterranean temperature fluctuations 
can in turn be linked to an observed increase in frequency32 and extremity33 of Mediterranean drought (noting 
that an anthropogenic forcing contribution to Mediterranean drought is also detectable)32.

Although existing models fail to show an anthropogenic forcing component to historical trends in auto-
correlation and variance of monthly temperature anomalies, a much stronger future anthropogenic forcing is 
expected to produce directional trends. For example, Arctic amplification of warming and the projected loss of 
Arctic sea-ice have been linked to a general decline in temperature variability in the Northern Hemisphere high- 
and mid-latitudes13, 34–37 (although there are some transient, seasonal or regional increases in variability)13, 34–37.  
Interestingly, under high-end future forcing, several of the CMIP5 models show a ‘speeding up’ and drop in 
amplitude of Atlantic Meridional Overturning Circulation (AMOC) variability38, 39, which would be expected 
to contribute to a drop in autocorrelation and variance of the AMO index. With this we may expect a reduction 
in persistence and variance of land temperatures in regions strongly influence by the AMO. Conceivably other 
aspects of the climate system will show increased autocorrelation and variance in a warming world. Thus, to 
understand how climate variability and persistence may change in a warmer world, we need to better understand 
not just how the ocean affects climatic variability on parts of the land surface, but also how global warming will 
affect the internal modes of variability governed by the ocean (the ‘decadal oscillators’).

To conclude, we find significant historical trends in surface ocean memory and variance which appear to be 
influenced by intrinsic (multi)decadal fluctuations in the climate system. We also find evidence that the changing 
persistence and variance of sea surface temperature fluctuations contributes to the extremity and persistence 
of seasonal temperature anomalies on parts of the world’s land surface. Based on a review of established spatial 
correlations and corresponding mechanistic ‘teleconnections’ we suggest that observed slowing down of North 
Pacific and North Atlantic sea surface temperature variability contributed to observed increases in land temper-
ature variability and autocorrelation, which in turn contributed to persistent droughts in North America and the 
Mediterranean.

Methods
Datasets and pre-processing.  We obtained four climate indices from the NOAA Earth System Research 
Laboratory (http://www.esrl.noaa.gov/psd/data/climateindices/): Pacific Decadal Oscillation (PDO, 1948–2016), 
Atlantic Multidecadal Oscillation unsmoothed (AMO, 1948–2015), Atlantic Tripole EOF (Atlantic Tripole, 1948–
2008), North Atlantic Oscillation (NAO, 1950–2016). We restricted the analysis presented in the main paper to 
the ERA-40 time period 09/1957-08/2002. The Atlantic Tripole EOF is calculated as the 1st Empirical Orthogonal 
Function (EOF) of the Sea Surface Temperatures (SST) located at 10N–70°N and 0–80°W. All these records are 
based on instrumental observations and not on reconstructions. We used the raw data without any pre-processing 
for the calculation of autocorrelation and variance trends.

We considered the HadCRUT418 (http://www.metoffice.gov.uk/hadobs/hadcrut4/), GISTEMP19 (http://data.
giss.nasa.gov/gistemp/), and the ERA-4016/ERA-Interim20 reanalysis temperature datasets. We focused on the 
ERA-40 time period 09/1957–08/2002 (ERA-40, HadCRUT4, GISTEMP) but also considered the ERA-Interim 
time period 01/1979–08/2015 (ERA-Interim, HadCRUT4, GISTEMP) in the Supplementary Information. All 
time series are of monthly resolution and the seasonal cycle has been removed. HadCRUT4 and GISTEMP 
already come in anomalies relative to a mean seasonal cycle in a base period (1961–90 for HadCRUT4 and 1951–
1980 for GISTEMP). Unfortunately this procedure is known to bias the estimates because of the difference in the 
true mean and variance and the sample from the base period15. The bias is most likely not too large for qualitative 
results, but it is an argument to compare different datasets. ERA reanalysis datasets and the climate models do 
not have this problem. There, we removed the annual cycle in a sliding window (of the same length – 10 years – as 
used for the bandwidth in the subsequent analysis).

We considered modelled AMO and PDO indices in the historically-forced runs of 9 models (listed in Table 2) 
from the CMIP5 database. For comparability we construct these indices using the same procedure used to derive 
observed indices: First, we select the time period under consideration and the region relevant for each index 
(100–260°E, 20–70°N for the PDO, 80°W-0°, 0–60°N for the AMO; land grid cells are not considered, nor are 
those containing sea ice at any time). To remove the trend induced by anthropogenic warming we subtract the 
global mean sea surface temperature at each time point. We then calculate monthly anomalies by subtracting 
the mean annual cycle at each grid cell separately. The PDO then follows as the coefficient of the first empirical 
orthogonal function (principle component) of the anomalies’ variability pattern, calculated from their covariance 
matrix40. The AMO is simply the spatial mean of the region under consideration.

Calculation of autocorrelation and variance trends.  All calculations were performed on residuals after 
each record was detrended by applying a Gaussian kernel function with a prescribed bandwidth. We estimated 
autocorrelation at lag 1 (AR1) and variance (measured as standard deviation, SD) within a sliding window that 
we moved one point ahead (1 month) along each record. As default for the spatial temperature datasets, we used 
a detrending bandwidth of 10 years and a sliding window of 25 years. For the indices, we used a range of values 
for bandwidth and window size (see Sensitivity Analysis). We calculated the trend in the obtained AR1 and SD 
values based on the Kendal τ rank correlation coefficient. A positive Kendal τ signals increasing trends, while a 
negative decreasing trends in the indicators. For example, a monotonous increase over time would yield τ = 1, 
while a monotonous decrease would yield τ = −1; no trend would yield τ = 0.

http://www.esrl.noaa.gov/psd/data/climateindices/
http://www.metoffice.gov.uk/hadobs/hadcrut4/
http://data.giss.nasa.gov/gistemp/
http://data.giss.nasa.gov/gistemp/
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Sensitivity analysis.  We explored the sensitivity of the Kendal τ trends to the filtering and sliding window 
parameter choices by estimating trends for both AR1 and SD for a combination of sliding window sizes and filter-
ing bandwidths. In particular, we used a minimum sliding window size of 5 years that we increased in increments 
of 5 years up to a maximum window size equal to 75% of the record size (e.g. 35 years for the period 1957–2002). 
We used eight different bandwidths (h = 0.5, 1, 2.5, 5, 10, 15, 20, and 30 years) for the Gaussian kernel filter. We 
also estimated trends without filtering (h = 0).

Significance testing.  We compared our empirical Kendal τ trends to trends expected based on a stationary 
null model. Our null model first generated 1000 surrogate records with the same Fourier spectrum and ampli-
tudes as the original records41. For each surrogate record, we estimated Kendal τ trends for the same combination 
of sliding window size and filtering bandwidth that we used in the original records. Lastly, for each of these com-
binations, we compared the occurrence of the empirical Kendal τ to the null distribution based on the surrogates. 
Occurrences below 5% (p = 0.1 two tailed) were considered significant. We reported the fraction of the combina-
tions of sliding window size and filtering bandwidth where the trend was significant.

Robustness analysis.  We tested how robust were the Kendal τ trends when estimated at different periods 
within the empirical records. To do this we picked a size of 22.5 years (half the total period of the 1957–2002 
records). We then selected periods of this size at all possible positions along the record. For all of these periods, we 
then analyzed trends in AR1 and SD using a sliding window half the size of the period (11.25 years). The records 
were filtered with a Gaussian smooth function of 11.25 years bandwidth.

All analyses were performed in R (v3.2.0) using modified functions from the earlywarnings package (https://
github.com/earlywarningtoolbox) following the methodology described in ref. 42.
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