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Bridging the gap between 
measurements and modelling: a 
cardiovascular functional avatar
Belén Casas1,2, Jonas Lantz1,2, Federica Viola1, Gunnar Cedersund4, Ann F. Bolger1,5,  
Carl-Johan Carlhäll1,2,3, Matts Karlsson   2,6 & Tino Ebbers   1,2

Lumped parameter models of the cardiovascular system have the potential to assist researchers and 
clinicians to better understand cardiovascular function. The value of such models increases when they 
are subject specific. However, most approaches to personalize lumped parameter models have thus 
far required invasive measurements or fall short of being subject specific due to a lack of the necessary 
clinical data. Here, we propose an approach to personalize parameters in a model of the heart and the 
systemic circulation using exclusively non-invasive measurements. The personalized model is created 
using flow data from four-dimensional magnetic resonance imaging and cuff pressure measurements in 
the brachial artery. We term this personalized model the cardiovascular avatar. In our proof-of-concept 
study, we evaluated the capability of the avatar to reproduce pressures and flows in a group of eight 
healthy subjects. Both quantitatively and qualitatively, the model-based results agreed well with the 
pressure and flow measurements obtained in vivo for each subject. This non-invasive and personalized 
approach can synthesize medical data into clinically relevant indicators of cardiovascular function, and 
estimate hemodynamic variables that cannot be assessed directly from clinical measurements.

Currently, cardiovascular diseases are mainly assessed based on clinical markers at specific locations in the car-
diovascular system. However, as a result of hemodynamic coupling, diseases are normally not limited to a single 
location but instead affect several sites in the heart and the vasculature. For example, in patients with aortic steno-
sis, the chronically elevated left ventricular afterload causes adverse cardiac remodelling over time. The detailed 
examination of single clinical biomarkers obscures the system-wide analysis demanded by the complex relation-
ships in the cardiovascular system. Therefore, despite advances in imaging techniques and diagnostic parameters 
for characterizing hemodynamics, determining the overall multifaceted cardiovascular status of a specific patient 
remains a challenging task.

Alternatively, cardiovascular function can be studied using computational models. Models can give insight into 
the interactions between different parts of the cardiovascular system and provide a holistic approach, allowing us 
to better understand disease extent in individual patients. Furthermore, modelling approaches enable computa-
tion of hemodynamic variables that are difficult or impossible to measure experimentally, and allow for prediction 
of intervention outcomes. Among the different types of models, lumped parameter representations have been 
used extensively due to their ability to capture global hemodynamics while keeping computational demands low1. 
Relatively simple, fast models allow for real-time simulation and rapid feedback after changes in model parameters, 
which make them suitable for incorporation into clinical routine. Lumped parameter models of the cardiovascular 
system typically comprise multiple compartments that represent different parts of the heart and the vessels. Each 
compartment is defined by a set of parameters describing its mechanical properties, such as resistance to blood 
flow (R), blood flow inertia (L), and compliance (C). The complexity of the model depends on the specific research 
question and can vary between single-compartment representations, such as the well-known Windkessel model2 
and more complex ones, such as the whole-body circulatory control system developed by Guyton et al.3.
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The clinical applicability of computational models, including outcome predictions, is improved when such 
models are subject specific. This implies that the model should be established on the basis of physical principles 
that are assumed to be common to all subjects, but be capable of reproducing cardiovascular features observed 
experimentally by individual tuning of the system for each subject4, 5. Although lumped parameter models have 
long been used, starting with the mathematical formulation of the Windkessel model in 18992, most authors have 
largely relied on generic population values of the parameters and have not attempted to render truly subject spe-
cific models. Only a few studies have combined clinical measurements with lumped parameter models to tailor 
them to a particular subject, but such approaches have so far required invasive measurements6–10 or can only 
identify a small number of parameters11, 12. Sughimoto et al.8 developed a closed-loop model of the cardiovascular 
system for application in the intensive care unit and tuned the five most sensitive parameters based on echocardi-
ography data in the left ventricle and invasive catheter measurements of pressures and cardiac output. Keshavarz 
et al.11 introduced a simple model to compute left ventricular stroke work in patients with aortic stenosis which 
included the left ventricle and the systemic circulation. A subset of model parameters was estimated using echo-
cardiography and 2D cine phase-contrast MRI (2D cine PC-MRI) flow data in the left ventricle and the heart 
valves. In the single-ventricle physiology model described by Pant et al.10, parameters were tuned with Doppler 
ultrasound and two-dimensional magnetic resonance flow measurements, as well as invasive pressure catheter 
measurements. Other authors have tuned parameters of three-element Windkessel models to achieve desired 
features of pressure and flow waveforms, and used these models as boundary conditions for three-dimensional 
blood flow simulations4, 13.

A current goal of cardiovascular modelling is the development of subject specific models that do not require 
invasive measurements, which would make them suitable for application in clinical routine. Three-dimensional, 
three-directional, cine phase contrast (PC) MRI, commonly referred to as 4D Flow MRI, is a promising technique 
to achieve this goal, as it enables access to a wide variety and quantity of data that has previously been unavailable 
or difficult to obtain. Unlike previous imaging modalities used for personalizing lumped parameter models, such 
as Doppler echocardiography and 2D cine PC-MRI, 4D Flow MRI permits retrospective flow assessment in all 
spatial directions and at any location within the imaging volume using data from a single acquisition.

Here, we present a proof-of-concept combination of 4D Flow MRI measurements and lumped parameter 
modelling to personalize a model of the cardiovascular system, which we term a cardiovascular avatar, based 
solely on non-invasive measurements.

Results
The cardiovascular avatar.  The starting point for our model was the well-established lumped parameter 
model introduced by Sun et al.14. The model was subsequently modified according to measurements from com-
mon 4D Flow MRI analysis, which determine the level of detail that can be achieved in every compartment. To 
personalize the model, parameters were estimated using 4D Flow MRI and morphological MRI images as well as 
non-invasive pressure measurements in the brachial artery. The estimation of parameters was performed in two 
complementary steps. A small subset of parameters was initially computed based on a-priori information from 
the images and known values of cardiovascular indices. In a second step, the majority of the model parameters 
were estimated by minimizing the difference between flow profiles extracted from the 4D Flow MRI data at five 
predefined locations and those generated by the model. An overview of the approach is illustrated in Fig. 1.

Comparison between model-based flow waveforms and in vivo measurements.  The proposed 
approach was applied to a group of eight healthy volunteers representing a spectrum of heart rates and arterial 
blood pressures (Table 1). Automatic parameter tuning to obtain a subject specific model was performed success-
fully for all subjects. A comparison between the model-based flow waveforms and the 4D Flow MRI measure-
ments at the locations F1 to F5 for one of the volunteers (subject 1) after parameter estimation is shown in Fig. 2. 
The model-based flow waveforms showed good qualitative agreement with the measurements in terms of both 
wave shape and specific wave features. The model accurately characterized the mitral flow pattern (F1), including 
the amplitude and temporal location of the early and late filling phases (E wave and A wave, respectively) and the 
duration of diastasis. The amplitude and temporal location of the systolic peak in the flow at the aortic valve (F2) 
and the locations along the aorta (F3-F5) were also well reproduced by the model. Across all subjects, the mean 
relative differences between net flow measurements and model-based ones were 8%, 10%, 10%, 6% and 5% at 
locations F1 to F5, respectively.

Subject specific model output and comparison with measured variables.  Clinically relevant out-
put variables generated by the model after parameter estimation for subject 1 are shown in Fig. 3. The model 
reproduces realistic waveforms for several hemodynamic variables, including pressures in the left atrium, the left 
ventricle and the aorta, as well as blood volumes in the left ventricle and flows through the mitral and the aortic 
valve (Fig. 3a). Knowledge of left ventricular pressures and volumes allows for computation of the left ventricular 
pressure-volume loop, as shown in Fig. 3b. The simulated systolic and diastolic aortic pressure values were in good 
agreement with the non-invasive cuff measurements (112/58 vs. 114/56). The simulated and measured arterial 
pressures for all the subjects in the study are compared in Table 2. The SBP values predicted by the model for the 
subjects in the study (111.3 ± 5.1 mmHg) were in close agreement with the measurements (112.9 ± 3.8 mmHg), 
while predictions of DBP were, on average, slightly underestimated (54.3 ± 3.1 mmHg vs. 62.7 ± 3.4 mmHg).

Results of subject specific parameter estimations.  Table 3 shows a comparison between the model 
parameters obtained for all subjects after the optimization procedure and parameter values characterizing cardi-
ovascular function in healthy adult subjects from previous studies14–19. The values reported by Sun et al.14 were 
calculated based on published data20 and Doppler ultrasound recordings of velocity patterns in the mitral valve 
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Figure 1.  Illustration of the method to obtain a subject specific cardiovascular model. (a) Visualization of the 
4D Flow MRI data in the heart and the aorta. Streamlines of the velocity field at peak systole are overlaid onto a 
segmentation of the left heart and the aorta. The positions of the analysis planes to extract the volumetric flow 
waveforms required by the model (F1-F5) are indicated as red planes. These positions correspond to: the mitral 
valve (F1); the aortic valve (F2); the ascending aorta, upstream from the brachiocephalic trunk (F3); the aortic 
arch (F4) and the abdominal aorta (F5). (b) A schematic diagram of the lumped parameter model, including 
the location of the flow measurements derived from the model indicated as red arrows. A description of the 
parameters in the model is given in Table 2. The parameters are adjusted such that the model can reproduce 
the flow waveforms obtained with 4D Flow MRI, as well as a number of cardiovascular indices obtained non-
invasively.

Study individuals (n = 8)

Gender 2 M, 6 F

Age, years 26 ± 2 (20–32)

Heart rate, bpm 67 ± 3 (55–82)

Systolic blood pressure (SBP), mmHg 113 ± 3 (98–125)

Diastolic blood pressure (DBP), mmHg 63 ± 3 (56–85)

Left ventricular end-diastolic volume 
(EDV), mL 152 ± 10 (119–199)

Left ventricular end-systolic volume 
(ESV), mL 69 ± 6 (42–98)

Stroke volume (SV), mL 83 ± 4 (70–103)

Table 1.  Characteristics of the subjects in the study. Values are expressed are mean ± standard error, unless 
otherwise stated. Ranges are given in parenthesis.
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Figure 2.  Comparison between model-based and measured volumetric flow waveforms for subject 1 after 
parameter estimation. Solid lines represent the flow waveforms generated by the model while dotted lines 
depict the flow waveforms measured with 4D Flow MRI. The flows correspond to five locations: the mitral valve 
(location F1), the aortic valve (location F2), the ascending aorta, upstream from the brachiocephalic trunk 
(location F3), the aortic arch (location F4) and the abdominal aorta (location F5). The subject specific geometry 
is represented by an angiography created from the 4D Flow MRI data. The anatomical regions of interest are 
highlighted using segmentations of the left heart (red) and the aorta (blue).

Subject 
number

SBP/DBP (mmHg)

Measured Model-based

1 114/56 112/58

2 123/57 129/50

3 105/55 99/54

4 125/85 125/73

5 110/60 108/54

6 103/59 99/51

7 125/62 125/49

8 98/61 91/47

Table 2.  Comparison of measured and model-based SBP and DBP values for the eight subjects in the study. 
Measurements of SBP and DBP were obtained non-invasively in the brachial artery. The model-based SBP and 
DBP correspond to the maximum and minimum of the model-based aortic pressure waveform, respectively.
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and the pulmonary vein. The parameters describing the time-varying elastance function of the heart chambers in 
the work by Mynard et al.15 were calculated according to previous experimental studies on healthy subjects21–23. 
The arterial resistances reported by Liang et al.17 were chosen to obtain reasonable fits of model-based flows and 
2D PC-MRI flow measurements along the aorta. The parameters estimated in our study are within the physiolog-
ical range and consistent with these published values.

Parameter identifiability.  The identifiability of the parameters for one of the study subjects (subject 1) was 
analyzed using the Profile Likelihood (PL) method24. Using this method, the confidence boundaries are charac-
terized in each individual parameter direction. The approach is based on gradually varying the parameter under 
study while re-optimizing all the other parameters. The confidence boundary is found when the optimization fails 
to provide an acceptable agreement with the data. The resulting confidence intervals of the optimal parameters for 
subject 1 are summarized in Table 4.

Discussion
This work presents a proof-of-concept combination of a lumped parameter model and non-invasive measure-
ments for personalizing a model of the left heart and the systemic circulation.

This presents an advantage over previous approaches to personalizing lumped parameter models, as they 
normally require invasive measurements6–10 or can only provide a small subset of subject specific parameters11, 12. 
The study demonstrated, in a group of eight healthy volunteers, that the flow waveforms reproduced by the model 
agree well with flow waveforms measured in vivo with respect to wave shape and specific wave features, and in 
terms of net flow volumes. The approach was evaluated by comparison of the simulated flow waveforms and arte-
rial systolic and diastolic pressure values with their measured counterparts in the studied subjects. In addition, an 
identifiability analysis revealed that a number of clinically useful model parameters were determined with small 
uncertainty using the available measurements.

Other authors have estimated parameters in lumped parameter models by solving the inverse problem based 
on 2D cine PC-MRI and Doppler ultrasound flow waveforms10, 25. Solving the inverse problem can be a challeng-
ing task, especially if the measurements are sparse and there are a large number of parameters to be estimated. In 
this context, a significant advantage of 4D Flow MRI over the prior techniques is the considerably larger quantity 
and variety of data that can be obtained with a single acquisition. In studies using Doppler ultrasound meas-
urements, there are often fewer measured waveforms available to estimate parameters in models of complexity 
comparable to ours26. Other approaches combine measurements from Doppler ultrasound and 2D cine PC-MRI, 
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Figure 3.  Model output including: (a) aortic root pressure (red), left ventricular pressure (blue), left atrial 
pressure (black) (top panel), left ventricular (LV) volume (middle panel) and flows through the mitral valve 
(MV) and the aortic valve (AV) (bottom panel); (b) left ventricular pressure-volume loop.
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Parameter Description (units) Literature values
Estimated values 
(n = 8)

Pulmonary venous system

Ppu Pulmonary capillary pressure (mmHg) 7.4 (Sun et al.14) 10.8 ± 0.68

Rpv
a Resistance of pulmonary veins (mmHg·s/mL) 2·10−3 (Sun et al.14) 2·10−3

Lpv
a Inertance of pulmonary veins (mmHg· s2/mL) 5·10−4 (Sun et al.14) 5·10−4

Rpvc
a Viscoelastic resistance of pulmonary capillaries and veins (mmHg·s/

mL) 0.01 (Sun et al.14) 0.01

Cpvc
a Capacitance of pulmonary capillaries and veins (mL/mmHg) 4 (Sun et al.14) 4

Rpu
a Resistance of pulmonary capillaries (mmHg·s/mL) 0.01 (Sun et al.14) 0.01

Heart parameters

Left atrium (LA)

Ks,LA Source resistance coefficient of the LA (s/mL) 10·10−9 (Mynard et al.15) 12.26·10−9 ± 1.92·10−9

Emin,LA Minimal elastance of the LA (mmHg/mL) 0.08 (Mynard et al.15) 0.11 ± 3.5·10−3

Emax,LA Maximal elastance of the LA (mmHg/mL) 0.17 (Mynard et al.15) 0.15 ± 7.1·10−3

V0,LA Unstressed volume of the LA (mL) 3 (Mynard et al.15) 2.68 ± 0.43

m1,LA Contraction rate constant of the LA (−) 1.32 (Mynard et al.15) 1.22 ± 0.14

m2,LA Relaxation rate constant of the LA (−) 13.1 (Mynard et al.15) 12.9 ± 1.96

α1,LA Systolic time constant of the LA (−) 0.11 (Mynard et al.15) 0.1 ± 0.04

α2,LA Diastolic time constant of the LA (−) 0.18 (Mynard et al.15) 0.2 ± 0.02

Rvisc,LA Viscous loss resistance for the LA (mmHg·s/mL) 1·10−4 (Mynard et al.15) 1.37·10−4 ± 1.77·10−5

OnsetLA Onset of contraction of the LA (s) 0.85 (Mynard et al.15) 0.8 ± 0.01

Left ventricle (LV)

Ks,LV Source resistance coefficient of the LV (s/mL) 4·10−9 (Mynard et al.15) 2.93·10−9 ± 4.35·10−10

Emin,LV Minimal elastance of the LV (mmHg/mL) 0.08 (Mynard et al.15) 0.09 ± 7.1·10−3

Emax,LV Maximal elastance of the LV (mmHg/mL) 3 (Mynard et al.15) 1.97 ± 0.17

V0,LV Unstressed volume of the LV (mL) 10 (Mynard et al.15) 11.46 ± 2.03

m1,LV Contraction rate constant of the LV (−) 1.32 (Mynard et al.15) 1.67 ± 0.12

m2,LV Relaxation rate constant of the LV (−) 27.4 (Mynard et al.15) 33.92 ± 1.2

α1,LV Systolic time constant of the LV (−) 0.269 (Mynard et al.15) 0.4 ± 0.03

α2,LV Diastolic time constant of the LV (−) 0.452 (Mynard et al.15) 0.42 ± 0.01

Rvisc,LV Viscous loss resistance for the LV (mmHg·s/mL) 1·10−4 (Mynard et al.15) 1.69·10−4 ± 1.62·10−5

OnsetLV Onset of contraction of the LV (s) 0 (Mynard et al.15) −0.04 ± 8.8·10−3

Mitral valve

Rmv Resistance of the mitral valve (mmHg·s/mL) 3.75·10−3 (Sun et al.14) 4.52·10−3  ± 7.46·10−4

Lmv Inertance of the mitral valve (mmHg·s2/mL) 2·10−4 (Sun et al.14) 7·10−4 ± 4.6·10−5

Aortic valve

EOAav Effective orifice area of the aortic valve (cm2) 1.69 (Garcia et al.16) 2.65 ± 0.54

Aao Cross sectional area of the aorta (cm2) 5 (Olufsen et al.62) 6.09 ± 1.27

Lav Inertance of the aortic valve (mmHg· s2/mL) 4·10−4 (Sun et al.14) 2.74·10−4 ± 4.6·10−4

Systemic arterial system

Raa Resistance of the ascending aorta (mmHg·s/mL) 0.04 (Sun et al.14), 0.02 
(Liang et al.17), 0.06 ± 0.03

Laa Inertance of the ascending aorta (mmHg· s2/mL) 5·10−4 (Sun et al.14), 
1.2·10−3 (Broome et al.18) 1.01·10−4 ± 1.06·10−6

Raav Viscoelastic resistance for Caa (mmHg·s/mL) 0.01 (Sun et al.14) 6.11·10−3 ± 1.8·10−3

Caa Capacitance of the ascending aorta (mL/mmHg) 0.1 (Sun et al.14), 0.16 
(Broome et al.18) 0.13 ± 0.01

Rpsa
Proximal peripheral resistance for the supra aortic vessels (mmHg·s/
mL) — 0.05 ± 3.5·10−3

Rdsa Distal peripheral resistance for the supra aortic vessels (mmHg·s/mL) 3.9 (Heldt et al.19) 3.47 ± 0.56

Cpsa Peripheral compliance for the supra aortic vessels (mL/mmHg) 0.6 (Liang et al.17) 0.49 ± 0.03

Rpia
Proximal peripheral resistance for the intercostal arteries (mmHg·s/
mL) — 0.05 ± 3.5·10−3

Cpia Peripheral compliance for the intercostal arteries (mL/mmHg) 0.93 (Liang et al.17) 0.13 ± 0.03

Rdia Distal peripheral resistance for the intercostal arteries (mmHg·s/mL) 3 (Heldt et al.19) 8.37 ± 1.18

Rda Resistance of the abdominal aorta (mmHg·s/mL) 0.04 (Sun et al.14) 0.02 
(Liang et al.17) 0.07 ± 0.01

Lda Inertance of the abdominal aorta (mmHg· s2/mL) 5·10−4 (Sun et al.14), 
1.6·10−3 (Broome et al.18) 1.7·10−3 ± 3.46·10−4

Rdav Viscoelastic resistance for Cda (mmHg·s/mL) 0.01 5.83·10−3 ± 6.36·10−4

Continued
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as well as invasive catheter pressure measurements, to obtain the data required for estimating the parameters 
in the model10. Another distinct advantage of 4D Flow MRI is the ability to perform retrospective analysis at 
any region within the acquisition volume. In our study, we retrospectively placed analysis planes at locations of 
interest and performed retrospective valve tracking. This may provide more accurate flow waveforms to solve the 
inverse problem, especially at the heart valves27, thereby improving the estimation of the parameters in the model. 
Moreover, the use of a 4D PC-MR angiogram enabled anatomical orientation, facilitating positioning of the anal-
ysis planes. This is particularly relevant in subjects with complex geometries, for whom Doppler measurements 
and positioning of the 2D PC-MRI planes are difficult to perform.

In a modelling framework, retrospective quantification is appealing as it allows retrieval and incorporation of 
new data into the model in an iterative manner. This in turn allows for modifications of the model without requir-
ing new measurements. The model presented here included only the pulmonary venous system, the left heart, and 
the systemic arterial system. Given the large regional coverage that is possible with a 4D Flow MRI acquisition, 
the approach could easily be extended by extracting measurements at additional locations in the cardiovascular 
system as required by the model. The model would also be easily extendable to patients with a spectrum of car-
diac, valvular, and vascular pathologies, whose effects could be assessed individually or in combination with other 
pathologies.

The model predicts SBP values with high accuracy as compared to reference non-invasive cuff measurements, 
while DBP predictions were, on average, slightly underestimated. This underestimation might in part be due to 
inaccuracies in estimated systemic compliances, since wave propagation phenomena (e.g. wave reflections) are 
not effectively represented when using a lumped parameter model. Previous studies have suggested that in young 
subjects, the reflected pulse wave returns in diastole due to a lower pulse wave velocity (PWV), thus increasing 
the DBP28. These findings could explain the underestimation in model-based DBP values since our study pop-
ulation only included young subjects. In future studies, the systemic circulation could be modelled following a 
one-dimensional approach to capture wave propagation effects in the arterial tree.

The initial values of the distal peripheral resistances in the supra-aortic vessels and the intercostal arteries are 
calculated assuming, as a simplification, that the mean pressure losses in the ascending aorta can be disregarded 
(i.e. the MAP at the aortic root equals the MAP at the inlet of the supra-aortic branches). However, as these repre-
sent only initial values and the peripheral resistances change during the optimization, the optimized resistance of 
the ascending aorta reflects pressure losses for the specific subject. Across all subjects, the mean pressure gradient 
across this resistance was in average ΔP = 6.37 mmHg. This value is in agreement with mean pressure gradients 
across the ascending aorta of healthy subjects computed using 4D Flow MRI29. Improvements of the current 
approach to estimate peripheral resistances could incorporate 4D Flow MRI-derived measurements of viscous 
dissipation29 and turbulent kinetic energy (TKE)30 to estimate pressure losses in the aorta directly from the 4D 
Flow MRI data.

The precision of the parameter estimation was assessed by computing confidence intervals using the PL 
method24. This method is generally more appropriate and provides better estimates of the confidence intervals 
than other commonly used approaches based on the analysis of the Hessian matrix31. Furthermore, as opposed to 
these approaches, the PL method allows to detect practical non-identifiabilities. Based on the PL analysis for one 
of the subjects in the study, 15 parameters in the model were determined with a finite confidence interval given 
the amount and quality of the available measurements (see Table 4). The majority of the parameters describing 
the left ventricle and several parameters in the systemic arterial system (e.g. the compliances and resistances), 
as well as the maximum and minimum elastances of the left atrium, were determined with a reasonably small 
uncertainty. Among the remaining parameters, 6 were found to be structurally non-identifiable and 11 practically 
non-identifiable.

Structural non-identifiabilities are associated with an over-parametrization of the model32, 33. The parameters 
describing the viscous losses in the left atrium and the left ventricle, as well as their source resistance coeffi-
cients and the viscoelastic resistances of the aortic segments were found to be structurally non-identifiable. These 
parameters could be set to a fixed value and potentially increase the idenfiability of the remaining parameters in 
the model. For instance, the values of the viscous resistances in the left atrium and the ventricle, Rvisc,LA, Rvisc,LV 
could be estimated in a subject-specific manner using 4D Flow MRI viscous dissipation measurements29.

The identifiability analysis revealed that the parameters that determine the shape of the left atrial time-varying 
elastance function were practically non-identifiable. This suggests that the amount and/or quality of the 

Parameter Description (units) Literature values
Estimated values 
(n = 8)

Cda Capacitance of the abdominal aorta (mL/mmHg) 0.1 (Sun et al.14), 0.28 
(Broome et al.18) 0.24 ± 0.04

Rpda Proximal peripheral resistance (mmHg·s/mL) — 0.05 ± 6.4·10−3

Rdda Distal peripheral resistance (mmHg·s/mL) 1.2 (Sun et al.14), 1.31 
(Broome et al.18) 0.91 ± 0.05

Cda Peripheral compliance (mL/mmHg) 2(Sun et al.14) 0.96 ± 0.11

Other parameters

Tb Duration of the cardiac cycle (s) — 0.9 ± 0.05

ρ Density of blood (g/mL) 1.06 1.06

Table 3.  Parameter estimates for the eight subjects included in the study. Values are given as mean ± standard 
error, unless otherwise stated. aParameter values were assigned according to literature14.
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measurement data were insufficient to estimate their values. Including new measurement data or improving 
image quality can in principle resolve practical non-identifiabilities24. Additional 4D Flow MRI-derived meas-
urements in the left atrium, such as left atrial volumes and relative pressure differences34, could be incorporated 
in future studies to improve identifiability of left atrial parameters.

As a proof-of-concept study, the evaluation of this novel approach for generating a subject specific model 
was done in a small group of subjects. To further evaluate the approach, a study on a large patient cohort will be 
advantageous, preferably with comparison to invasive measurements. We found that the quality of the imaging 
data will impact the accuracy of the simulated variables. For example, mismatches between net flow volumes 
at the required locations in the 4D Flow MRI data will lead to inaccuracies in the estimated parameters, as the 
model obeys the law of conservation of mass. The accuracy of the measured flow waveforms is largely determined 
by the spatial and temporal resolution, as well as the signal-to-noise ratio (SNR). Selecting a VENC that is too 
low can cause aliasing, thereby leading to an incorrect quantification of the peak flow and net flow volumes. On 

Parameter
Estimated 
value

PL-based confidence 
interval

Identifiabilityσ− σ+

Pulmonary venous system

Ppu 12 11.07 12.92 Identifiable

Heart parameters

Left atrium (LA)

Ks,LA 1.19·10−8 −∞ ∞ Structurally non-identifiable

Emin,LA 0.12 0.09 0.14 Identifiable

Emax,LA 0.15 0.15 0.2 Identifiable

V0,LA 3.22 — — Practically non-identifiable

m1,LA 1.29 — — Practically non-identifiable

m2,LA 8.30 — — Practically non-identifiable

α1,LA 0.11 — — Practically non-identifiable

α2,LA 0.15 — Practically non-identifiable

Rvisc,LA 8.46·10−5 −∞ ∞ Structurally non-identifiable

OnsetLA 0.75 0.75 0.85 Identifiable

Left ventricle (LV)

Ks,LV 2.09·10−9 −∞ ∞ Structurally non-identifiable

Emin,LV 0.10 0.06 0.14 Identifiable

m1,LV 1.66 1.48 1.82 Identifiable

m2,LV 35.89 27.54 49.29 Identifiable

α1,LV 0.41 0.30 0.50 Identifiable

α2,LV 0.48 0.38 0.58 Identifiable

Rvisc,LV −∞ ∞ Structurally non-identifiable

OnsetLV −0.06 −0.07 −0.06 Identifiable

Mitral valve

Rmv 6.26·10−3 — — Practically non-identifiable

Lmv 5.9·10−4 2.67·10−4 — Practically non-identifiable

Aortic valves

Lav 1.64·10−4 — 1.24·10−3 Practically non-identifiable

Systemic arterial system

Raa 0.08 0.06 0.13a Practically non-identifiable

Laa 1·10−4 — 1.46·10−3 Practically non- identifiable

Raav 5·10−3 −∞ ∞ Structurally non-identifiable

Caa 0.11 0.02 0.21 Identifiable

Cpsa 0.31 0.14 0.31 Identifiable

Cpia 0.06 − 0.29 Practically non-identifiable

Rda 0.08 0.05 0.13a Practically non-identifiable

Lda 2.15·10−3 1.17·10−3 — Practically non-identifiable

Rdav 5·10−3 −∞ ∞ Structurally non-identifiable

Cda 0.21 0.07 0.34 Identifiable

Table 4.  Estimated parameter values and the associated 95% confidence intervals [σ−, σ+] derived from the 
profile likelihood for subject 1. aThe confidence boundary is computed outside the parameter boundary used 
in the optimization. Empty confidence boundaries in one (or both) directions indicate that no crosses with the 
threshold were found within the parameter boundaries used for the optimization. Parameters with a confidence 
interval [−∞,∞] had a flat profile likelihood for any arbitrary value of the parameter.
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the other hand, if the VENC is set too high, the SNR can be low in regions that are also of interest for the study 
(e.g. the heart). Typical VENC values are in the range 150–200 cm/s for the thoracic aorta and 100–150 cm/s for 
intra-cardiac flows35. In this study, we set the VENC to 140 cm/s to provide a good SNR in both the aorta and the 
heart, and used a phase-unwrapping algorithm. The voxel size was set to 2.8 × 2.8 × 2.8 mm3. Previous studies 
recommend a voxel size of 3 × 3 × 3 mm3 for flow quantification in the heart and great vessels36. Besides voxel size 
and SNR, sufficient temporal resolution is critical for characterizing the flow features over the cardiac cycle. We 
used retrospective cardiac gating with an effective temporal resolution of 40 ms, which should be sufficient for 
accurately characterizing the temporal variation of the flow waveforms36.

This study makes a leap forward by integrating non-invasive measurements from 4D Flow MRI, which can 
provide a large amount of information compared to previous imaging techniques, with a relatively simple model 
of the cardiovascular system. In the current model, several parameters were non-identifiable, either due to the 
structure of the model (i.e. structural non-identifiability) or the measurement data used for the estimation (i.e. 
practical non-identifiability). Including more data of sufficient quality will further increase the number of iden-
tifiable parameters. Furthermore, it should be possible to reduce the number of parameters to estimate, thereby 
increasing their reliability given the set of available measurements. The profile likelihood used in this study 
could be used to identify candidate parameters for model reduction, potentially yielding a minimal model that is 
completely identifiable33. It should be noted, however, that full identifiability is not a requirement for the use of 
the approach, as values of identifiable parameters are valid estimates even in models including non-identifiable 
parameters. Moreover, a model can generate well-determined predictions despite non-identifiability of some 
of its parameters37. Future studies should focus on improving the approach and evaluating whether the model 
parameters can be identified with an acceptable confidence interval for specific clinical applications, as well as the 
predictive power of the parameters under varying conditions in health in disease.

The identifiability analysis was performed under the assumption that the measurement noise had a standard 
deviation of one. An increased noise variance would most probably affect the confidence intervals of the esti-
mated parameters, and therefore this should be taken into consideration when interpreting the reported confi-
dence intervals. In addition to the input measurements, the model structure, the parameter bounds used in the 
optimization, and the assigned fixed parameters will affect identifiability, as well as the subject-specific parameter 
values. These constraints represent a priori information, in our case the assumption of parameters within physio-
logical ranges for healthy subjects. The parameter values obtained using the proposed approach should therefore 
be interpreted in this context. Incorporating additional measurements into the model could avoid the need for 
assigning fixed values to parameters. Inferring parameter values from partial non-invasive measurements is a 
nontrivial process, which requires both appropriate observations and a model that reflects the underlying dynam-
ics of the cardiovascular system. This implies an iterative approach, combining modifications in data analysis 
and model development. More research is needed to improve this combination and enhance the reliability of the 
conclusions that can be drawn from the model.

The novel integrated imaging-modelling approach presented here has the potential to add to the under-
standing of cardiovascular function in health and disease by allowing researchers and clinicians to extract the 
most relevant information from large and complex medical datasets, as well as enabling the estimation of hemo-
dynamic features that are impractical to measure with current clinical methods. For instance, the analysis of 
pressure-volume loops could be possible without involving invasive catheter pressure measurements in the heart, 
which have associated risks and are difficult to perform. Furthermore, the approach could be used to present and 
combine multimodal cardiovascular functional measurement data in a generic manner in clinical and research 
applications. When only limited data is available, the PL method will facilitate guidance on uncertainty of the 
parameters and suggest additional measurements to improve this uncertainty. When sufficient data is available, 
the proposed approach could be valuable for predicting the outcome of various medical and procedural interven-
tions and facilitating the process of patient-specific treatment planning.

In conclusion, the proposed approach allows for estimating subject-specific parameters in a lumped-parameter 
model of the heart and the systemic circulation based exclusively on non-invasive measurements. After personali-
zation, the model can generate flow waveforms and arterial blood pressures that match measurements obtained in 
vivo. We believe that, with further validation, this approach could assist in the diagnosis of cardiovascular diseases 
and add to the process of treatment planning.

Methods
Study subjects and in vivo measurements.  The characteristics of the healthy volunteers included in the 
study are shown in Table 1. Inclusion criteria were as follows: no history of cardiovascular disease, no medication 
for cardiovascular disorders and normal physical examination including normal arterial blood pressure at rest. 
Exclusion criteria were absence of normal ventricular size, wall thickness or wall motion based on cardiac MRI 
data. The study was performed in accordance with the declaration of Helsinki and approved by the Regional 
Ethical Review Board in Linköping. All subjects provided written informed consent before participation.

All subjects underwent MRI examinations on a clinical 3T scanner (Philips Ingenia, Philips Healthcare, Best, 
the Netherlands) to acquire 4D Flow MRI data and 2D cine balanced steady-state free-precession (bSSFP) mor-
phological data. The 4D Flow MRI data were used for flow assessment, while morphological images were used 
for anatomical orientation and segmentation of the left ventricle. Systolic and diastolic blood pressures were 
measured non-invasively in the brachial artery five to ten minutes before the MRI scan using an oscillometric 
blood pressure monitor.

MRI examinations and data processing.  4D Flow MRI data were acquired during free breathing, using 
a navigator gated gradient-echo pulse sequence with interleaved three-directional flow-encoding and retrospec-
tive vector cardiogram controlled cardiac gating38, 39. Imaging parameters included: velocity encoding (VENC) 
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140 cm/s, flip angle 5°, echo time 3.0 ms, repetition time 5.2 ms, parallel imaging (SENSE) speed up factors of 3 
(AP direction) and 1.6 (RL direction), k-space segmentation factor 2 and elliptical k-space acquisition. The spatial 
resolution was 2.8 × 2.8 × 2.8 mm3 and the temporal resolution approximately 40 ms. For a heart rate of 60 bpm, 
scan time was about 7–8 and 10–15 min excluding and including navigator efficiency, respectively. Following 
acquisition, the data were retrospectively reconstructed into 40 time frames and corrected for concomitant gra-
dient fields on the scanner. Phase wraps were corrected offline using a temporal phase unwrapping method40. A 
weighted second-order polynomial fit to static tissue was used to correct for background phase errors41.

Morphological two-, three- and four-chamber long axis (LAx) and a stack of short-axis (SAx) images were 
acquired during end-expiratory breath holds using the following settings: echo time 1.4 ms, repetition time 
2.8 ms, flip angle 45°. The bSSFP images were reconstructed into 30 time frames with a slice thickness of 8 mm. 
SAx images were reconstructed with a pixel size of 0.9 × 0.9 mm2 and the LAx images 0.83 × 0.83 mm2.

The cardiovascular model.  The lumped parameter model consists of three main compartments: the pul-
monary venous system, the left side of the heart (including the left atrium, the mitral valve, the left ventricle and 
the aortic valve) and the systemic arterial system. The model of the systemic arterial system includes the ascend-
ing aorta, the aortic arch, the supra- aortic vessels, the descending thoracic aorta, the intercostal arteries and the 
abdominal aorta with their corresponding peripheral vascular beds. In the model, the brachiocephalic trunk, the 
left carotid and subclavian arteries, together with their vascular beds, are represented as a single compartment. 
A schematic diagram of the entire model is presented in Fig. 1. The parameters included in the model are listed 
in Table 3.

Cardiac Model.  The heart chambers.  The contractile state of each chamber was modelled based on the 
time-varying elastance concept introduced by Suga et al.42. The time-varying elastance describes the relation 
between chamber pressure, P(t), and chamber volume, V(t), during a cardiac cycle:

= − −P t E t V t V K q( ) ( )( ( ) )(1 ) (mmHg) (1)s0

where V0 is the unstressed volume, defined as the intercept of the end-systolic pressure-volume relationship with 
the volume axis42. The term Ksq is an extension to the original formulation of the time-varying elastance and 
accounts for the dependence of chamber pressure on flow15, 43, 44. Viscous losses in the chambers during ejection 
were modelled by a linear resistance, Rvisc

45.
The time course of the elastance, E(t), was represented by a “double-Hill”22 function:
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where T is the duration of the cardiac cycle and Emax and Emin the maximal and minimal elastance, respectively. 
α1 and n1 are dimensionless factors that determine the shape of the elastance during contraction, while α2 and n2 
characterize relaxation. The scaling factor α ensures that the maximum of E(t) is Emax.

The heart valves.  The pressure gradient across the mitral valve, ΔPmv, was described as:

Δ = +P t R Q t L dQ t
dt

( ) ( ) ( ) (mmHg) (3)mv mv mv mv
mv

where Qmv(t) is the instantaneous flow rate across the mitral valve and Rmv and Lmv represent the mitral valve 
resistance and inertance, respectively. The term RmvQmv(t) characterizes pressure losses due to flow separation, 
while the second term in the equation accounts for the acceleration and deceleration of mitral flow14. Viscous 
losses were considered negligible and were therefore not included in the model.

The modelling of the aortic valve was based on the analytical description of the mean transvalvular pressure 
gradient derived by Garcia et al.46. This description introduces an energy loss coefficient, ELCO, to account for the 
well-known pressure recovery phenomenon47:

ρ πρ
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where Qav(t) is the instantaneous flow rate across the aortic valve and ρ the viscosity of blood. The energy loss 
coefficient is defined as ELCO = (EOAav)Aao/(Aao − EOAav), where EOAav represents the effective orifice area of the 
valve and Aao is the cross-sectional area of the aorta measured at the time of peak systole. In this formulation, the 
term accounting for flow acceleration is also a function of the energy loss coefficient. However, in the model 
described here, this term was characterized by a generic inertance Lav instead. The term ρ Q t( )

E Co av2 L
2

 character-
izes the energy losses across the valve, represented by Rav in Fig. 1.

Pressure recovery is known to have an impact on the pressure gradient across the aortic valve47. For the mitral 
valve, however, this effect was ignored since the ratio between the effective valve area and the size of the left ven-
tricle, which determines the magnitude of pressure recovery, is very small48.



www.nature.com/scientificreports/

1 1SCIEnTIFIC REPOrTS | 7: 6214 | DOI:10.1038/s41598-017-06339-0

Whether valves were considered as fully open or closed was dependent on the sign of the pressure gradient 
across them. The transition from closed to open state, which is modelled by a diode, is triggered by a forward 
pressure gradient.

The pulmonary venous system and the systemic circulation.  The complexity of the models of the 
pulmonary venous system and the systemic circulation was chosen based on the intended level of detail and the 
number of measurements available to characterize each region. The model for each vessel segment consists of a 
RLCRv combination, where the resistance R accounts for frictional losses and L represents mass flow inertia. The 
combination of the resistance Rv and the compliance C models the viscoelastic properties of the vessel wall14, 20.

The pulmonary venous system was modelled by a constant pressure source Ppu representing perfusion pres-
sure in the pulmonary capillaries and a vessel segment to characterize the pulmonary capillaries and veins, as pre-
viously described in the work of Sun et al.14. The aorta was divided into two segments, one of them corresponding 
to the ascending aorta, and a second segment including the descending part of the thoracic aorta and the 
abdominal aorta. Each aortic outlet (supra-aortic vessels and intercostal arteries) was coupled to a three-element 
Windkessel model representing the vasculature to the peripheral vascular bed, as previously described in other 
cardiovascular models49, 50. The Windkessel representation includes proximal and distal resistances (Rp and Rd, 
respectively) characterizing the resistance of the compartment and a compliance Cp to account for its total com-
pliance. The peripheral resistance and compliance of the abdominal aorta were represented as in the original 
model by Sun et al.14.

Image processing tools.  Segmentation of the left ventricle in the Sax images was performed using the freely 
available segmentation software Segment version 1.9 (Medviso, Lund, Sweden)51. Images were visualized using 
commercially available visualization software (EnSight, CEI Inc., NC, USA). This software was used to compute 
the 4D PC-MR angiogram and place the analysis planes retrospectively. Valve tracking and computation of vol-
ume flow through the analysis planes were performed using in-house software written in Matlab (The Mathworks 
Inc., Natick, Massachusetts, USA).

Computational aspects.  The model equations were implemented in Matlab Simscape 2015b (The 
Mathworks Inc., Natick, Massachusetts, USA) and solved using the fixed step solver ode14x with a step size of 
10−3 s. The extrapolation order and the number of Newton iterations were set to 1 and 4, respectively. The simula-
tion started at the onset of isovolumetric contraction, with both the mitral and aortic valves closed. The end time 
for the simulation was set to 20 seconds, to ensure convergence of the solution.

Subject-specific parameter estimation based on in vivo measurements.  Estimation of the param-
eters in the model requires 4D Flow MRI derived measurements characterizing the morphology and function 
of the left ventricle and the aortic valve as well as volumetric flow waveforms from five sites (F1 to F5 in Fig. 1). 
These sites correspond to the mitral valve (F1), the aortic valve (F2), the distal ascending aorta, upstream from the 
brachiocephalic trunk (F3), the aortic arch (F4) and the abdominal aorta (F5).

The cardiovascular model has a total of 50 parameters, including 6 to represent the pulmonary venous system, 
25 to model the heart and the valves and 17 for the systemic circulation. The length of the cardiac cycle (T) and 
the density of blood (ρ), are also defined as input parameters. All parameters in the model are listed in Table 3.

The selection of the parameters to be optimized was based on the availability of measurement data for a 
given model compartment. As there were no available measurements to characterize the pulmonary veins, the 
parameters in this compartment (Rpu, Lpv, Rpv, Cpvc, Rpvc) were defined on the basis of values given by Sun et al.14. 
These parameters are expected to have little influence on the flow waveforms in the heart valves and the systemic 
circulation, thus they do not limit the subject specificity of the model. In addition, ρ was set to a constant value of 
1.06 g/mL for all subjects. As a consequence, 44 of the initial 50 parameters were adjusted to be patient specific.

The estimation of the parameters to personalize the model was done in two consecutive stages. Initially, a 
subset of the parameters was estimated either from imaging-derived measures or by agreement with different 
cardiovascular indices, such as mean aortic pressure. This subset corresponds to the following 12 parameters:

θ = { }EOA A R R R C R T E V R R, , , , , , , , , , , ,measured av ao psa pia pda pda dda max LV LV dia dsa, 0,

Of these parameters, {EOAav, Aao, Rpsa, Rpia, Rpda, T} are fixed based on the measurements and do not change their 
value during the optimization procedure. Cpda and Rdda are not involved in the optimization. However, their val-
ues change as they are defined as a function of other compliances and resistances in the model. The parameters 
{Emax,LV, V0,LV, Rdia, Rdsa} are included in the optimization with a range of variation of ±10%. In a second stage, 
nonlinear optimization was used to optimize the values of the remaining 32 parameters to obtain the best fit 
between the measured and the model-based flow waveforms.

Initial parameter estimates.  The cardiac cycle length, T, was approximated by the mean duration of the 
cardiac cycle during the 4D Flow MRI acquisition. The maximal elastance of the left ventricle Emax,LV, i.e. the 
elastance value at the end of systole, was estimated as:

=
−

E
P

ESV V
(mmHg/mL)

(5)
max LV

es LV

LV
,

,

0,

where Pes,LV is the end-systolic pressure in the left ventricle, ESV the left ventricular end-systolic volume and V0,LV 
the unstressed volume. ESV was calculated by manual segmentation of the endocardium in the short-axis stack at 
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the time of end systole. Pes,LV was estimated from the brachial arterial systolic pressure (SBP) using equation (6), 
assuming that Pes,LV is related to the systolic pressure in the left ventricle, Ps,LV, by Pes,LV = 0.9Ps,LV

52.

= . + ΔP P0 9(SBP )(mmHg) (6)es LV av max, ,

The term ΔPav,max accounts for the pressure drop across the aortic valve at peak systole, which can be computed 
using equation (4) in combination with the peak value of Qav(t) obtained from the 4D Flow MRI measurements. 
ESV was set to the value derived from the 4D Flow MRI data and V0,LV was defined based on a preliminary estima-
tion of the end-systolic elastance obtained using the non-invasive method described by Chen et al.53. The value of 
the ejection fraction (EF) involved in the calculation was computed from the estimated value of ESV and the time 
integral of the flow through the aortic valve. The ratio of pre-ejection period to total systolic period was estimated 
based on the timings inferred from the flow waveform at the aortic valve, derived from the 4D Flow MRI data.

The systemic vascular resistance (SVR) was computed as the mean arterial pressure (MAP) over the cardiac 
output (CO)11, 54. MAP was estimated from the brachial systolic and diastolic pressures (SBP and DBP, respec-
tively) as given below55:
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The distal Windkessel resistances in the supra-aortic vessels (Rdsa) and the intercostal arteries Rdia were computed 
based on the MAP value and the time-averaged flow rate at each outlet, obtained from the 4D Flow data. The 
peripheral resistance corresponding to the abdominal aorta, Rdda, was defined as a function of the resistances 
included in the systemic arterial system to achieve the intended value of SVR11. The proximal Windkessel resist-
ances were set to match the characteristic impedance of the feeding vessel segment, as previously described by 
Garcia-Canadilla et al.25. The peripheral compliances of the supra-aortic vessels (Cdsa) and the intercostal arteries 
(Cpia) were estimated based on the pulse pressure (PP) derived from the brachial pressure measurements and the 
measured time-averaged flow rates11. The peripheral compliance of the abdominal aorta (Cpda) was adjusted to 
match the estimated total compliance of the system56. Initial values for the remaining parameters in the models 
were established according to standard physiological considerations or values reported in previous studies14, 15, 57.

Nonlinear optimization.  Nonlinear optimization was used to estimate parameter values by minimizing the 
sum squared error (SSE) between the flow waveforms obtained from the 4D Flow MRI data and those generated 
by the model. The criterion function Jwas defined as the sum of the individual errors from each waveform:

∑∑ σ
=






− 





∼

= =
J p Q t Q t p

t
( ) ( ) ( , )

( ) (8)i t

N
i i

i1

5

1

2

where i is summed over the five locations where the flow waveforms Qi(t) are measured, ∼Q t( )i  represent the wave-
forms generated by the model as predicted by the parameters pand N is the number of time points of each flow 
waveform. The standard deviation of the measurement noise, σi(t), was assumed to be 1.

Model parameters were estimated using the Levenberg-Marquardt algorithm58, which is an iterative, nonlin-
ear least-squares optimization method. The optimization routine was terminated when parameter values in con-
secutive iterations changed by less than 0.1%59. The algorithm provides a set of optimized parameter values that 
represent a local solution to the optimization problem. To speed up the simulations, a subset of parameter values 
was initially estimated with the available non-invasive data, as described in the previous section. Furthermore, 
intervals of parameter values were defined to ensure that the solution was within the physiological range. For an 
initial parameter value of p0 in a certain parameter, these intervals were defined as follows: [p0/2, 2p0] for resist-
ance components and [p0/5, 5p0], [p0/6, 6p0] for inertance and compliance components, respectively. Parameters 
characterizing the left atrium and the left ventricle were restricted to the interval [p0/2, 2p0].

Data analysis.  Flows through the heart valves were calculated using retrospective valve tracking with correc-
tion for through-plane motion27. For extracting flows along the aorta, a 4D PC-MR angiogram was derived from 
the 4D Flow MRI data to identify the locations of the analysis planes F3 to F5. To compute volume flow through 
each plane, the vessel contour or the valve orifice were manually segmented for every cardiac time frame60. At 
time frame tf, the segmented area included a set of pixels. The flow through a pixel i at the given time frame was 
computed as:

= ⊥ ⋅ −( )Q t v a s(m ) (9)i f i i
3 1

where v⊥i is the component of the velocity vector perpendicular to the plane in pixel i and ai the area of the pixel. 
The volumetric flow through the segmented area Q(tf) was then calculated as follows
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where N is the number of pixels included in the segmentation.
Input model parameters describing left ventricular and aortic valve function were also derived from the 4D 

Flow MRI data. The end-systolic volume of the left ventricle (ESV) was computed by manual segmentation of the 
endocardium in the SAx images at the time of end systole. The cross-sectional area of the aorta was calculated by 
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manually segmenting the aortic lumen contour in the 4D Flow MRI data at peak systole. The measurement was 
performed distal to the coronary artery ostia and the aortic cross-sectional area was assumed to be circular. The 
effective orifice area of the aortic valve, EOAav, was approximated based on the continuity equation, as previously 
described by Garcia et al.61:

=EOA SV VTI/ (11)av av

where SV is the stroke volume, calculated as the time integral of the flow through the aortic valve, and VTIav is the 
velocity-time integral of the instantaneous velocity at the center of the valve.

Identifiability analysis.  The identifiability analysis was performed using the PL algorithm24, in order to 
assess structural and practical identifiability and calculate confidence intervals for the parameter estimates. The 
threshold for the algorithm was calculated for a confidence level of 95% and standard deviation of the meas-
urement noise equal to 1. Based on the article by Raue et al.24, a parameter is practically identifiable if its confi-
dence boundaries are non-infinite in both directions. For practically non-identifiable parameters, the confidence 
boundary extends infinitely in one of the directions, although the profile likelihood has a unique minimum. 
Structurally non-identifiably parameters, on the other hand, have an infinite confidence interval (i.e. the profile 
likelihood is flat). Parameters with a finite confidence interval, and at least one confidence boundary outside the 
parameter range used in the original optimization are also considered as practically non-identifiable in this work.

Data availability.  The MRI datasets used to construct the models are available from the Linköping 
University Hospital for researchers who meet the criteria for access to confidential data. The IRB form states that 
the data obtained from the patients will be stored on secure computers within the Linköping University Hospital. 
The codes used for simulating the cardiovascular model, as well as the optimization algorithms for personaliza-
tion, are available from the author upon request.
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