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Enhanced differential expression 
statistics for data-independent 
acquisition proteomics
Tomi Suomi1,2 & Laura L. Elo1

We describe a new reproducibility-optimization method ROPECA for statistical analysis of proteomics 
data with a specific focus on the emerging data-independent acquisition (DIA) mass spectrometry 
technology. ROPECA optimizes the reproducibility of statistical testing on peptide-level and aggregates 
the peptide-level changes to determine differential protein-level expression. Using a ‘gold standard’ 
spike-in data and a hybrid proteome benchmark data we show the competitive performance of ROPECA 
over conventional protein-based analysis as well as state-of-the-art peptide-based tools especially in 
DIA data with consistent peptide measurements. Furthermore, we also demonstrate the improved 
accuracy of our method in clinical studies using proteomics data from a longitudinal human twin study.

The onset of high-throughput technology has enabled us to quantify complex protein mixtures using mass spec-
trometers. A widely used option for obtaining a global protein profile for a sample is label-free shotgun proteomics 
where the mass spectrometer is operated in data-dependent acquisition (DDA) mode. In this technique, the most 
intense precursor ions from a survey scan are isolated and fragmented to produce tandem mass spectra (MS/MS 
or MS2), which are then matched against a database of known sequences for peptide identification. However, 
shotgun proteomics suffers from two major drawbacks; the frequent occurrence of undersampling and taking the 
MS/MS spectra outside of the elution peak. This leads to low reproducibility and, consequently, only a proportion 
of detectable peptides will be identified reliably1.

A complementary approach to shotgun proteomics is the targeted mass spectrometry, which utilizes selected 
reaction monitoring (SRM). This approach uses the capabilities of triple quadrupole mass spectrometers to filter 
and selectively monitor a specific molecular ion and their corresponding fragment ions generated by collisional 
dissociation. These precursor-fragment ion pairs, termed SRM transitions, are repeatedly measured and counted 
over time, enabling reproducible quantification of the target peptides2, 3.

An emerging technology, called data-independent acquisition (DIA), capitalizes on the strengths of both the 
shotgun and targeted methods by combining the reproducibility of SRM with the extensive number of proteins 
identified in shotgun proteomics4–6. DIA methods avoid the need of detecting individual precursor ions during 
the analysis since the MS/MS scans are collected systematically (independently without precursor information) 
throughout the acquisition process. Unfortunately, due to the lack of a clear association between the precursor 
and its fragments, the data processing becomes more challenging and requires tools specifically designed for this 
task.

So far, most of the efforts to analyse data from DIA experiments have focused primarily on pre-processing and 
protein quantification and less on statistical analysis7–9. For instance, mapDIA10 offers multiple filtering options 
for pre-processing the input data. While proper pre-processing and quality control are crucial steps in the analy-
sis, another important step is the choice of the method for the downstream statistical analysis. Even though there 
are currently some tools available to specifically handle data obtained from DIA experiments, such as MSstats11 
and mapDIA10, there is still room for improvements in their performance. Therefore, the goal of this study was 
to develop a tool that could reliably estimate differential protein expression between sample groups, especially in 
DIA studies.

To this end we introduce here a new reproducibility-optimization method, called ROPECA 
(reproducibility-optimized peptide change averaging), which exploits all the peptide-level measurements when 
determining the protein-level changes. A schematic illustration of the workflow is shown in Fig. 1. ROPECA 
first optimizes the reproducibility of statistical testing for each data separately by maximizing the overlap of 
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top-ranked features over group-preserving bootstrap datasets to enable robust analysis12 and then combines 
all available data from the peptide-level to improve the accuracy of the results by estimating the significance 
of median peptide-level p-values using the beta distribution13. This approach is different from tools, such as 
InfernoRDN (formerly known as DAnTE), which roll up already the peptide-level abundances before applying 
any statistical testing14. To demonstrate the benefits of ROPECA over the previously published approaches, we 
tested it with DIA data from two diverse benchmark studies as well as a clinical twin study. Although the benefits 
of our method are expected to be strongest when using DIA data with consistent peptide-level measurements, the 
method is also applicable to more conventional shotgun proteomics data, where the limitation, however, is the 
typically large number of missing values combined with small sample sizes.

Results and Discussion
We first tested the applicability of our ROPECA method using the DIA profiling standard benchmark data, which 
contains 12 non-human proteins spiked into a constant human background in different concentrations1 (Table 1). 
These spike-in proteins are considered as true positives in our analysis. As expected, most background proteins 
had fold changes close to zero (Supplementary Fig. 1A).

The performance of ROPECA, protein-level t-test, and peptide-based MSstats and mapDIA were investigated 
using receiver operating characteristic (ROC) curves (Fig. 2A), which were produced by merging the individ-
ual results of all pairwise comparisons from the seven sample groups tested (see Materials and Methods for 
details). To focus on the range of practical relevance, partial areas under the curves (pAUC) were calculated 
for specificity above 0.9 for all the methods. ROPECA produced significantly higher pAUC value of 0.949 than 
t-test (pAUC = 0.858), MSstats (pAUC = 0.887) or mapDIA (pAUC = 0.928), with bootstrap test p < 0.01 in all 
comparisons.

In addition to evaluating the ability of the methods to rank the proteins in order of evidence for differential 
expression, we also investigated the number of detected true positives and false positives as a function of false 
discovery rate (FDR) threshold from the same comparisons. This showed that ROPECA detected the largest num-
ber of true positives (Fig. 2B) while simultaneously reporting a low number of false positives (Fig. 2C), further 
demonstrating its effectiveness over the other methods. Comparison to our previously introduced probe-level 
method PECA13 and our protein-level reproducibility-optimization method ROTS12 showed the combined bene-
fits of ROPECA with increased power to detect true positives like PECA while simultaneously reporting less false 
positives like ROTS (Supplementary Fig. 2). Investigation of the effect of the minimum intra-protein correlation 
filtering of the mapDIA software revealed that the filtering can both increase or decrease the performance of the 
methods depending on the selected parameters (Supplementary Fig. 3). However, none of the tested correlation 
filters on mapDIA resulted in higher pAUC values than the unfiltered ROPECA. This supports the robustness of 
our data-adaptive ROPECA and also demonstrates the difficulty in selecting the filtering parameters manually, 
when the underlying truth is not known, which is usually the case in real studies.

A data set with a large number of proteins that are up-regulated or down-regulated between the sample groups 
often reflects the actual biological changes more accurately than studies with just a small number of spike-in 

Figure 1.  The general differential expression analysis workflow from experiment to downstream analysis. The 
dotted box highlights the ROPECA method, where the reproducibility-optimized test-statistic and the protein-
level significance are calculated.

Master 
mix 1

Master 
mix 2

Master 
mix 3 Background

Sample 1 1 200 1 1

Sample 2 1.1 125.99 4 1

Sample 3 1.21 79.37 16 1

Sample 4 1.33 50 64 1

Sample 5 10 4 256 1

Sample 6 11.01 2.52 1024 1

Sample 7 12.11 1.59 4096 1

Table 1.  Summary of the relative concentrations of the spike-in samples in the DIA profiling standard used in 
assessing the performance of ROPECA.
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proteins like in the DIA profiling standard data. Therefore, we also tested ROPECA with a previously published 
hybrid proteome data15, where multiple organisms (human, yeast, and E. coli) were mixed together to create 
samples where 35% of the mixture contains proteins that are expected to be differentially expressed between the 
sample groups. These proteins are therefore considered as true positives in our analysis (Table 2). As expected, 
most of the other proteins had fold changes close to zero (Supplementary Fig. 1B).

Again, ROPECA produced significantly higher pAUC of 0.916 than t-test (pAUC = 0.836), MSstats 
(pAUC = 0.844) or mapDIA (pAUC = 0.895), with bootstrap test p < 0.01 in all comparisons (Fig. 2D). Although 
in terms of true positives, ROPECA performed slightly more conservatively than the other tested methods, at a 
typical FDR threshold of 0.05, the number of true positives reported by all the methods were roughly the same 
(Fig. 2E). In these data, the number of false positives was lowest with ROPECA, demonstrating its utility over 
the other methods (Fig. 2F). Similarly as in the DIA profiling standard data, ROPECA outperformed PECA and 
ROTS in terms of true and false positives (Supplementary Fig. 2).

Finally, we wanted to test the utility of the ROPECA method on clinical data. For this we used a publicly 
available twin study data set, which was generated using the DIA technology16. Out of the 116 individuals, each 
having two follow-up visits, we separated those 14 individuals that were diagnosed with type 2 diabetes mellitus 
(T2D) from the rest of the population; differential protein expression was then tested between these two groups 
using measurements from the first visit. To test the reproducibility of the detections at FDR threshold of 0.05, we 
compared the results obtained using the full dataset against randomly sampled subsets, ranging in size from 3 
to 13 (sampling without replacement). More specifically, we compared the proportion of common differentially 
expressed proteins identified in the full dataset with those found within a subset. Results of ROPECA (Fig. 3A), 
t-test (Fig. 3B), MSstats (Fig. 3C), and mapDIA (Fig. 3D) were illustrated using violin plots, each from 100 ran-
domly sampled subsets, together with their total number of proteins reported within each subset (Fig. 3E–H). On 
average, ROPECA detected more proteins than t-test, MSstats and mapDIA (Wilcoxon signed rank test p < 0.05). 
It also retained a higher number of common detections than t-test or MSstats especially at smaller sample sizes 
(Wilcoxon signed rank test p < 0.001 for all sample sizes when comparing ROPECA overlaps to t-test and MSstats 

Figure 2.  Performance of ROPECA in two diverse benchmark data sets. (A) Receiver operating characteristic 
(ROC) curves of the different statistical methods in the DIA profiling standard data. The ROC curves were 
produced by merging the individual results of all pairwise comparisons. The partial area under the curve 
(pAUC) for specificity above 0.9 is shown for each method. (B,C) Number of true positives and false positives in 
the DIA profiling standard as a function of false discovery rate (FDR) threshold. The black dotted line represents 
optimal performance. (D) ROC curves in the hybrid proteome benchmark data. (E,F) Number of true positives 
and false positives in the hybrid proteome benchmark data as a function of FDR threshold. The black dotted line 
represents optimal performance.

E. coli Yeast Human

Sample A 5% 30% 65%

Sample B 20% 15% 65%

Table 2.  Summary of the sample composition in the hybrid proteome benchmark data.
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overlaps). Overall, the highest relative overlap was produced by mapDIA. Notably, however, mapDIA produced 
significantly highest overlaps also in random mock comparisons generated by repeatedly splitting the data into 
two parts (Wilcoxon signed rank test p < 0.001 over 100 random comparisons, Supplementary Fig. 4). This is 
likely due to mapDIA having a significant correlation between the estimated FDR and the number of peptides for 
each protein (Pearson’s product-moment correlation p < 0.001 over all the random comparisons).

To estimate the proportion of false positive detections in the twin study, we similarly tested differential expres-
sion between artificial sample groups, which were created by randomly splitting the data of the first visits into two 
parts. As none of the proteins were expected to be differentially expressed, it enabled us to estimate the accuracy 
of the FDR values reported by each method. For 100 randomly sampled runs using FDR threshold of 0.05, the 
estimated FDR from mock comparisons was 0.002 with ROPECA, 2 × 10−5 with both t-test and MSstats, and 
0.004 with mapDIA, which suggests that all the estimates were conservative.

Finally, we investigated the biomedical relevance of the differentially expressed proteins (FDR < 0.05) 
reported by each method between the 14 individuals diagnosed with T2D and the rest of the twin study popula-
tion (n = 102) in both of the two follow-up visits. Ambiguous hits corresponding to multiple proteins or proteins 
detected using only a single peptide were filtered out. In addition, fold changes were required to be in the same 
direction on both visits. ROPECA identified a total of nine proteins as differentially expressed on both visits, t-test 
three, MSstats zero, and mapDIA eight proteins (Fig. 4A). Notably, the three proteins identified by t-test were 
also significant using both ROPECA and mapDIA, while three unique proteins were reported as significant by 
ROPECA and two by mapDIA (Fig. 4B).

Although the initial study was not aimed specifically to investigate T2D, the detected differentially expressed 
proteins (Fig. 4C) were well supported by existing literature. For example, increased plasma fibrinogen levels17 
and increased levels of fibrinogen alpha, beta and gamma chains18 have been reported in T2D patients. Also, the 
plasma levels of C3 have been shown to be significantly associated with the development of diabetes19. Decreased 
levels of apolipoprotein M in plasma of diabetic patients has been reported in multiple studies20, 21; the same 
can be said for adiponectin22, 23. Moreover, 10 out of the 11 proteins were found in the STRING database24 and 
known protein-protein interactions were reported between nine of them (Fig. 4D). Finally, we confirmed that for 
none of the candidate proteins, the protein abundance was significantly correlated with subject age (FDR > 0.05; 
Supplementary Fig. 5).

To summarize, we have developed a new reproducibility-optimized peptide-based tool, ROPECA, for per-
forming differential expression analysis on proteomics data. The method was tested and its benefits were illus-
trated using diverse DIA datasets. In the spike-in benchmark data and the hybrid proteome benchmark data, 
ROPECA systematically outperformed the currently accepted methods by reporting at least the same number 
of true positives as the other methods while simultaneously reporting less false positives at the typical FDR 
threshold of 0.05. Additionally, we showed the applicability of ROPECA in actual clinical data using a human 
twin study, where we identified several differentially expressed proteins supported by literature that would have 
been missed by conventional statistical testing. Besides enabling robust analysis of data that has been generated 
using various types of DIA approaches, the tool also works with conventional shotgun proteomics data. However, 
the performance is limited by the typically large number of missing values combined with a small sample size, 
making the bootstrap procedure of ROPECA less effective. There, our previously introduced PECA method is 
currently recommended (Supplementary Fig. 6). This approach, now shown to perform well using peptide-level 

Figure 3.  Reproducibility of the results in the clinical twin study. (A–D) Violin plots showing the proportion 
of overlapping differentially expressed proteins (FDR < 0.05) between the full data set (i.e. using all available 
samples) and 100 random subsets of 3–13 individuals diagnosed with type 2 diabetes (T2D) using ROPECA, 
t-test, MSstats, and mapDIA. Differential expression analysis was performed between subjects diagnosed 
with T2D and the rest of the study population (n = 102). (E–H) Violin plots showing the total number of 
differentially expressed proteins in the subsets analysed in Figure (A–D).

http://4
http://5
http://6


www.nature.com/scientificreports/

5Scientific Reports | 7: 5869  | DOI:10.1038/s41598-017-05949-y

measurements, could also be further extended to exploit the possible fragment-level measurements. ROPECA 
is implemented in the PECA R-package, which is freely available from Bioconductor (https://bioconductor.org/
packages/PECA).

Materials and Methods
Analysis environment.  For the analysis, the following tools were used: R 3.3.2, MSstats 3.6.0, PECA 1.10.0, 
ROTS 1.3.1, mapDIA 2.4.1, and genefilter 1.56.0. The scripts to perform the analyses are available from our web-
site (http://www.btk.fi/research/research-groups/elo/downloads/).

Reproducibility-optimized peptide change averaging (ROPECA).  ROPECA uses peptide-level sta-
tistics to infer differential protein expression following a similar concept as our previously introduced PECA 
method13. Unlike in PECA, however, the peptide-level test statistics are optimized to maximize the reproducibil-
ity of the detections. To achieve this, ROPECA uses the reproducibility-optimized test statistic (ROTS)25. More 
specifically, it optimizes the reproducibility by choosing a statistic from a family of t-type statistics that maximizes 
the overlap of top-ranked peptides in group-preserving bootstrap datasets. The modified t-statistic is calculated 
as:

α α
=

−
+αd

x x
s (1)

1 2

1 2

where −x x1 2  is the difference between the two group averages of normalized peptide abundances, α1 and α2 are 
non-negative parameters to be optimized, and s is the pooled standard error. The optimal statistic is determined 
by maximizing the reproducibility Z-score:
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Figure 4.  Differentially expressed proteins in type 2 diabetes (T2D). (A) Overlaps of differentially expressed 
proteins (FDR < 0.05) in the two follow-up visits using ROPECA, t-test, MSstats, and mapDIA. (B) Overlaps of 
the differentially expressed proteins between the different methods. MSstats was omitted as it did not report any 
proteins on both visits. (C) Fold changes of the differentially expressed proteins on both visits. Only proteins 
with fold change to the same direction on both visits and identified using more than a single peptide were 
included. (D) Known protein-protein interactions between the differentially expressed proteins shown in panel 
C reported in the STRING database.

https://bioconductor.org/packages/PECA
https://bioconductor.org/packages/PECA
http://www.btk.fi/research/research-groups/elo/downloads/


www.nature.com/scientificreports/

6Scientific Reports | 7: 5869  | DOI:10.1038/s41598-017-05949-y

over a lattice α ∈ . ...{0, 0 01, , 5}1 , α ∈ {0, 1}2 , ∈ ...k F{0, 1, 2, , }, where F is the total number of peptides in the 
data, αR d( )k  is the reproducibility of statistic αd  at top list size k in bootstrap datasets, αR d( )k

0  is the corresponding 
reproducibility in randomized datasets permuted over samples, and αs d( )k  is the standard deviation of the boot-
strap distribution. Reproducibility is defined as the average overlap of k top-ranked peptides over pairs of boot-
strapped datasets.

For protein-level inference of differential expression, the median of peptide-level p-values is used as a score 
for each protein taking the direction of change into account. The protein-level significance of the detection is 
then calculated using beta distribution. Under the null hypothesis, the p-values of the peptides follow the uni-
form distribution U(0,1). Furthermore, the order statistics from U(0,1) distribution follow a beta distribution. 
More specifically, the ith order statistic of sample size n has a beta distribution B(γ,δ) with parameters γ = i and 
δ = n − i + 1 26. The significance of the median p-value for a protein with n peptides is hence calculated using the 
cumulative distribution function of the beta distribution’s probability density function27:

∫γ δ
−γ δ− −

B
x x dx1

( , )
(1 )

(3)

P

0

1 1m

where Pm is the observed median p-value of peptides belonging to the protein. Finally, the FDR is calculated using 
the Benjamini-Hochberg procedure.

MSstats, mapDIA and t-test.  Bioconductor package MSstats and SourceForge package mapDIA were 
applied to the normalized peptide-level data. In MSstats, the analysis was done using the default settings. No 
normalization was performed in the dataProcess function. In mapDIA, the experimental design was set as 
IndependentDesign. No normalization or imputation of data within the software was used. Standard deviation 
factor (SDF) was set to inf and median intra-protein correlation cutoff (MIN CORREL) was set to −1. Minimum 
number of observations for each group (MIN_OBS) was set to 1 and minimum number of peptides per pro-
tein (MIN_PEP_PER_PROT) was set to 1. These settings ensure that that no additional filtering was performed 
within the software and that the benchmark focuses only on the statistical model of the software. A two-sided 
two-group t-test with equal variances was applied using rowttests function in the Bioconductor genefilter package 
to the protein-level data obtained by summarizing the normalized peptide intensities. The Benjamini-Hochberg 
procedure was used to control the FDR of t-test. For MSstats and mapDIA, the FDR reported by the software was 
used.

DIA profiling standard.  For benchmarking purposes we used the DIA profiling standard of Bruderer et 
al.1, which contains 12 non-human proteins spiked into a constant human background (HEK-293) with differ-
ent known concentrations in eight sample groups, each having three replicates. The DIA data used here were 
downloaded from the supplementary files of Bruderer et al. containing local regression normalized28 peptide 
quantifications preprocessed using Spectronaut29. For t-test the normalized peptide intensities were summed to 
protein-level. The DIA profiling standard is available from PeptideAtlas: No. PASS00589 (username PASS00589, 
password WF6554orn).

Results are shown after excluding sample group 8 from the analyses. There was large variability in the compar-
isons involving the sample group 8, and all the tested methods performed exceptionally poor in those compar-
isons. We hypothesized that a high abundance of some proteins in the sample (relative concentration of 16 384 
times the background) had an impact on the quantitation of other proteins, thus leading to biased results. This 
effect is typical for DDA data12. By filtering out the group 8 from the analysis, we increased the performance of all 
the methods, especially reducing the number of false positives.

Hybrid proteome data.  We also used data from Kuharev et al.15 for benchmarking differential expression 
in DIA data. The data was originally used for testing three different software packages (ISOQuant, Progenesis 
and Synapter) for processing MSE 30 and UDMSE 6 DIA data. The data consists of two hybrid proteome samples of 
known composition, both with five technical replicates. The samples contain human, yeast and E. coli proteins, 
where only the proportion of yeast and E. coli proteins change between the two sample groups. This consti-
tutes 35% of the total sample composition, thus reflecting an actual biological sample, where a large number 
of proteins can be differentially expressed. Raw and pre-processed data are available from the PRIDE Archive 
(id PXD001240). From all the available data, we used the UDMSE based results, which were processed using 
ISOQuant software. For ROPECA, MSstats and mapDIA, the intensities of identical peptide sequences were 
first summed to form the peptide-level data and this peptide-level data was then median normalized. The same 
peptide-level data was used with each method to ensure comparability. For t-test, these median normalized pep-
tide intensities were further summed to protein-level.

Longitudinal clinical twin data.  To demonstrate the performance of ROPECA in clinical proteomic stud-
ies, we used data from a longitudinal human twin study by Liu et al.16, which consists of human plasma pro-
teins quantified using the SWATH technique4. The samples were collected longitudinally from two time points 
at intervals of 2–7 years from 72 monozygotic and 44 dizygotic twins. The preprocessed OpenSWATH data was 
downloaded from the PRIDE Archive (id PXD001064) and converted to suitable matrix format for statistical 
analysis using SWATH2stats R-package31. The peptide-level data was median normalized and used as input for 
ROPECA, MSstats and mapDIA analysis. For t-test, we used the available protein-level data, which was median 
normalized similarly.
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