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Spectral clustering using Nyström 
approximation for the accurate 
identification of cancer molecular 
subtypes
Mingguang Shi & Guofu Xu

A major challenge in clinical cancer research is the identification of accurate molecular subtype. 
While unsupervised clustering methods have been applied for class discovery, this clustering method 
remains a bottleneck in developing accurate method for molecular subtype discovery. In this analysis, 
we hypothesize that spectral clustering method could identify molecular subtypes in correlation 
with survival outcomes. We propose an accurate subtype identification method, Cancer Subtype 
Identification with Spectral Clustering using Nyström approximation (CSISCN), for the discovery of 
molecular subtypes, based on spectral clustering method. CSISCN could be used to improve gene 
expression-based identification of breast cancer molecular subtypes. We demonstrated that CSISCN 
identified the molecular subtypes with distinct clinical outcomes and was valid for the number of 
molecular subtypes. Furthermore, CSISCN identified molecular subtypes for improving clinical and 
molecular relevance which significantly outperformed consensus clustering and spectral clustering 
methods. To test the general applicability of the CSISCN, we further applied it on human CRC datasets 
and AML datasets and demonstrated superior performance as compared to consensus clustering 
method. In summary, CSISCN demonstrated the great potential in gene expression-based subtype 
identification.

Identifying the subtype of cancer is one of the leading area of study in clinical cancer research. The use of accurate 
subtype identification typically helps to determine the appropriate therapy and thus improves survival rate for 
cancer patients. To date, the rapid development of high-throughput platforms such as gene expression profiling1, 2,  
human whole-genome sequencing3, 4 and whole-exome sequencing5 have been applied to cancer data for the 
prioritization of expression-based signatures6, 7, the discovery of recurrent mutations3, 4, the identification of 
molecular subtypes1, 8, the development of prognosis model9, 10 and the selection of patients likely benefit from 
particular targeted therapies11. In particular, advances in cancer genomics studies have revealed the marked clin-
ical and molecular heterogeneity with regard to responses from treatment and survival outcomes12, 13. However, 
the heterogeneity in tumor samples poses considerable challenges for the evaluation of prognosis and selection of 
an appropriate treatment for each individual patient14. Thus, there is urgent need to provide the accurate subtype 
identification method for developing the prognostic and therapeutic strategies.

Traditional unsupervised clustering methods have showed great potential in identifying modular network15, 
discovering molecularly distinct subtypes16–18 and identifying oncogenic pathway signatures11 in cancer research. 
Specifically, consensus clustering method has been widely used for class discovery19, 20 and the identification 
of consensus molecular subtypes8, 21. While traditional clustering algorithms are mainly founded on Euclidean 
geometry and unable to treat nonlinear structure in data, spectral clustering could adapt to geometries in a 
broader range due to the identification of non-convex patterns and linearly non-separable clusters22. Importantly, 
spectral clustering has been widely used in machine learning and pattern recognition22–25. It partitions the points 
into distinct clusters based on the eigenstructure of the similarity matrix. Accordingly, the points have high sim-
ilarity in the same cluster and low similarity in different clusters26. Despite its good performance, spectral clus-
tering is often limited in its application for large-scale problems due to its high computational complexity27.  
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To address this challenge, the spectral clustering using Nyström approximation is presented to reduce the compu-
tational cost of the matrix decomposition and improve the clustering accuracy28, 29.

In this paper, we aimed to develop and evaluate spectral clustering method using Nyström approximation for 
identifying molecular subtypes of cancer. We investigated whether this method could identify molecular sub-
types for improving clinical and molecular relevance. We proposed an accurate subtype identification method, 
Cancer Subtype Identification with Spectral Clustering using Nyström approximation (CSISCN), for the discov-
ery of molecular subtypes, based on spectral clustering method. We first started with the discovery for molecular 
subtypes of breast cancer patients based on gene expression profiles (GEPs). Then, we demonstrated that, 1) 
The CSISCN identified the molecular subtypes with distinct clinical outcomes; 2) The CSISCN was valid for the 
number of molecular subtypes; and 3) The CSISCN identified molecular subtypes for improving clinical and 
molecular relevance as compared to the consensus clustering and spectral clustering methods. To test the general 
applicability of the CSISCN, we further applied it on human CRC datasets and AML datasets and demonstrated 
superior performance as compared to consensus clustering and spectral clustering methods.

Methods
Gene expression datasets of cancer patients.  Breast cancer consisted of distinct biological subtypes 
including HER2, ER and PR for different prognostic and therapeutic implications. We have collected breast can-
cer gene expression datasets using the Affymetrix U133A platforms from public resources. The gene expression 
datasets GSE2505530, GSE2506530 and GSE653231 were downloaded from the Gene Expression Omnibus (GEO) 
database. Neoadjuvant study of 310 HER2-negative breast cancer cases in GSE25055 and 198 HER2-negative 
breast cancer cases in GSE25065 were treated with taxane-anthracycline chemotherapy pre-operatively and endo-
crine therapy. The clinically distinct molecular subtypes were identified in estrogen receptor positive breast carci-
nomas GSE6532. In this study, tumor samples from GSE25055 were used as training cohort, and those from two 
gene expression datasets GSE25065 and GSE6532 were used as independent validation cohorts.

Mutations in specific genes APC, KRAS, PIK3CA and TP53 allowed the identification of prognostic subgroups 
in colorectal cancer (CRC). The TCGA (The Cancer Genome Atlas) study recently reported three transcriptomic 
subtypes of CRC, which were designated as “microsatellite instability/CpG islandmethylator phenotype” (MSI/
CIMP), “invasive”, and “chromosomal instability” (CIN)32. The training cohort GSE1753633, 34 including 111 sam-
ples in CRC patients was obtained from GEO database. In our study, we analyzed independent validation cohort 
GSE1753733, 34 downloaded from GEO database. Stage І and IV samples were excluded from this study. All these 
two CRC datasets were generated on the Affymetirx U133 plus 2.0 platform. The metastasis gene expression 
profiles GSE17536 (Moffitt patients) and GSE17537 (VMC patients) were developed from highly invasive mouse 
colon cancer cells and non-invasive colon cancer cells respectively.

Acute myeloid leukemia (AML) patients were classified into M0-M7 subgroups with FAB (French–American–
British) criteria35. For AML, two gene expression datasets including GSE1241736 (HG-U133A) and GSE1035837 
(HG-U133Plus2) were downloaded from GEO database. In GSE12417, 163 samples of bone marrow or periph-
eral blood mononuclear cells were developed from adult patients with untreated AML. The high-throughput 
sequencing using genomic DNA or RNA were created from the bone marrow (tumor) and matched skin biopsy 
samples (germline) from over 300 patients with de novo AML in GSE10358. GSE12417 was used as training 
cohort and GSE10358 was used as test cohort respectively.

For tumor gene expression datasets, all Affymetrix based CEL files were normalized using the Robust 
MultiChip Analysis (RMA) algorithm38 from the R Bioconductor package. Probe set identifiers (IDs) were 
mapped to gene symbols with the mapping from the GEO database. The probe set with the largest interquartile 
range (IQR) was selected owing to its high variation across samples, when multiple probe sets were mapped to 
the same gene. Probe sets were eliminated when they were mapped to multiple genes. The Z-score transformation 
was used as a normalization procedure to standardize the expression values of each gene. The datasets were per-
formed separately to ensure their independency. The clinical characteristics of tumor samples with breast cancer, 
CRC and AML are listed in Table 1.

Spectral clustering using Nyström approximation.  Input: data points = …xX { , , x }1 n  representing 
gene expression levels of patients; : number of random samples; σ: Gaussian function scaling parameter; k: num-
ber of identified clusters; n: the number of patients; < <k n, 1 ≤ i, j ≤ n.

Tissue GEO #Samples Survival event #Genes

Breast cancer GSE25055 310 DRFS (66 1, 244 0) 12694

Breast cancer GSE25065 198 DRFS (45 1, 153 0) 12694

Breast cancer GSE6532 241 DRFS (82 1, 159 0) 12694

CRC GSE17536 111 RFS (31 1, 80 0) 19468

CRC GSE17537 55 RFS (19 1, 36 0) 19825

AML GSE12417 163 OS (102 1, 61 0) 11796

AML GSE10358 91 OS (45 1, 46 0) 12694

Table 1.  Microarray datasets for CSISCN development and validation. (DRFS: distant relapse free survival, 
RFS: relapse-free survival, OS: overall survival, 1: recurrence, 0: non-recurrence).
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	10.	 Perform the k-means algorithm to cluster n rows of ∼U into k groups. K-means algorithm minimize the 
objective function ∑ ∑ −= ∈  u ci 1

k
u C j i

2
j i

, where uj is vectors corresponding to n rows of ∼U and ci is the 
centroid of all the points uj belonging to cluster ci. We define = ∑ ∈c ui

1
s u s j

i j i
, where 

= − ≤ −   s {u : u c u c }i p p i
2

p j
2 .

	11.	 K-means iterations terminated with the relative difference between the two values of the objective function 
less than 0.001.

Subtype identification of CSISCN and consensus clustering approach.  We proposed an accurate 
subtype identification method, Cancer Subtype Identification with Spectral Clustering using Nyström approx-
imation (CSISCN), for the discovery of molecular subtypes, based on spectral clustering method. For spectral 
clustering using Nyström approximation, a Matlab implementation was used for this study. For tumor samples 
of training cohort, we set the parameter σ vary among the candidate set {20, 30, 40, 50} for each cancer type. Full 
gene symbols were used as outcome-related genes for input features. In the implementation of spectral clustering 
using Nyström approximation, we let the half sample size of training cohort as the number of random samples 
for each cancer type. The k-means algorithm was performed to identify the k clusters. The identified k clusters 
and real prognosis of the patients was assessed by the Kaplan-Meier survival curves and log-rank test. Each 
choice from the parameter σ was evaluated with log-rank p-value over 10 runs, and the parameter σ with small-
est p-value was identified. The identified parameter σ was then performed to test on the independent validation 
dataset and the performance was evaluated with the Kaplan-Meier estimated survival curves.

For reference, we compared performance from the CSISCN approach to that from the state of the art unsu-
pervised clustering method consensus clustering approach19. Consensus clustering has proved to be effective in 
solving different biological problems including gene expression-based class discovery19, identification of biolog-
ically functional modules in Protein–Protein Interaction (PPI) networks39, and cancer subtype discovery40. An 
R implementation of the ConsensusClusterPlus41 available in the ConsensusClusterPlus package was used for 
consensus clustering method. The pearson correlation coefficient distance was used with hierarchical clustering. 
The consensus clusters were identified as cancer subtypes from 100 resampling iterations of the hierarchical clus-
tering, by using the full gene symbols (100%) and randomly selecting a fraction of the 80% samples. The identified 
cancer subtype and real prognosis of the patients was then assessed with survival analysis by the Kaplan-Meier 
survival curves and log-rank test. The number of consensus clusters was selected from k = 2 to k = 10 respectively.

Survival analysis.  The association between the molecular subtype and real prognosis of the patients was 
evaluated by the Kaplan-Meier survival curves and log-rank test. Standard Kaplan–Meier survival curves were 
generated for each cancer subtype, and the survival difference between molecular subtypes was statistically evalu-
ated using the log-rank test. An R implementation in the survival package was used for survival analysis. P-values 
of less than 0.05 were considered statistically significant.

Results
Overview of the CSISCN development and evaluation workflow.  Figure 1 illustrates the overview 
of the CSISCN development and evaluation workflow. Microarray gene expression data on a specific cancer type 
were collected, normalized, and then z-score transformed separately. Molecular subtype of cancer was discov-
ered from spectral clustering using Nyström approximation and k-means algorithm with the full gene symbols 
of GEPs. On the training set, we let the Gaussian function scaling parameter σ vary among the candidate set to 
construct the similarity matrix. CSISCN discovered the k clusters as molecular subtypes of cancer based on the 
identified optimal parameter. The association between identified molecular subtype and real prognosis of the 
patients was assessed by the Kaplan-Meier survival analysis. For CSISCN, the identified optimal parameter σ was 
then performed to test on the independent validation dataset. The k clusters were recognized as molecular sub-
types to stratify the validation cohort and the prediction performance was then evaluated with the Kaplan-Meier 
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survival curves and log-rank test. For tumor samples of validation dataset in each cancer type, we set the number 
of random samples with the half sample size of test cohort.

The CSISCN identifies the molecular subtypes with distinct clinical outcomes.  We presented the 
CSISCN to identify the molecular subtypes from tumor GEPs. We investigated whether CSISCN could identify 
the molecular subtypes in breast cancer as an example. GSE25055 was used as training cohort for clustering devel-
opment. GSE25065 and GSE6532 were then used as two independent validation cohorts to validate the approach. 
For each parameter σ, log-rank p-values were generated with repeated ten times runs in order to obtain robust 
performance evaluation results. In this analysis, the parameter σ = 20 was identified with smallest p-value from 
training cohort and then performed to test on the independent validation dataset.

To identify the difference in gene expression between molecular subtypes, we performed CSISCN to stratify 
the cancer patients into k clusters. Figure 2 showed the molecular subtypes with distinct cluster discriminating 
patterns of breast cancer. The heatmap further revealed the subtype based discriminative patterns of alterations 
in GEPs.

GSE25055 was used as training cohort to develop the CSISCN for identifying molecular subtypes. As shown 
in Fig. 3a, the subtype 1 group had significantly worse distant relapse-free survival than the subtype 2 group. 
The distant relapse free survival at 3 years was 70% for the subtype 1 group compared with 80% for the subtype 
2 group. As shown in Fig. 3b, the patients were separated into three subtypes with significantly different distant 
relapse-free survival. The distant relapse free survival at 3 years was 78% for the subtype 1 group compared with 
84% for the subtype 2 group and 64% for the subtype 3 group respectively. As shown in Fig. 3c, the patients were 
stratified into four subtypes with significantly different distant relapse-free survival. The distant relapse free sur-
vival at 3 years was 75% for the subtype 1 group as compared to 69% for the subtype 2 group, 77% for the subtype 
3 group and 85% for the subtype 4 group respectively. To further test the generality of the method, we developed 
the CSISCN from GSE25055 for identifying from five to ten molecular subtypes. As shown in the Fig. 4, it illus-
trated that the patients were stratified into five molecular subtypes with significantly different relapse-free survival 
(Fig. 4a) and six molecular subtypes with significantly different relapse-free survival (Fig. 4b) respectively. Still, 
we observed that the patients were separated into eight molecular subtypes with significantly different distant 
relapse-free survival (Fig. 5a), nine molecular subtypes with significantly different distant relapse-free survival 
(Fig. 5b) and ten molecular subtypes with significantly different distant relapse-free survival (Fig. 5c) respectively.

Figure 1.  Workflow for the development and evaluation of the CSISCN. (a) Gene expression data are 
normalized and z-score transformed from breast cancer, CRC and AML. The CSISCN was developed with 
spectral clustering using Nyström approximation and k-means algorithm to identify molecular subtypes.  
(b) The evaluation of parameter vary among the candidate set, the clustering method is developed based on the 
optimal parameter and the testing procedure is then specified.
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Using optimized parameter σ based on training cohort, the CSISCN was developed to test on the independent 
dataset GSE25065. Figure 3d illustrated the subtype 2 group had significantly worse distant relapse-free survival 
than the subtype 1 group. The distant relapse free survival at 3 years was 84% for the subtype 1 group compared 
with 74% for the subtype 2 group. Figure 3e depicted the patients were separated into three subtypes with signif-
icantly different distant relapse-free survival. The distant relapse free survival at 3 years was 84% for the subtype 
1 group compared with 85% for the subtype 2 group and 66% for the subtype 3 group respectively. We observed 
that the patients were separated into five molecular subtypes (Fig. 4d), seven molecular subtypes (Fig. 4f) and 
nine molecular subtypes (Fig. 5e) respectively with significantly different distant relapse-free survival when the 
CSISCN was applied for breast cancer gene expression datasets GSE25065.

To further validate the effect of the CSISCN, we developed the clustering method to test on the independent 
dataset GSE6532. We observed that the subtype 1 group had significantly worse distant relapse-free survival than 
the subtype 2 group (Fig. 3g). The distant relapse free survival at 3 years was 78% for the subtype 1 group compared 
with 83% for the subtype 2 group. Still, we noticed that the patients were separated into three subtypes with signif-
icantly different distant relapse-free survival (Fig. 3h). The distant relapse free survival at 3 years was 86% for the 
subtype 1 group compared with 79% for the subtype 2 group and 75% for the subtype 3 group respectively. Figure 3i 
showed that the patients were stratified into four subtypes with significantly different distant relapse-free survival. 
The distant relapse free survival at 3 years was 74% for the subtype 1 group as compared to 77% for the subtype 
2 group, 81% for the subtype 3 group and 89% for the subtype 4 group respectively. As shown in the Figs 4 and 5,  
it illustrated that the patients were stratified into different molecular subtypes with significantly different 
relapse-free survival when the CSISCN was applied for breast cancer gene expression datasets GSE6532 (Figs 4g,i 
and 5g,i respectively).

Consequently, both training results and independent test results clearly demonstrated that the CSISCN was 
able to identify the molecular subtypes with significant differences in prognosis.

Figure 2.  Heatmaps of subtype-discriminant gene expression profiles in the training dataset and in the 
independent test dataset. CSISCN identify k clusters as molecular subtypes of cancer. (a–c) Heatmaps are shown 
from two to four distinct subtypes in training dataset GSE25055. (d–f) Heatmaps are shown from two to four 
distinct subtypes in independent test dataset GSE25065. (g–i) Heatmaps are shown from two to four distinct 
subtypes in independent test dataset GSE6532.
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The CSISCN is effective in CRC datasets and AML datasets.  To test the general applicability of the 
CSISCN, we applied it to CRC gene expression datasets. A CRC gene expression dataset GSE17536 with 111 
samples was used as training cohort to develop the CSISCN for identifying molecular subtypes (Fig. 6a–c). Using 
optimized parameter σ derived from training cohort, the CSISCN was then evaluated using 55 samples in an 
independent dataset GSE17537 (Fig. 6d–f). In this analysis, the parameter σ = 20 was identified with the small-
est p-value in CSISCN from CRC training cohort GSE17536. Figure 6a showed that the subtype 1 group had 
significantly worse relapse-free survival than the subtype 2 group. It illustrated that the patients were separated 
into three subtypes with significantly different relapse-free survival (Fig. 6b). We observed that the patients were 
stratified into four subtypes with significantly different relapse-free survival (Fig. 6c). Still, Fig. 6d showed that 
the subtype 1 group had significantly worse relapse-free survival than the subtype 2 group. We noticed that the 
patients were stratified into four subtypes with significantly different relapse-free survival (Fig. 6f).

In addition, CSISCN was applied for AML gene expression datasets to further validate the general adaptability. 
Similar to the above analysis, we collected gene expression dataset GSE12417 (Fig. 7a–c) as training cohort to 
develop the CSISCN and kept GSE10358 (Fig. 7d–f) as an independent test dataset. In this analysis, the parameter 
σ = 30 was identified with the smallest p-value in CSISCN from AML training cohort GSE12417. The subtype 1 
group had significantly worse overall survival than the subtype 2 group (Fig. 7a). We observed that the patients 
were separated into three subtypes with significantly different overall survival (Fig. 7b) and four subtypes with 
significantly different overall survival (Fig. 7c) respectively. Still, the subtype 2 group had significantly worse 
overall survival than the subtype 1 group (Fig. 7d). Figure 7e also showed the patients were separated into three 
subtypes with significantly different overall survival. In summary, these results were consistent with the obser-
vations in breast cancer and further demonstrated that CSISCN could identify molecular subtypes with distinct 
clinical outcome.

Figure 3.  The molecular subtypes have distinct clinical outcomes in breast cancer. (a–c) Kaplan–Meier plot of 
distant relapse-free survival for two, three and four subtypes respectively in training dataset GSE25055. (d–f) 
Kaplan–Meier plot of distant relapse-free survival for two, three and four subtypes respectively in independent 
test dataset GSE25065. (g–i) Kaplan–Meier plot of distant relapse-free survival for two, three and four subtypes 
respectively in independent test dataset GSE6532. Hazard ratio (HR) was derived with 95% confidence interval.
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The CSISCN is valid for the different numbers of molecular subtypes.  In order to evaluate the 
validity of the CSISCN for the number of molecular subtypes, we tested different numbers of molecular sub-
types for each cancer type. According to the association between the molecular subtype and real prognosis in 
GSE25055, statistically significant differences were found in the stratified patients with log-rank p-values less than 
0.05 (Figs 3a–c, 4a,b and 5a–c). Similar performances were obtained for molecular subtype based stratification 
of patients in the independent validation datasets GSE25065 (Figs 3d,e, 4d,f and 5e) and GSE6532 (Figs 3g–i, 4g,i 
and 5g,i) respectively. These results suggested that the CSISCN was reasonably effective for the different numbers 
of molecular subtypes.

As depicted in Fig. 6, the similar results were observed when the CSISCN was applied for CRC gene expres-
sion datasets GSE17536 and GSE17537 respectively. As shown in Fig. 7, it suggested that the molecular subtypes 
with distinct clinical outcomes of AML identified in the training set could be rediscovered in the validation data-
set. These results were consistent with the observations in breast cancer and further demonstrated the validity of 
the CSISCN for different numbers of molecular subtypes.

The CSISCN identifies molecular subtypes for improving clinical and molecular relevance.  We 
compared the CSISCN approach with the state of the art unsupervised method consensus clustering approach. 
In this analysis, we performed the comparisons with different molecular subtypes of each cancer type. Table 2 
illustrated the log-rank p-values of CSISCN and consensus clustering from the training cohorts and independent 
test datasets. The p-values less than 0.05 were regarded as statistical significance.

According to log-rank p-values of breast cancer GSE25055, CSISCN achieved better performance than con-
sensus clustering approach (Table 2). Similar results were also derived for different molecular subtypes based dif-
ferentiated patients in the independent validation datasets GSE25065 and GSE6532 respectively. For breast cancer 
GSE25065, CSISCN achieved the best clustering performance for three and nine molecular subtypes respectively. 
For breast cancer GSE6532, CSISCN achieved the lowest log-rank p-value of 0.001 for five molecular subtypes. 
Thus, it suggested that CSISCN achieved p-values which tended to be more statistically significant than consensus 
clustering.

Figure 4.  The molecular subtypes have distinct clinical outcomes in breast cancer. (a–c) Kaplan–Meier plot 
of distant relapse-free survival for five, six and seven subtypes respectively in training dataset GSE25055. 
(d–f) Kaplan–Meier plot of distant relapse-free survival from five subtypes to seven subtypes respectively in 
independent test dataset GSE25065. (g–i) Kaplan–Meier plot of distant relapse-free survival from five subtypes 
to seven subtypes respectively in independent test dataset GSE6532.
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For CRC cohort GSE17536, it was showed that CSISCN achieved better clustering performance than con-
sensus clustering approach with different molecular subtypes (except for k = 2). Meanwhile, CSISCN achieved 
p-values for different molecular subtypes (except for k = 3, 6) which are more statistically significant than con-
sensus clustering in AML cohort GSE12417. Compared with consensus clustering, CSISCN achieved better clus-
tering performance for the identification of different molecular subtypes in the independent test datasets CRC 
cohort GSE17537 and AML cohort GSE10358 respectively. Indeed, these results reproduced the outcomes in 
breast cancer and further proved the progress in the CSISCN for identifying molecular subtypes.

The CSISCN improved clustering performance compared with spectral clustering method.  To 
further validate the effectiveness of the CSISCN, we compared it with standard spectral clustering method for 
further analysis. A Matlab implementation available of spectral clustering was used to identify the molecular 
subtypes from breast cancer GEPs. The Gaussian similarity function was used for spectral clustering to construct 
the similarity matrix. The parameter σ was set among the candidate set {20, 30, 40, 50}, evaluated with log-rank 
p-value over 10 runs and then identified with the smallest p-value. We tested different number of molecular 
subtypes for comparison. As shown in Table 2, CSISCN outperformed spectral clustering significantly for breast 
cancer GSE25055 (k = 2, 4, 6, 8, 9, 10), GSE25065 (k = 2, 3, 5, 7, 9, 10) and GSE6532 (k = 3, 4, 5, 7, 8, 9, 10) respec-
tively. The results thus suggested that CSISCN achieved better clustering performance compared with spectral 
clustering.

We compared CSISCN with spectral clustering method in terms of running time. We performed the runtime 
experiments on a computer with 3.2 GHz CPUs and 16 GB of memory, without exploiting multi-core paralleliza-
tion. In the implementation of CSISCN, the running time was separated into three sections including the calcu-
lation of similarity matrix, eigendecomposition and k-means implementation respectively. The total runtime for 
different molecular subtypes with CSISCN was reported in Table 3. The results suggested that CSISCN achieved 
a faster computational speed than spectral clustering method (Table 3).

Figure 5.  The molecular subtypes have distinct clinical outcomes in breast cancer. (a–c) Kaplan–Meier plot 
of distant relapse-free survival for eight, nine and ten subtypes respectively in training dataset GSE25055. 
(d–f) Kaplan–Meier plot of distant relapse-free survival from eight subtypes to ten subtypes respectively in 
independent test dataset GSE25065. (g–i) Kaplan–Meier plot of distant relapse-free survival from eight subtypes 
to ten subtypes respectively in independent test dataset GSE6532.
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Discussion
The identification of molecular subtype is critical to the development of therapeutic strategy and the understand-
ing of significant heterogeneity for cancer patients. In this analysis, our hypothesis is that spectral clustering 
method could identify molecular subtypes in correlation with survival outcomes. Furthermore, we developed 
the accurate subtype identification method for identifying molecular subtypes and thus improving clinical and 
molecular relevance. The CSISCN was then applied on different types of cancer to identify molecular subtypes 
and demonstrated superior performance as compared to consensus clustering and spectral clustering methods.

In our analysis, we used quantile normalization across the experiments to make comparable distributions for 
all samples. However, strong batch effect remained after this processing step. Importantly, further application of 
a gene-wise z-score transformation for each dataset separately effectively reduced the batch effect. Considering 
unsupervised clustering method is able to summarize and explain key features corresponding to several classes to 
which the data belong, we apply spectral clustering using Nyström approximation for the discovery of molecular 
subtypes. This unsupervised clustering method is then designed to capture the underlying cluster structures for a 
lower-dimensional representation of the data28, 42. Specially, this clustering method discards the structures which 
are always dominated by the arbitrariness of the sample noise and characterized by over-fitting in unsupervised 
learning28, 42. The results thus demonstrated that CSISCN was able to achieve significantly better performance 
for three cancer types. As compared to consensus clustering, CSISCN used the pairwise similarities of samples 
and smaller subset of dense similarity matrix, which thus achieved significantly better performance for the iden-
tification of molecular subtypes. Indeed, spectral clustering using Nyström approximation samples columns of 
the affinity matrix and approximates the full matrix by using correlations between the sampled columns and the 
remaining columns24, which is different from general spectral clustering method. Importantly, sampling-based 
spectral decomposition technique, Nyström method, provides a powerful alternative for approximate spectral 

Figure 6.  The molecular subtypes are associated with clinical outcomes in CRC. (a–c) Kaplan–Meier curve of 
relapse-free survival in training dataset GSE17536. The number of subtypes is from two to four respectively.  
(d–f) Kaplan–Meier curve of relapse-free survival in independent test dataset GSE17537. The number of 
subtypes is from two to four respectively. Hazard ratio (HR) was derived with 95% confidence interval.
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decomposition. They often operate on a small part of the original matrix and eliminate the need for storing the 
full matrix43. While the general spectral clustering method needs to construct an adjacency matrix and calculate 
the eigen-decomposition of the corresponding Laplacian matrix, the Nyström approximation method is typically 
used for efficiently computing an approximate solution of the eigen-problem. Spectral clustering is mainly based 
on the manifold assumption, and this assumption is not applicable to identifying a low-dimensional data man-
ifold of high-dimensional data. Actually, the clustering performance of SC will be degraded and even become 
worse than K-means clustering when high-dimensional data do not display a low-dimensional manifold struc-
ture clearly44. In this analysis, spectral clustering using Nyström approximation has been applied to discover 
the underlying cluster structure which is a lower-dimensional representation of high-dimensional gene expres-
sion data and thus identifies the molecular subtypes of cancer. In our study, we noticed the difference between 
performance gain for various k clusters when CSISCN is compared with two general clustering methods. It is 
interesting to see that the performance gain is very large for nine and ten clusters in GSE25055 and GSE25065 
respectively (Table 2), and the results suggests the CSISCN shows great potential for large k clusters. Moreover, 
we also repeated the parameter selection for ten times when possible to obtain a more robust estimation. In the 
implementation of spectral clustering using Nyström approximation, a closer look of the results found that the 
performance could be very similar (or equal) when we run the algorithm ten times for the identical parameter 
value.

However, our findings come up with some caveats. Our analysis is restricted by the availability of genomic 
data for cancer patients. Moreover, we also notice some exceptional performance between CSISCN and consensus 
clustering in log-rank p-values (Table 2). Specifically, CSISCN performed the clustering performance with differ-
ent log-rank p-values between training dataset and test dataset for each cancer type. One possible explanation is 

Figure 7.  The Kaplan–Meier plot of patients stratified by the molecular subtypes in AML. (a–c) Kaplan–Meier 
curve of overall survival for two, three and four subtypes in training dataset GSE12417. (d–f) Kaplan–Meier 
curve of overall survival for two, three and four subtypes in independent test dataset GSE10358. Hazard ratio 
(HR) was derived with 95% confidence interval.
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the biological difference that we observe the reality between different patient cohorts. For example, in the AML 
study, the training dataset GSE12417 was from a US population while the test dataset GSE10358 was from an 
European population. Another possible explanation is that the different class proportions between the training 
and the test datasets could result in the biases for clustering performance. For example, in the breast cancer 
study, the proportion between non-recurrence and recurrence patients is 3.7:1 in GSE25055 and 1.9:1 in GSE6532 
respectively. Interestingly, this problem is popular in microarray studies with the small sample size.

With increasing available gene expression data from different types of cancer, CSISCN could bridge unsuper-
vised learning method and accurate subtype discovering tool for the identification of cancer molecular subtypes. 
In summary, CSISCN shows the great potential for the discovery of molecular subtypes for human cancers.
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