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Phononic Fano resonances in 
graphene nanoribbons with local 
defects
Alexander V. Savin1 & Yuri S. Kivshar2,3

We study the interaction between localized vibrational modes and propagating phonons in graphene 
nanoribbons with different types of localized internal and edge defects. We analyze discrete 
eigenmodes of the nanoribbons with defects and also employ direct numerical simulations of the 
ballistic phonon and heat transport. We observe a partial suppression of the phonon transport due 
to the so-called phononic Fano resonances originating from interference between localized and 
propagating phonons. We observe lower transmission for the defects which support larger number of 
localized eigenmodes. The Fano resonance is also manifested in the reduction of the heat transport 
along the graphene stripe, when each of the local defects reduces the amount of the heat flow 
transmitted through the nanoribbon, with the effect being more pronounced at low temperatures when 
the thermal energy transfer is dominated by the phonon transport. We also study the similar problems 
for edge defects in graphene nanoribbons and demonstrate that a reduction of the thermal conductivity 
is proportional to the length of a rough edge of the nanoribbon with edge defects.

The Fano resonance is widely known across many different branches of physics1. From the viewpoint of the fun-
damental physics, the Fano resonance may appear in systems characterized by a certain discrete energy state that 
interacts with the continuum spectrum through an interface effect. Usually, the discrete state is created by a defect 
that allows one (or several) additional propagation paths in the wave scattering which interact constructively or 
destructively. In the transmission line, this interference effect leads to either perfect transmission or perfect reflec-
tion, producing a sharp asymmetric profile. In a classical paper2, Ugo Fano derived the general formula which 
describes asymmetric line shape of the transmission or absorption lines:

ε ε ε= + +F f( ) ( ) /( 1), (1)2 2

where ε = (E − ER)/(Γ/2) is the dimensionless energy in units of the resonance width Γ, f is the asymmetry param-
eter (Fano factor), and ER is the resonance energy.

One of the simplest models that can describe the resonant coupling and interaction between a discrete state 
and continuum spectrum is the so-called Fano-Anderson model3, 4, which describes a linear “atomic” chain with 
the nearest-neighbor interaction forces and interacting with a defect state through the nearest neighbors. This 
simple model allows one to describe the basics physics of the Fano resonance in a simple way.

In this paper we reveal that the effective Fano-Anderson discrete model can be realized in the problem of 
phonons propagating in carbon nanoribbons with local structured defects (see an example in Fig. 1). Here an 
effective array is formed by structural elements (elementary unit cells) of the nanoribbon, and the defect states 
appear due to the localized vibrational modes supported by structural defects. In particular, we demonstrate the 
resonant coupling and interaction between localized modes supported by defects and the propagating phonons 
of the nanoribbon manifested through the phononic Fano resonances.

It is well known that the presence of defects can modify the properties of graphene. In particular, local defects 
can change the absorption properties of graphene5, spatially extended defects allow creating nanoengineering 
defect structures6, and linear arrays of defects can change the graphene conductivity7–10. Various types of defects 
in graphene can be divided into two large classes: local (or point) defects and linear defects11. Point defects in 
graphene act as scattering centers for electron and phonon waves12–14. In contrast, linear defects are responsible 
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for static deformations of stretched nanoribbons. In this paper, we focus on the effects produced by local effects 
in the phonon scattering.

Rigidity and perfect local order of carbon nanostructures make them ideal nanoscale waveguides for a trans-
port of phonons and thermal energy over long distances. This is observed in many experiments on the study 
of heat transport as an anomalously high thermal conductivity of isolated carbon nanotubes15–17 and graphene 
nanoribbons18–20.

Here we study the effect of localized modes supported by structural defects in graphene nanoribbons on the 
phonon transport and thermal conductivity. We consider several, most commonly discussed types of internal and 
edge defects in a nanoribbon and demonstrate that each of such defects support a number of localized vibrational 
eigenmodes. Being excited in the nanoribbon, such localized modes interact with propagating phonons and par-
tially reflect them, thus modifying the thermal conductivity. Classification of defects and their characteristics can 
be found in the review paper11.

We study several model problems for armchair graphene nanoribbons (shown in Figs 1 and 2) to demonstrate 
the effects produced by interaction of localized vibrational modes with propagating phonons. We consider six 
types of local defects placed at the center of the graphene nanoribbon, an extended defect in the form of an array 
of defects placed across the nanoribbon width (see Fig. 2), and different types of edge defects (see Figs 3 and 4). 
We demonstrate that each local defect supports a finite number of localized oscillatory states, and the number 
of modes is larger for narrow nanoribbons. We reveal that such localized modes may reduce or even reflect 
propagating phonons through the mechanism of Fano resonances, thus reducing the value of the transmission 
coefficient and subsequently the phonon transport and thermal conductivity. The Fano resonance is also found 
to reduce the heat transport along the graphene nanoribbon, with the effect being more profound at low temper-
ature when the energy transfer is dominated by the phonon transport.

Extended defects support larger number of localized modes, and they should scatter phonons more inten-
sively. A rough edge of the graphene nanoribbon represents one of such extended defects, and our results 
demonstrate that the value of thermal conductivity decreases monotonically with the length of the nanoribbon’s 
rough-edge region.

Results
To get a deeper insight into the physics of resonant scattering observed in our rather complex system, first we con-
sider the so-called Fano-Anderson model3 which is the simplest model describing the physics of the Fano reso-
nance in discrete chains. More specifically, we consider a modified model describes by the following Hamiltonian4

∑ ∑φ φ φ ϕ ϕ φ= + + + + . .−
=−

⁎ ⁎H E C E V( ) c c ,
(2)n

n n n d
j n

n

j j
2

1
2

d

d

where the asterisk denotes complex conjugations and all coefficients are real numbers. This model describes the 
interaction of two subsystems. One subsystem consists of a straight linear chains with complex field amplitude φn 
at site n with local energy value E and which are coupled by nearest-neighbor coupling C. The second subsystem 
consist of an additional discrete state φ with local energy value Ed. The interaction between these two subsystems 
is described by the coupling coefficients Vj (2nd + 1 is the number of couplings between two subsystems). From 
the lattice Hamiltonian, we derive a system of coupled linear dynamic equations

∑φ φ φ φ ϕ δ= + + +− +
=−

i E C V( ) ,n n n n
j n

n

j nj1 1
d

d

Figure 1. Schematic of the scattering of a longitudinal monochromatic wave by a double-vacancy V2(585) 
defect in an armchair graphene nanoribbon. Region of the defect is marked by a color. An arrow shows the 
direction of the wave propagation.
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For further analysis, we look for stationary solutions of this system in the form

φ ω ϕ ω= − = −t A i t t B i t( ) exp( ), ( ) exp( ), (4)n n

which allows us to describe elastic scattering processes by means of a system of nonlinear algebraic equations

(a) (b) (c) (d)

(e) (f) (g)

Figure 2. Localized defects in armchair graphene nanoribbon with the width D = 1.229 nm: (a) concave edge 
defect ED+2 (two additional carbon atoms); (b) convex edge defect ED−2 (two carbon atoms missing); (c) 
double vacancy V2(585); (d) Stone-Wales defect SW(5577); (e) single vacancy V1(59); (f) inverse Stone-Wales 
defect I2(7557). (g) Nanoribbon of the width D = 3.192 nm with an transverse array of the inverse Stone-Walles 
defects. Gray color marks a change of the lattice structure introduced by the presence of a defect.
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We consider the scattering of plane waves φn(t) = Aei(qn−ωt), described by the wave number q ∈ [0, π] and dis-
persion ω = +q E C q( ) 2 cos( ). Using the second equation of the system (5), we find a simple link between two 
defect-site characteristic,

∑ ω= −
=−

B V A E/( ),
(6)j n

n

j j d
d

d

and obtain a single equation with a one-site scattering potential

∑ω ω− = + + −− +
=−

E A C A A c V V A E( ) ( ) /( ),
(7)

n n n
j n

n

n n j j d1 1
d

d

where coefficient cn = 0 for |n| > nd and cn = 1 for |n| ≤ nd.
For the scattering problem, we consider the boundary conditions

(a) (b)

Figure 3. Example of an armchair graphene nanoribbon with an edge pillar defect: a small piece of a carbon 
structure is attached perpendicular to the nanoribbon. Width of the main nanoribbon is Da = 1.228 nm, width 
of the zigzag nanoribbon is Dz = 1.134 nm, length of the edge pillar is (a) Lp = 0.246 nm and (b) Lp = 1.719 nm. 
Gray color marks a change of the lattice structure of the ideal armchair nanoribbon.

Figure 4. Example of an armchair carbon nanoribbon with rough edges in its central part. Edge defects creating 
the rough edges are marked by grey. Width of the nanoribbon Da = 1.228 nm, density of defects pd = 0.5.
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where ai, ar, and at are incoming, reflected, and transmitted wave amplitudes far from the defect site. According 
to Eq. (7), the strength of the scattering potential depends on the incoming frequency ω, and the system should 
demonstrate resonant scattering. If the frequency of the defect is placed in the propagation frequency band – i.e., 
Ed ∈ [E, E + 2C] – the scattering potential in Eq. (7) becomes infinitely large at ω = Ed, and this will lead to total 
reflection of the incoming wave.

In the simple case of local coupling in the chain, the transmission coefficient T = |at|2/|ai|2 can be easily calcu-
lated since nd = 0. In this case, the equation (7) is reduced to

ω δ ω− = + + −− +E A C A A V A E( ) ( ) /( ), (9)n n n n n d1 1 0
2

0

and the transmission coefficient4

α α= +T q q( )/[ ( ) 1], (10)2 2

where α ω= −q C q E q V( ) 2 ( ( ) )sin( )/d 0
2.

A graphene nanoribbon has Ne atoms in the elementary cell so its dispersion curve consists of 3Ne branches 
marked as ω =q{ ( )}i i

N
1

3 e . One-dimensional chain discussed above is suitable for qualitative modeling of one of such 
branches (and respective modes) characterized by the frequency dependence ωi(q), so that φn is an effective wave 
function of the mode excited in the n-th elementary cell, and φ is the amplitude of the localized mode at a defect 
with the frequency ωd = Ed.

Our study of a simplifies model suggests that localized mode supported by a defect can interact with the prop-
agating modes of the nanoribbon with the resonant reflection and reduction of the transmission coefficient. This 
is expected to occur if the frequency of the localized mode lies in the frequency band of the extended phonon 
modes, namely ω ω ω≤ ≤q qmin ( ) max ( )q i d q i , so propagating phonons with this frequency will be completely 
reflected by the defect, and the transmission coefficient vanishes in this point, namely T(ωd) = 0. We confirm this 
result below with the use of the complete model of the nanoribbon.

Transmission coefficient for nanoribbons with defects. Each local defect supports several different 
localized oscillatory modes, the number of such modes depends on the width of the nanoribbon, and it is larger 
for narrow nanoribbons. For wider nanoribbons, the number of localized modes coincide with the modes of an 
infinite graphene sheet21. For the scattering problem, we expect that such local oscillatory states will interact with 
propagating phonons when their frequencies overlap, so the defect can suppress the phonon transmission or even 
reflect phonons completely.

The analysis of the eigenfrequencies and eigenmodes of the graphene nanoribbon with a defect embedded in 
its center allows not only find the localized modes but also calculating the transmission coefficient for phonons 
for each branch of the dispersion curve.

Let us consider the propagation of a photon wavepacket in the nanoribbon with a localized defect. We take the 
nanoribbon composed of N = 203 elementary cells with a defect placed in the cell with the number N0 = (N − 1)/2. 
We assume that the wavepacket is characterized by the dimensionless wave number q (where 0 < q < π), the fre-
quency ω(q) and the eigenvector v = vR + ivI (vR and vI are the real and imaginary parts, respectively) that is a 
solution of the eigenvalue problem (25). For describing the wavepacket, we consider the initial conditions

ω
= −
= +

A qn qn
A qn qn

x v v
x v v

(0) [ cos( ) sin( )],
(0) [ sin( ) cos( )], (11)

n n R I

n n R I

where the vector xn describes the displacements of atoms in the n-th elementary cell. Localized amplitudes An 
define the shape of the wavepacket, that we select in the form,

µ= − <
= ≥

A A n N n N
A n N

/ cosh[ ( )], for ,
0, for ,

n

n

0 1 0

0

where the number N1 = N/4 provides the initial location of the wavepacket, the parameter μ = 0.1 characterizes its 
extension, and A0 is the initial amplitude (not important for the study of the linear propagation).

Dynamics of harmonic oscillations of the nanoribbon is described by the system of linear equations (28) with 
a symmetric matrix of the second-order derivatives (29) of the size 3Na × 3Na, where Na is the number of atoms 
in the nanoribbon. Dimension of this matrix can be reduced provided one separate in-plane and out-of-plane 
vibrations.

The linear system of the motion equations (28) can be written in the form

− = − −̈y M BM y, (12)1/2 1/2

where the vector = =y y{ }n n
N

1, = −y M xn nn
1/2  (Mn is the diagonal matrix masses of the n-th elementary cell of the 

nanoribbon). We define ω
=

{ }e,j j j

N2

1

3 a  as the eigenvalue and eigenfunction of the eigenvalue problem (31), so that 

the general solution of the linear system (12) can be presented in the form,
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To take into account the initial condition (11), in the sum (13) we should specify the coefficients,

ω= =− −


C CM x e M x e( (0), ), ( (0), )/ ,j j j j j,1
1/2

,2
1/2

where the vectors are: = =x x(0) { (0)}n n
N

1, = =
x x(0) { (0)}n n

N
1.

We notice that for modeling the wavepacket dynamics we do not need integrating numerically the system of 
the motion equations, since it is sufficient to analyze the properties of the exact solution (13).

In an ideal nanoribbon, the wavepacket will propagate with the group velocity s = adω/dq. For the period of 
time t = Na/2s, the main part of the wavepacket will be found on the right part of the nanoribbon, see Figs 5(a) 
and 6(a). However, when a defect is placed at the center of the nanoribbon, the wavepacket can pass though the 
defect, or get reflected from the defect partially or completely, see Figs 5(b) and 6(b). The transmission coefficient 
can be calculated directly, as a ratio of the energy of the wavepacket in the right side of the nanoribbon with a 
defect to the energy of the same wavepacket in the nanoribbon without defects, namely

∑ω = =
= +

T q E t E t E E t( , ) ( )/ ( ), where ( ),r r r i
n N

N

n,1 ,0 ,
21

=E t{ ( )}n n
N

1 is the distribution the oscillation energy through the elementary cells of the nanoribbon with (i = 1) 
and without (i = 0) defects.
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Figure 5. Propagation of a wavepacket of the out-of-plane phonons in (a) ideal nanoribbon and (b) nanoribbon 
with the double vacancy V2(585) (nanoribbon width D = 1.23 nm) for wave number q = 0.5π, frequency 
ω(q) = 880.9 cm−1 (the wavepacket amplitude A = 0.0003 Å). Shown is the energy distribution at different time 
values t along the nanoribbon (n is the number of the elementary unit cell), time step dt = 0.2 ps. Transmission 
coefficient T(ω, q) = 0.7694.
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Dependence of the transmission coefficient T on the phonon frequency ω and wave number q is shown in 
Figs 7 and 8. As follows from these results, the transmission coefficient of phonons decreases as soon as the dis-
persion curves approaches the frequency of the localized state supported by the defect. In this case we observe the 
Fano resonance when the phonon interact resonantly with the localized state, that may result in the partial or total 
reflection of the phonon wavepacket from the defect, see Figs 5 and 6.

Influence of defects on the phonon transport in the graphene nanoribbon can be characterized by the average 
transmission coefficient T  calculated through the averaging for all dispersion curves and all value of the wave 
number. As an example, for the nanoribbon with the width D = 1.23 nm including the double vacancy V2(585), 
this averaged transmission coefficient can be calculated to be = .T 0 474, meaning that in average at least a half of 
the incoming phonons get reflected.

Dependence of the average transmission coefficient of phonons T  vs. the nanoribbon width D is summarized 
in Table 1. As follows from these data, the strongest suppression of the phonon transport is observed in nanorib-
bons with a transverse chain of inverse Stone-Wales defects. Among all point defects, the largest effect is produced 
by the double vacancy V2(585). Also, the phonon scattering is stronger for more narrow nanoribbons.

We notice that the value of the average transmission coefficient T  can not characterize precisely the suppres-
sion of the phonon transport because it does not take into account the group velocities of phonons. The most 
relevant analysis we conduct below is associated with the study of thermal conductivity in the nanoribbons with 
defects and its comparison with thermal conductivity in an ideal nanoribbon.

Effect of internal defects on thermal energy transfer. In order to model the thermal transport along 
the nanoribbon, we place its edges with N0 = 12 edge elementary unit cells into the thermostats with the temper-
atures T+ (left edge) and T− (right edge) so that T+ > T−, and then calculate the temperature gradient along the 
nanoribbon and continuous heat flow from the warmer to colder end of the nanoribbon.
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Figure 6. Propagation of a wavepacket of the in-plane phonons in (a) ideal nanoribbon and (b) nanoribbon 
with the double vacancy V2(585) (nanoribbon width D = 1.23 nm) for wave number q = 0.6π, frequency 
ω(q) = 1569.3 cm−1 (the wavepacket amplitude A = 0.0003 Å). Shown is the energy distribution at different time 
values t along the nanoribbon (n is the number of the elementary unit cell), time step dt = 0.15 ps. Transmission 
coefficient T(ω, q) = 0.0042.
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We define the 3Ne-dimensional coordinate vector = =x u{ }n n k k
N

( , ) 1
e  which determines the atom coordinates of 

an elementary cell n, and then write Hamiltonian (17) in the form

∑ ∑= =






+




− + 

H h PMx x x x x1
2

( , ) ( , , ) ,
(14)n

n
n

n n n n n1 1

where the first term (a scalar product of two vectors) describes the kinetic energy of the atoms (M is diagonal 
mass matrix of the nth elementary cell), and second term (a function of three variables) describes the interaction 
between the atoms in the cell and with the atoms of neighboring cells.

Hamiltonian (14) generates the systems of equations of motion,

− = = + ++ −̈Mx F P P P , (15)n n n n n1, 1 2, 3, 1

where the function Pi,n = Pi(xn−1, xn, xn+1), Pi = ∂P(x1, x2, x3)/∂xi, i = 1, 2, 3.
Local heat flux through the nth elementary cell, jn determines a local longitudinal energy density hn by means 

of a discrete continuity equation, = − −
h j jn n n 1. Using the energy density from Eq. (14) and the motion equa-

tions [Eq. (15)], we obtain the general expression for the energy flux through the nth cross section of the 
nanoribbon,

= − .− − 
j P x P x( , ) ( , )n n n n n1, 1 3, 1
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Figure 7. (a) Dispersion curves (2Ne in total) of the in-plane oscillations of an armchair nanoribbon. Number 
of atoms in the elementary cell is Ne = 22. (b) Transmission coefficient T vs. wavenumber q for each dispersion 
curve (j stands for the sequential number of a dispersion curve) for phonons scattered by the double vacancy 
V2(585). The average transmission coefficient of such phonons is = .T 0 445. Horizontal dashed straight lines 
mark the eigenfrequencies of the in-plane localized vibrations of the defect.
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For a direct modeling of the heat transfer along the nanoribbon, we consider a nanoribbon of a fixed length 
(N − 1)a with fixed ends (period a = 3ρ = 4.254 Å is length of elementary cell). We place the first N0 = 12 seg-
ments into the Langevin thermostat at temperature T+, and the last N0 elementary cells, into the thermostat at 
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Figure 8. Dispersion curves (Ne in total) of the out-of-plane oscillations of an armchair nanoribbon. Number 
of atoms in the elementary cell is Ne = 22. (b) Transmission coefficient T vs. wavenumber q for each dispersion 
curve (j stands for the sequential number of a dispersion curve) for phonons scattered by the double vacancy 
V2(585). The average transmission coefficient of such phonons is = .T 0 533. Horizontal dashed straight lines 
mark the eigenfrequencies out-of-plane localized vibrations of the defect.

D (nm) 1.23 1.72 2.21 3.19

without defect 1 1 1 1

ED+2 0.663 0.725 0.760 0.808

ED−2 0.685 0.744 0.778 0.822

V2(585) 0.474 0.541 0.603 0.678

SW(5577) 0.528 0.576 0.634 0.700

V1(59) 0.483 0.564 0.629 0.707

I2(7557) 0.529 0.590 0.659 0.731

I2 chain 0.461 0.481 0.510 0.546

Table 1. Dependence of the average transmission coefficient of phonons T  on the nanoribbon width D and a 
type of defect.
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T−. As a result, for modeling of the thermal conductivity we need integrating numerically the following system 
of equations:

= − − Γ + Ξ = …
= − = … −
= − − Γ + Ξ = − + …

+

−





̈
̈
̈

n N
n N N N

n N N N

Mx F Mx
Mx F
Mx F Mx

, 1, , ,
, , , ,

, 1, , , (16)

n n n n

n n

n n n n

0

0 0

0

where Γ = 1/tr is the damping coefficient (relaxation time tr = 0.4 ps), and

ξ ξ ξΞ =± ± ± ±

=
{ }( , , )n n k n k n k k

N

, ,1 , ,2 , ,3 1

e

is 3Ne-dimensional vector of normally distributed random forces normalized by conditions

ξ ξ Γ δ δ δ δ= − .± ±
±t t M k T t t( ) ( ) 2 ( )n k i m l j B nm kl ij, , 1 , , 2 1 2

We select the initial conditions for system [Eq. (16)] corresponding to the ground state of the nanoribbon, and 
solve the equations of motion numerically tracing the transition to the regime with a stationary heat flux. At the 
inner part of the nanoribbon N0 < n ≤ N − N0, we observe the formation of a temperature gradient corresponding 
to a constant flux. Distribution of the average values of temperature and heat flux along the nanoribbon can be 
found in the form

∫ ∫τ τ τ τ τ= =
→∞ →∞

 
T

N k t
d J

t
aj dMx xlim 1

3
( ( ), ( )) , lim 1 ( ) ,n

t e B

t
n n n

t

t

n0 0

where kB is the Boltzmann constant.
Distribution of the temperature and local heat flux along the nanoribbon is shown in Fig. 9. The heat flux in 

each cross section of the inner part of the nanoribbon should remain constant, namely, Jn ≡ J for N0 < n ≤ N − N0. 
The requirement of independence of the heat flux Jn on a local position n is a good criterion for the accuracy of 
numerical simulations, as well as it may be used to determine the integration time for calculating the mean values 
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Figure 9. Spatial distribution of (a) local heat flux Jn and (b) temperature Tn along the nanoribbon with and 
without point defect. The nanoribbon width is D = 1.72 nm, and its length is L = 68 nm (N = 160). Thermostat 
temperature from the left end of the nanoribbon is T+  = 330 K, and from the right – T− = 270 K. Grey color 
marks the end regions corresponding to the interaction of the nanoribbon with thermostat. Curves 1 and 2 
correspond to the ideal nanoribbon, and curves 3 and 4 correspond to the nanoribbon with the point defect 
V2(585).
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of Jn and Tn. As follows from the figure, the heat flux remains constant along the central inner part of the nanor-
ibbon [see Fig. 9(a)].

Let us compare the thermal energy transfer in the nanoribbons with and without defects. In the ideal nanor-
ibbon, the stationary heat flux is created with a liner temperature gradient at the center of the nanoribbon. This 
gradient is accompanied by a temperature jump when a defect is placed into the nanoribbon [see Fig. 9(b)]. Our 
numerical modeling of the thermal conductivity shows that a defect leads to a reduction of the thermal energy 
flux, Jd < J0, where J0 is the thermal energy flux in the ideal nanoribbon, and Jd is the similar value for the case of a 
defect. We may characterize this reduction by the coefficient Te = Jd/J0 < 1.

A linear temperature gradient can be used to define the local coefficient of thermal conductivity,

κ = − − −N N N J T T S( ) ( 2 ) /( ) ,i N N N0 0 0

where Ni = N − 2N0 is the number of periods in the central part of the nanoribbon, S = 2(D + 2rC)rC is the area of 
the nanoribbon cross section (D – nanoribbon width, rc = 1.85 Å – van der Waals carbon radius).

Dependence of the thermal conductivity of an ideal nanoribbon and a nanoribbon with a defect placed at its 
center is shown in Fig. 10. As follows from those results, the thermal conductivity of an ideal nanoribbon κ grows 
monotonously with the length L for L < 1 μm. According to the earlier results22, the value of the thermal conduc-
tivity should saturate at the lengths L ~ 102 ÷ 103 μm. The presence of a point defect leads to a reduction of the 
values of thermal conductivity for the small lengths L < 1 μm. This reduction becomes smaller for longer lengths, 
and for L ≥ 1 μm the influence of a local defect becomes negligible.

To determine the reduction of the thermal flux and find the dependence of the coefficient Te(T) on tem-
perature, we place the ends of the nanoribbon of the length L0 = 5 nm into thermostat with the temperatures 
T± = (1 ± 0.1)T from the left and right sides, respectively. The characteristic dependence of the coefficient Te on 
the length of the nanoribbon L is shown in Fig. 11. If the heat transport is conducted by noninteracting phonons, 
then the reduction coefficient Te should not depend on the length L. This is indeed observed for low temperatures, 
so for T = 0.3K the coefficient Te is almost independent on L, but for T = 3 K this dependence is observed for large 
lengths. However, for T = 300 K we observe a monotonous growth of Te due to anharmonicity of the phonon scat-
tering in the nanoribbon. In particular, for L = 544 nm the coefficient Te riches the unity and thus for such long 
distances the influence of defects of the heat flow in the nanoribbon becomes negligible.

In the modeling of thermal conductivity for low temperatures, we can determine the reduction of the heat flow 
in the presence of defects Tph due to the phonon energy transport. Dependence of Tph on the width of the nanor-
ibbon D and the type of local defect is summarized in Table 2. As follows from those results, the coefficient Tph 
grows monotonically with the width of the nanoribbon, namely Tph → 1 for D → ∞. However, the nanoribbon 
with a transverse chain of defects makes an exceptional case, here we always have Tph < 0.7. Comparing these data 
with the data from Table 1 we come to the conclusion that >T Tph , and this is explained by the fact that the 
reduction of the phonon transport due to the presence of defects is associated with the scattering of slow phonons, 
whereas phonons with larger group velocities give a large contribution to the flow of heat energy.

Thus, each defect should lead to the reduction of the thermal conductivity. This reduction becomes substantial 
in for narrow nanoribbons, and especially for nanoribbons with rough surfaces23.

Effect of edge defects on thermal energy transfer. Next, we evaluate the effect of edge defects on 
thermal conductivity of the nanoribbon. To do so, we carry out the modeling of the heat flow in an armchair 
graphene nanoribbon with an edge pillar defect, when a finite piece of a zigzag carbon structure is attached to the 
nanoribbon, as shown in Fig. 3.
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Figure 10. Coefficient of thermal conductivity κ vs. the length of the central part of the nanoribbon L − 2L0 
for an ideal nanoribbon (curve 1), for a nanoribbon with a double vacancy V2(585) and a transverse array of 
the inverse Stone-Wales defects (curves 2 and 3). Nanoribbon width is D = 1.72 nm, temperature T = 300 K, 
L0 = aN0 is the length of the nanoribbon ends interacting with thermostat.
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For definiteness, we take an armchair nanoribbon with the width Da = 1.228 nm and at its center we attach a 
side defect in the form of a zigzag nanoribbon of a finite width Dz = 1.134 nm and the length Lp that defines the 
length of the edge pillar defect [the smallest length of such a defect is Lp = 0.246 nm, see Fig. 3(a)].

Larger defects support a larger number of localized oscillatory modes. Therefore, defects with larger extension 
are likely to show stronger manifestation of Fano resonances, and stronger scattering effects, with decreasing 
thermal flow.

To model the heat flow, we place the ends of the nanoribbon of the length L0 = 5 nm into the Langevin thermo-
stat with the temperatures T± = (1 ± 0.1)T and study numerically the resulting distribution of the thermal energy 
flux along the nanoribbon. We compare the thermal conductivity of an ideal nanoribbon with the case of an edge 
pillar defect. Our results suggest that the surface defect leads always to a decrease of the the heat flow in the nano-
ribbon, Jd < J0, where J0 is the energy flow in the ideal nanoribbon and Jd is the energy flow in the nanoribbon with 
defects. The reduction coefficient is define as a ratio, Te = Jd/J0 < 1.

Dependence of the thermal conductivity of an ideal nanoribbon of the width D = 1.228 nm and a nanoribbon 
with an edge pilar of different sizes is shown in Fig. 12. As follows from those results, the presence of a single edge 
defect leads to the substantial reduction of the thermal conductivity for the lengths L < 1 μm. However, for larger 
lengths L ≥ 1 μm such a defect has a very weak influence of the thermal conductivity. Nevertheless, a periodic 
array of such edge defects will have a substantial influence of thermal conductivity, similar to the studied case of 
cross-section modulated nanowires24, 25.

The characteristic dependence of the coefficient Te on the length L for different sizes of the edge pillar defects is 
shown in Fig. 13. For low temperature T = 3 K the reduction of the heat transport characterized by the coefficient 
Te depends very weakly on the length of the nanoribbon, indicating primarily phonon mechanism of the energy 
transport. However, for T = 300 K the anharmonicity effects lead to a monotonous growth of the coefficient Te 
with the nanoribbon length. For L > 700 nm the coefficient Te approaches unity, i.e. for such long nanoribbon the 
presence of a defect does not change much the thermal conductivity.

The reduction of the heat flow depends also on the length of the defect Lp. We notice that an increase of the 
length of the edge pilar reduces the transmission coefficient. However, we observe a saturation effect for Lp ≥ 1 nm 
when the transmission coefficient does not depend much on the length of the edge defect.

The presence of several edge defects enhance the phonon scattering resulting in a reduction of the thermal 
conductivity. A rough edge of the nanoribbon can be treated as a system of such edge defects place along the edge 
of the nanoribbon with some density pd, see Fig. 4. As a result, such a large number of defect should suppress 

Figure 11. Reduction of the heat transport characterized by the coefficient Te, as a function of the nanoribbon 
length L in the nanoribbon with the point defect V2(585) (curves 1 and 2) and in the nanoribbon with a 
transverse linear chain of inverse Stone-Wales defects (curves 3 and 4). Curves 1 and 3 are for temperature 
T = 3 K, and the curves 2 and 4 are for temperature T = 300 K. Width of the nanoribbon is D = 1.72 nm.

D (nm) 1.23 1.72 2.21 3.19

without defect 1 1 1 1

ED+2 0.858 0.897 0.917 0.944

ED−2 0.835 0.882 0.905 0.938

V2(5-8-5) 0.650 0.720 0.767 0.829

SW(55–77 0.735 0.789 0.826 0.876

V1(5–9) 0.634 0.717 0.779 0.845

I2(7557) 0.725 0.792 0.836 0.887

I2 chain 0.654 0.672 0.684 0.697

Table 2. Reduction of the thermal conductivity characterized by the coefficient Tph in the case of purely phonon 
transport along the nanoribbon.
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substantially the heat transport in then nanoribbon reducing its thermal conductivity. Indeed, it is known that 
rough edges of the nanoribbon with the width Dz = 1.13 nm can suppress thermal conductivity by two orders of 
magnitude23.

In our current study, we demonstrate this effect by analyzing an armchair nanoribbon with rough edges. We 
take an ideal armchair nanoribbon with the width Da = 1.228 nm and length L. Then we create rough edges in its 
center by adding, with the probability 0 ≤ pd ≤ 1, two extra atoms of carbon to each four atoms of the edge by clos-
ing rings into hexagons, see Fig. 4. Each new hexagon create an edge defect, the density of these defect is defined 
by the probability pd = 0.5. In such a model, in the limit pd = 0, we have an ideal nanoribbon with the initial width 
Da = 1.228 nm, but in the limit pd = 1 the central part of the nanoribbon will a piece of an ideal wider nanoribbon 
with the width Da = 1.474 nm.

To study thermal conductivity, we place the ends of the nanoribbon of the length L0 = 5 nm into a Langevin 
thermostat with the temperature T± = (1 ± 0.1)T and determine the dependence of the thermal energy flow Jd 
in the nanoribbon with rough edges in its central part (with the density of edge defects pd = 0.5) as a function of 
temperature T and the length of the nanoribbon L. We define the reduction of the thermal conductivity by the 
coefficient Te = Jd/J0, where J0 is the thermal flow in the nanoribbon without defects which we find independently 
in the case pd = 0.

Results of our numerical studies are summarized in Table 3. As follows from these results, a growth of the 
section with rough edges leads to monotonous decrease of the coefficient Te characterizing the relative reduction 
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Figure 12. Coefficient of thermal conductivity κ vs. the length of the central part of the nanoribbon L − 2L0 for 
ideal nanoribbon (curve 1), for nanoribbon with an edge pilar with the lengths Lp = 0.245, 0.49 nm (curve 2, 3). 
Nanoribbon width is D = 1.228 nm, temperature T = 300 K.

10
1

10
2

10
3

0.7

0.8

0.9

1

1

2 3

4
5

6

L−2L
0
 (nm)

T
e

Figure 13. Reduction of the heat transport characterized by the coefficient Te, as a function of the nanoribbon 
length L in the nanoribbon with an edge pilar with the lengths Lp = 0.246, 0.49, 0.98 nm for temperature T = 3 K 
(curves 1, 2, 3) and T = 300 K (curves 4, 5, 6). Width of the nanoribbon is D = 1.228 nm.
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of the thermal energy flow. This suppression of thermal conductivity is more pronounced for low temperatures 
when the phonon scattering by edge defects is dominating.

Discussion
By employed detailed numerical approach, we have studied the dynamics of localized vibrational modes sup-
ported by local and extended (line or surface) defects in graphene nanoribbons, as well as the influence of local 
defects on the phonon transport and thermal conductivity in the nanoribbons. We have observed the expected 
suppression of phonon scattering in the nanoribbons with defects, and we have reveal a link between this suppres-
sion and the phononic Fano resonances, manifested in partial or total resonant reflection of propagating phonons 
by localized modes excited at the defects.As a result, we have observed a reduction of the heat transport and ther-
mal conductivity. The larger number of localized modes is supported by the defect, the stronger effect is observed.

We have studied several types of local defects in the nanoribbons and found that the strongest effect on the 
phonon transport is produced by double vacancies. The edge localized defects support a small number of local-
ized modes, and their influence on the phonon transport is weaker. Stronger effects in the phonon scattering have 
been observed for larger T-stub edge pilar defects where the phonon energy flow is reduced with the growth of the 
transverse extension of the defect, with the maximum reduction observed for the width of 1 nm.

Extended defects are found to have a strong effect on the phonon scattering, since they scatter phonons more 
intensively due to larger number of localized vibrational mods they support. In particular, a rough edge of the 
graphene nanoribbon represents an extended defects, and our study has demonstrated that the thermal conduc-
tivity decays monotonically with the extension of the surface defect.

Methods
To model numerically the dynamics of a graphene nanoribbon with local defects, we consider armchair nanorib-
bon with length L = 67.71 nm and width D = 1.23, 1.72, 2.21, 3.19 nm. The schematic structure of the nanoribbon 
and the atom numbering are shown in Fig. 14.

Model. A finite-length nanoribbon consists of N elementary cells, each of them has Ne = 4 K + 2 carbon atoms, 
Nh = 2 K − 1 hexagons, where the number K = 2, 3, … In Fig. 14 we show edge atoms as filled circles. In a realistic 
case, the edge atoms are chemically modified. We consider hydrogen terminated graphene nanoribbon with the 
edge atoms corresponding to the group CH. In this study we take into account only a change of the effective mass 
of the edge atom: the mass of atoms inside the stripe is M0 = 12mp and the large mass M1 = 13mp for edge atoms 
(where mp = 1.6603 × 10−27 kg is the proton mass).

To describe nanoribbon oscillations, we start from the system Hamiltonian in the form

∑∑=






+




= =

 
H M Pu u1

2
( , ) ,

(17)n

N

k

N

n k n k n k n k
1 1

( , ) ( , ) ( , ) ( , )

e

where Mα is the mass of the carbon atom or carbon edge group with the index α = (n, k) (for internal atoms we 
take Mα = M0, whereas for the edge atoms we take Mα = M1), uα = [uα,1(t), uα,2(t), uα,3(t)] is the position vector 
of the carbon atom with the index α at the moment t. The term Pα describes the interaction of the atom with the 
index α = (n, k) and its neighboring atoms. The potential depends on variations in bond length, bond angles, and 
dihedral angles between the planes formed by three neighboring carbon atoms and it can be written in the form

∑ ∑ ∑ ∑ ∑= + + + +
Ω Ω Ω Ω Ω

P U U U U U ,
(18)

1 2 3 4 5
1 2 3 4 5

where Ωi, with i = 1, 2, 3, 4, 5, are the sets of configurations including all interactions of neighbors. This sets only 
need to contain configurations of the atoms shown in Fig. 15, including their rotated and mirrored versions.

The potential U1(uα, uβ) describes the deformation energy due to a direct interaction between pairs of atoms 
with the indexes α and β, as shown in Fig. 15(a). The potential U2(uα, uβ, uγ) describes the deformation energy 
of the angle between the valence bonds uαuβ and uβuγ, see Fig. 15(b). Potentials Ui(uα, uβ, uγ, uδ), i = 3, 4, and 5, 
describes the deformation energy associated with a change in the angle between the planes uα, uβ, uγ and uβ, uγ, 
uδ, as shown in Fig. 15(c–e).

We use the potentials employed in the modeling of the dynamics of large polymer macromolecules26, 27: for 
the valence bond coupling,

ε α ρ ρ ρ= − − − = −U u u u u( , ) {exp[ ( )] 1} , , (19)1 1 2 1 0 0
2

2 1

where ε1 = 4.9632 eV is the energy of the valence bond and ρ0 = 1.418 Å is the equilibrium length of the bond; the 
potential of the valence angle

L − 2L0 (nm) 10.5 21.1 42.4 84.9

T = 3 K 0.503 0.377 0.257 0.166

T = 300 K 0.648 0.563 0.485 0.424

Table 3. Dependence of thermal conductivity reduction Te on the length of the rough edge of the nanoribbon 
L − 2L0 for two values of temperature T = 3 K and T = 300 K. Width of the nanoribbon Da = 1.228 nm, and the 
defect density pd = 0.5.
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so that the equilibrium value of the angle is defined as ϕ π= = −cos cos(2 /3) 1/20 ; the potential of the torsion 
angle
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Figure 14. Schematic view of armchair nanoribbon with atom numbering. The edge atoms are shown as filled 
circles. Dotted lines separate the elementary cells of the nanoribbon. Ne = 4 K + 2 is the number of atoms in the 
elementary cell. Width of the nanoribbon D = 1.23 nm, the number of full hexagons in the cell K = 5.

(a)

α

β
(b)

β

γ

α

(c)

β

γ

α δ

(d)

β

γ

α

δ

(e)

β

γ

α

δ
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i = 3, (d) i = 4, and (e) i = 5.
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where the sign zi = 1 for the indices i = 3, 4 (equilibrium value of the torsional angle φ0 = π) and zi = −1 for the 
index i = 5 (φ0 = 0).

The specific values of the parameters are α0 = 1.7889 Å−1, ε2 = 1.3143 eV, and ε3 = 0.499 eV, and they are found 
from the frequency spectrum of small-amplitude oscillations of a sheet of graphite28. According to the results of 
ref. 29 the energy ε4 is close to the energy ε3, whereas ε ε5 4 (|ε5/ε4| < 1/20). Therefore, in what follows we use 
the values ε4 = ε3 = 0.499 eV and assume ε5 = 0, the latter means that we omit the last term in the sum (18).

The length of one elementary cell is ρ π ρ= + = = .a 2 [1 cos( /3)] 3 4 2540 0  Å. The length of the nanoribbon 
composed on N cells is L = aN + ρ0/2, and its width ρ π ρ= =D K K2 cos( /6) 30 0. For number of hexagons in the 
elementary cell K = 5, 7, 9, 13 and 21 nanoribbon width D = 1.23, 17.2, 2.21 3.19 and 5.15 nm.

More detailed discussion and motivation of our choice of the interaction potentials (19), (20), (21) can be 
found in ref. 23. Such potentials have been employed for modeling of thermal conductivity of carbon nano-
tubes30, graphene nanoribbons23 and also in the analysis of their oscillatory modes31 and localized defect modes 
in graphene21.

Dispersion curves. In the equilibrium state, =−∞ =
+∞u{ }n k

N
n k( , ) , 1

, e , all atoms of ideal infinite nanoribbon are in the 
plane, all valent bonds have the equilibrium length ρ = ρ0 and all valent angle also have equilibrium value 
φ = 2π/3. We introduce 3Ne-dimensional vector,

= − … −x u u u u( , , ),n n n n N n N( ,1) ( ,1)
0

( , ) ( , )
0

e e

describing a shift of the atom of the nth cell from its equilibrium position. Then, the armchair nanoribbon 
Hamiltonian can be written in the following form:

∑= + + { }H Mx x x x1
2

( , ) ( , ) ,
(22)n

n n n n 1

where M is the diagonal matrix of masses of all atoms of the elementary cell,  +x x( , )n n 1  is the interaction energy 
for the interaction between the cells with the numbers n and n + 1, that is a sum of the energies of all types of 
deformations.

Hamiltonian (22) generates the following set of the equations of motion:

− = + ++ −̈ ⁎Mx B x B x B x , (23)n n n n1 2 1 2 1

where the matrix elements are defined as

= + =B B, ,x x x x x x1 , , 2 ,1 1 2 2 1 2
  

and the matrix of the partial derivatives takes the form

=
∂
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= .i j

x x
0 0),( , , 1,2

i j
x x,

2

i j
 

Solutions of the system of linear Eq. (23) can be sought in the standard form

ω= −A iqn i tx v exp( ), (24)n

where A is the mode amplitude, q ∈ [0, π] is the dimensional wave number, and ω is the phonon frequency. 
Substituting expression (24) into the system (23), we obtain the eigenvalue problem

ω = + + .−⁎e eMv B B B v[ ] (25)iq iq2
1 2 2

The problem (25) can be rewritten in the form

ω = + +− − −⁎e ee M B B B M e[ ] , (26)iq iq2 1/2
1 2 2

1/2

where the vector v = M−1/2e, e is the normalized dimensionless vector [(e, e) = 1].
Therefore, in order to find the dispersion relations characterizing the modes of the nanoribbon for each fixed 

value of the wave number 0 ≤ q ≤ π we need to find the eigenvalues of the Hermitian matrix (26) of the order 
3Ne × 3Ne. As a result, the dispersion curves are composed of 3Ne branches ω

=
{ }q( )j j

N

1

3 e . Two third of the branches 
corresponds to the atom vibrations in the plane of the nanoribbon xy (in-plane vibrations), whereas only one 
third corresponds to the vibrations orthogonal to the plane(out-of-plane vibrations), when the atoms are shifted 
along the axes z.

As is seen in Figs 7 and 8, the spectrum of the in-plane nanoribbon oscillations occupies the frequency inter-
val [0, ωi] and the spectrum of the out-of-plane oscillations – interval [0, ωo], where maximum (cutoff) frequen-
cies ωi = 1600, ωo = 900 cm−1. This values agrees well with the experimental data for a planar graphite32, 33.

Local defects in graphene. First, we introduce a model of a graphene nanoribbon with defects. We take a 
finite-size armchair nanoribbon with an ideal honeycomb lattice (see Fig. 14) and, depending on the type of 
defect, we add or remove some carbon atoms at its center by cutting the corresponding chemical bonds. In this 
way, we define the atomic configurations 

= =
u{ }n k n k

N N
( , )
0

1, 1

, e  that will relax to a stationary structure with a specific type 
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of defect. To find the ground state of the nanoribbon with defects, we should find the energy minimum for the 
interaction energy,

∑∑= →
= =

= =E P umin : { } ,
(27)n

N

k

N

n k n k n k
N N

1 1
( , ) ( , ) 1, 1

,e
e

where term P(n,k) describes the interaction of the carbon atom with index (n, k) and its neighboring atoms (for 
detail see ref. 21).

We consider the armchair graphene nanoribbon with length L = Na + ρ0/2 = 86 nm (number of elementary 
cells N = 203) and different widths, namely D = 1.23, 1.72, 2.21, 3.19 nm (the number of atoms in the elementary 
cell is Ne = 22, 30, 38, and 54, respectively). A local defect is placed in the center of the nanoribbon.

We consider seven types of local defects that are most common in the graphene lattices11 and place them at the 
center of the nanoribbon – see Fig. 2. The defects are: the local edge defects ED+2 (two extra carbon atoms which 
create one extra hexagon at the edge), ED−2 (two missing carbon atoms and one missing hexagon), see Fig. 2(a,b); 
central double vacancy V2(585), as shown in Fig. 2(c); central Stone-Wales defect SW(5577) as shown in Fig. 2(d); 
isolated central vacancy V1(59) (missing one carbon atoms) shown in Fig. 2(e), and the inverse Stone-Wales 
defect I2(7557) when two extra carbon atoms are added to the lattice, see Fig. 2(f). In addition, we consider a 
transverse array of the inverse Stone-Walles defects, as shown in Fig. 2(g).

In order to find the ground state of the system with defect, the problem (27) is solved numerically by means of 
the conjugate gradient method. If = =u{ }n k n k

N N
( , )
0

1, 1
, e  is the ground state of the nanoribbon with defect, then for 

small-amplitude oscillations we can write = +t tu u v( ) ( )n k n k n k( , ) ( , )
0

( , ) , where ρv n k( , ) 0. Then, the equations of 
motion corresponding to the Hamiltonian (17) can be written as system of 3Na linear equations for 3Na 
variables,
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Figure 16. Eigenfrequency spectrum of the vibrational local models supported by the edge defects ED+2 (a), 
ED−2 (b) and the central point defects V2(585) (c), SW(5577) (d), V1(59) (e), and I2(7557) (f). Nanoribbon has 
the width of D = 1.23, 1.72, 2.21, 3.19 and 5.15 nm, respectively. Red color marks the eigenfrequencies of out-of-
plane vibrational modes, and blue color marks in-plane oscillatory modes.
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For convenience, here we used a direct numeration of atoms of the nanoribbon with one index only, 
Na = NNe + (K − 1)2 − 1 is the number of atoms, and δ=

= =
{ }MM j ij i j

N N

1, 1

3 ,3a a  is the diagonal matrix of the carbon 
masses and edge CH groups.

To find all linear modes of the nanoribbon, we need to find numerically all 3Na eigenvalues and corresponding 
eigenvectors of the eigenvalue problem

λ =Mv Bv, (30)

where B = (Bi,j) is real symmetric matrix. The problem (30) can be rewritten in the form

λ = − −e M BM e, (31)1/2 1/2

where the vector v = M−1/2e.
If we define λ and =

=
{ }e ej j

N0

1

a  as the eigenvalue and normalized eigenvector of the problem (31), (e, e) = 1, 

then solution of Eq. (28) will have the form ω=t A i tv v( ) exp( )j j
0 , where = Mv e /j j j

0 0 1/2, mode frequency λ=w  
and A is the mode amplitude.

Localized vibrational modes supported by defects. Since a nanoribbon in the ground state is 
a planar object, we divide its vibrational modes into two classes: the planar modes when atoms move in the 
two-dimensional space, and the out-of-plane modes when the atoms move perpendicular to the planar struc-
tures. To reduce the dimension of the corresponding matrices in the problem (30), such vibrational modes are 
useful to treat separately. We notice that such a variable separation is valid only in the small-amplitude approxi-
mation when the motion equations (28) become linear.

First, we analyze eigenvectors and find the modes localized on defects. We characterize the degree of spatial 
localization of the oscillatory eigenmode by the parameter of localization (inverse participation number), 

= ∑ = ∑= =d Me e v v( , ) ( , )j
N

j j j
N

j j j1
0 0 2

1
2 0 0 2a a . For the modes which are not localized in space, d ≈ 1/Na, for the mode 

localized on single atom, d = 1. Inverse value Nd = 1/d (participation number) characterizes the number of atoms 
which are involved into this oscillatory mode. We define the eigenmode as being spatially localized if its partici-
pation number Nd < 200 (d > 0.005), meaning that the vibrational state is localized on less than 200 atoms.

Dependence of the eigenmode’s frequencies on the width of the graphene nanoribbon is summarized in 
Fig. 16, for six types of defects discussed above. As follows from those results, for all types of defects we observe 
the general trend that the number of localized modes is decreasing when the width of the nanoribbon is increas-
ing. For the maximum studied width D = 5.15 nm the localized modes supported by the internal defects V2, 
SW(5577), V1(59), and I2(7557) are not affected by the edges of the nanoribbon, so their frequencies coincide with 
those in an infinite graphene sheet. In narrow nanoribbons, we observe the appearance of additional localized 
modes in the vicinity of the defects. Similar conclusions are valid for the edge defects ED±2 which in general have 
a lower number of localized modes. Thus, resonant effects in the phonon scattering should be expected to be more 
pronounced for narrow nanoribbons and for internal defect states.
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