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Emergent stochastic oscillations 
and signal detection in tree 
networks of excitable elements
Justus Kromer1, Ali Khaledi-Nasab2, Lutz Schimansky-Geier3,4 & Alexander B. Neiman2,5

We study the stochastic dynamics of strongly-coupled excitable elements on a tree network. 
The peripheral nodes receive independent random inputs which may induce large spiking events 
propagating through the branches of the tree and leading to global coherent oscillations in the network. 
This scenario may be relevant to action potential generation in certain sensory neurons, which possess 
myelinated distal dendritic tree-like arbors with excitable nodes of Ranvier at peripheral and branching 
nodes and exhibit noisy periodic sequences of action potentials. We focus on the spiking statistics of the 
central node, which fires in response to a noisy input at peripheral nodes. We show that, in the strong 
coupling regime, relevant to myelinated dendritic trees, the spike train statistics can be predicted 
from an isolated excitable element with rescaled parameters according to the network topology. 
Furthermore, we show that by varying the network topology the spike train statistics of the central 
node can be tuned to have a certain firing rate and variability, or to allow for an optimal discrimination 
of inputs applied at the peripheral nodes.

Coupled noisy excitable systems serve as relevant models for a wide range of natural phenomena, including 
pattern formation in chemical reactions1, 2 and in social networks3–6, dynamics of gene regulatory networks7 and 
of single and networked neurons8–10. In particular, synchronization of neuronal activity on the level of neural 
networks has been studied extensively11–13 using models of coupled excitable systems14–16. Networks of noisy 
excitable elements exhibit a rich variety of spatio-temporal dynamics, depending on the strength and topology 
of coupling and the noise intensity17–21. For example, the coherence of emergent network oscillations can be con-
trolled by modifying the noise intensity, the coupling strength, or by changing the network size or topology22–27. 
The dynamic range and sensitivity of complex networks of excitable elements to external stimuli can by optimized 
for critical topologies28–30.

In the present paper, we focus on the dynamics of regular tree networks of strongly coupled excitable elements 
which receive random and independent excitations to their peripheral nodes, as sketched in Fig. 1(a). Our study 
is motivated by the morphology of certain peripheral sensory neurons, which possess branched myelinated seg-
ments at their distal endings, with multiple nodes of Ranvier. Their extended terminal branching resembles the 
dendrite structure of neurons in the central nervous system (CNS)31, 32. Myelinated segments form a tree-like 
structure with nodes of Ranvier at each branching point.

Myelination terminates at peripheral nodes of Ranvier, called heminodes, which receive sensory signals. Thus, 
such sensory neurons may possess multiple spike initiation zones at heminodes which encode a local sensory 
signal into a stream of action potentials (APs) which are merged into a single output spike train transmitted to the 
CNS33. Examples for such neurons are the afferent innervation of muscle spindles34–37, pain receptors38, cutane-
ous mechanoreceptors39, 40, and lung receptors41. Interestingly, sensory neurons with myelinated dendrites may 
exhibit spontaneous activity characterized by coherent periodic spiking, despite that their peripheral heminodes 
presumably receive uncorrelated noisy excitations36. Figure 1(a) then can be viewed as a model for a branched 
myelinated dendritic terminal, where peripheral nodes receive uncorrelated stochastic inputs and are linked by 
myelinated segments. Due to the high density of Na+ ion channels at the nodes of Ranvier, APs may be excited 
independently at different peripheral nodes. High electrical conductivity of myelinated segments, which link the 
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individual nodes, result in a strong coupling between the nodes. Therefore, their stochastic dynamics synchro-
nizes. This may result in noisy periodic spiking of the primary branching (central) node, as we have shown for 
star networks of excitable elements42.

Here we use a biophysical model for nodes of Ranvier connected by myelinated links on regular trees and 
show numerically and analytically that the collective response of the network can be deduced from the stochastic 
dynamics of a single effective node with parameters scaled according to the network size and topology. Thus, our 
study allows for the prediction of the stochastic network dynamics from the tree topology. We then discuss how 
the tree topology affects the firing statistics of the central node and the discriminability of input signals.

Model and Methods
Discrete Cable Model. In the present paper, we study the stochastic dynamics of excitable elements linked 
on a regular tree (see Fig. 1). Branching starts at the primary (central) node and continues through several gener-
ations. Only the peripheral nodes receive external inputs. Referring to a model of branched myelinated dendrites, 
these peripheral nodes are called heminodes and receive inputs from thin unmyelinated processes (neurites). APs 
are initiated at the heminodes and then propagate on the tree towards the primary branching node and eventually 
to the CNS.

Here we consider regular trees whose topology is characterized by two parameters: the branching, d, and the 
number of generations, G. Given these two parameters, the total number of nodes, N, and the number of periph-
eral nodes, Np, are given by
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respectively. The dynamics of the membrane potential is approximated by a discrete cable model43 in which nodes 
of Ranvier are connected by passive resistive links according to the network topology. All active nodes and passive 
links are assumed to be identical, except that peripheral nodes receive external inputs. The membrane potential 
Vk(t) of the k th node obeys the dynamics
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where the index k = 0, 1, 2, …, N − 1 marks the respective node. In particular, k = 0 refers to the central node. In 
Eq. (2) the term Iion[Vk, uk] stands for nodal ionic currents and uk(t) is a vector whose components are the gating 
variables of the nodal ion channels and C = 2 μF/cm2 is the nodal capacitance per area. In the following we use two 
particular models for the nodes of Ranvier: a Hodgkin-Huxley-type (HH) model with Na+ and leak currents42 
and the Frankenhaeuser-Huxley (FH) model which includes additional K+ and persistent Na+ currents. The HH 
nodal model includes two gating variables, m and h, for Na+ channels, i.e. Iion[V, u] = Iion[V,m,h]. The FH model 
includes two additional gating variables, n for K+, and p for persistent Na+ channels: Iion[V, u] = Iion[V,m,h,n,p]. 
The detailed equations and parameters of the nodal models are provided in the Supplementary Material.

The coupling term in Eq. (2), κ∑ −=
− ( )A V Vj

N
k j j k0

1
, , contains the adjacency matrix A of the undirected tree 

graph, which is a N × N symmetric matrix with elements Ai,j = 1 for connected nodes i and j, and Ai,j = 0 for 
unconnected nodes. Figure 1(b) shows an example of the adjacency matrix. The coupling strength, κ, can be 
calculated from the sizes of the node and myelinated links, and the axoplasmic resistivity:
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Figure 1. (a): Tree network with branching order, d = 3, and G = 3 generations. Peripheral nodes are marked 
red and receive external excitations. Dashed circles indicate corresponding shells of the tree’s generations, g = 1, 
2 and 3; generation g = 0 refers to the central (primary branching) node (green). For a discrete cable model 
of myelinated dendrites, active elements are nodes of Ranvier, which are connected by passive resistors. (b): 
Adjacency matrix A (right) of a tree network with branching order d = 2 and two generations, G = 2 (left). 
Numbering of nodes starts with the central node and ends with the peripheral nodes.
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where a is the diameter of the node (and of links), l is the nodal length, L is the length of connecting links and ρ 
is the axoplasmic resistivity. For example, for ρ = 100 Ωcm, the nodal diameter and length a = 10 μm, l = 1 μm, 
and the length of myelinated segment L = 200 μm, the coupling strength is κ = 1250 mS/cm2. This provides a 
biophysically-plausible range for κ, which we use as a control parameter in the following.

The external current Iext is applied only to the peripheral nodes and consists of a constant part I and noisy part, 
i.e.

δ ξ= +I I D t[ 2 ( )], (4)k p pext ,k

where p denotes indicies of peripheral nodes; δk,p is the Kronecker delta; D scales the intensity of the Gaussian 
white noise ξp(t), which is uncorrelated for different peripheral nodes, 〈ξi(t)ξj(t + τ)〉 = δi,jδ(τ). Thus, peripheral 
nodes receive random uncorrelated inputs.

Equations (2) were integrated numerically using explicit Euler-Maruyama methods with timestep of 0.1 μs.

Synchronization and Variability of Generated Sequences of Action Potentials. A spike is identi-
fied as a full-size AP with a magnitude of at least 60 mV. We extracted a sequence of spike times, tj

k( ), at the k-th 
node in the network from 60–120 s long simulation runs. In order to study synchronization of the nodes, we cal-
culated their instantaneous phases as,
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where the index k refers to the k-th node. Thus, ϕk(t) increases by 2π at every spike of the k-th node and inter-
polates linearly between consecutive spikes. The degree of synchronization is measured by the time averaged 
Kuramoto order parameter:44

ρ = φe , (6)n
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n
i

where the bar stands for long-time averaging and the angular brackets, 〈⋅〉n, denote averaging over a set of nodes 
n. The Kuramoto order parameter ρn quantifies the degree of synchronization of a set of nodes n: ρn = 1 refers to 
perfectly-synchronized nodes, while ρn = 0 to complete asynchrony. In the following we study synchronization 
of two sets of nodes. Synchronization of the peripheral nodes is quantified by ρP , i.e. averages are taken over 
peripheral nodes only, while the synchrony of the entire network is quantified by ρC, i.e. averages are taken over 
all nodes.

Our primary interest is the statistics of a spike train generated by the central node. The corresponding 
sequence of interspike intervals (ISIs) ∆ = −+t t tj j j1

(1) (1), is characterized by the mean firing rate, r and the coeffi-
cient of variation (CV), CV as,
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where the average is taken over all ISIs in the spike train of the central node.

Signal Detection. To characterize the signal detection capacity of a tree network, we considered a small 
constant stimulus, ΔI, applied to the peripheral nodes in addition to the stimulus I, and calculated a normalized 
distance between resulting spike count distributions of the central node with and without this addition. Such a 
measure of distance is given by the discriminability, d′, which in the case of a Gaussian spike count distribution 
is defined as45,
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where μT and σT are the mean and standard deviation of the spike count in a time interval T, respectively. The 
discriminability quantifies how well the network responses to two different stimuli, I and I + ΔI, can be distin-
guished by observing corresponding spike count statistics at the central node. Note that d′ defined by Eq. (8) 
quantifies the discriminability of two signals according to observed spike count distributions only, and does not 
account for stimulus discrimination on the base of other types of statistics, e.g. variability of interspike intervals.

The discriminability is related to the Fisher information, which provides the theoretical limit of how accu-
rately a stimulus I can be estimated by observing a spike train46. For the spike count statistics, a lower bound of 
the Fisher information can be written as47,
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and is related to the discriminability, d′ by47,
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Larger values of the Fisher information refer to more accurate estimation of the stimulus from the spike train 
and a better discrimination between two stimuli I and I + ΔI. In the following we will show that in the strong 
coupling limit, a tree network can be reduced to a single node with an effective input stimulus current and noise. 
The lower bound of the Fisher information will be computed for the single node and then linked and compared 
to discriminability of the tree network using Eq. (10).

The discriminability Eq. (8) was calculated by collecting spike counts of the central node for 5000 independ-
ent time intervals of lengths T = 200 ms, and calculating the mean and standard deviation for two values of the 
stimulus, I and I + ΔI, applied to the peripheral nodes of a tree network47. We also calculated the lower bound of 
the Fisher information Eq. (9) for the single uncoupled node as a function of the input current (stimulus) I and 
the noise intensity, D, using a similar numerical procedure.

Results
Emergence of Periodic Firing in Deterministic Tree Networks. At first, we consider the case of a 
deterministic input, D = 0. In the absence of external input, Iext = 0, an isolated node is in the excitable regime. 
A sufficiently high constant current, IAH results in a subcritical Andronov-Hopf bifurcation of the equilibrium 
state rendering an isolated node to fire a periodic sequence of APs. The corresponding limit cycle disappears in 
a saddle-node bifurcation for a lower external current, ISN. For the HH nodal model the saddle-node bifurca-
tion occurs at ISN ≈ 28.15 μA/cm2 and the subcritical Andronov-Hopf bifurcation at IAH ≈ 29.06 μA/cm2, so in 
a narrow range ISN < I < IAH an isolated node is bistable, possessing a stable equilibrium and a stable limit cycle. 
When the nodes are coupled on a tree network and external currents are applied to the peripheral nodes, the 
dynamics of the network may become quite complex. For example, in case of weak coupling, peripheral nodes 
fire APs, which fail to propagate to the central node, so that nodes in the inner generations of the network exhibit 
small-amplitude spikes. For a stronger coupling, nodes in the inner generations may fire APs, but with skipping 
relative to APs in the periphery, demonstrating various m:n synchronization patterns. However, for strong cou-
pling and sufficiently high external currents the network shows fully synchronized periodic firing.

A comprehensive analysis of the deterministic dynamics is beyond the scope of this study. Instead, since our 
primary interest is in the emergence of periodic sequences of full-size APs at the central node, we address the 
following question: Given the tree topology, G and d, and the coupling strength, κ, what is a threshold value 
I th of a constant current applied to peripherals, I, which makes the central node to generate repetitive firing of 
full-size APs? To this end, we perform simulations of tree networks with given κ, G and d. Initially membrane 
potentials of the individual nodes are randomly distributed around the stable equilibrium of an isolated node for 
I = 0. Then we apply a current I > 0 and determine the minimal value, I th of I at which the central node generates 
APs repetitively at steady state. Results are shown in Fig. 2(a,b). At a given κ, there is periodic firing of APs for 
values of I above the corresponding curves in Fig. 2(a,b). Below these curves, the network is excitable in the sense 
that no repetitive firing of APs is observed at the central node. In the following, we refer to these two regimes as 
oscillatory (repetitive firing of full-size APs by the central node) and excitable (no repetitive firing of APs by the 
central node). The threshold value of the external current, Ith, increases for weak and moderate values of the cou-
pling strength, as coupling acts effectively as a leak current for a node. Consequently the network needs stronger 
external input to the peripheral nodes to sustain periodic firing of the central node.

Figure 2(a,b) shows two distinct coupling regimes. For weak coupling, κ < 2 mS/cm2, the threshold current I th 
is independent of the network size, i.e. the number of generations, G, and branching, d. Since coupling is weak, 
nodes are only affected by adjacent nodes and only during AP firing. In contrast, for strong coupling, κ > 60 mS/
cm2, the threshold current saturates, and its value increases with increasing number of generations. This is illus-
trated further in Fig. 2(c) showing the threshold current vs the number of generations for strong coupling. Note 
that the strong coupling regime spans the range of realistic coupling strengths for models of branched myelinated 
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Figure 2. Threshold constant current, Ith, which gives rise to repetitive APs at the central node of a tree network 
with branching d and number of generation, G. The threshold current is normalized by the bifurcation value 
ISN = 28.15 μA/cm2 at which a single isolated HH node starts to generate a periodic sequence of APs. (a,b): 
Threshold current vs the coupling strength, κ, for the indicated number of generations, G (see legend on panel 
b) and the branching, d = 2 (a) and d = 3 (b), respectively. (c): Threshold constant current resulting from 
simulations (symbols) vs the number of generations for strong coupling κ = 100 mS/cm2 and indicated values of 
branching, d. Solid lines show the scaling relation (12).
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dendrites. As can be seen in Fig. 2(c), the threshold current follows a characteristic dependence saturating for 
trees with a large number of generations, G, and decreases with the increase of branching, d. This results from the 
fact that networks with larger d have more peripheral nodes compared to the total number of nodes. Thus, the 
input is distributed among more nodes. In order to quantify this effect, we consider the scaling of the threshold 
current, Ith, with the relative number of peripheral nodes,
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which follows from Eq. (1). For the threshold current, Ith, we find that the scaling relation,
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where ISN is a bifurcation value of the constant current in the isolated single node, approximates well the threshold 
current obtained form simulations in Fig. 2(c). We note that the scaling factor, R(G,d), decreases with the number 
of generation and appoaches its limiting value, R∞(G), already for trees with G > 5 generations.

Deterministic trees with the Frankenhaeuser-Huxley nodal model show similar dynamics with the same scal-
ing as in Fig. 2(c). The scaling relation, Eq. (12), holds for strongly-coupled trees and is derived in the following 
section.

Stochastic Dynamics. The addition of uncorrelated noise to the peripheral nodes allows for the generation 
of APs in the excitable regime. Figure 3(a) shows an example of the stochastic dynamics for a tree with G = 5 
generations and d = 3 branching. In the excitable regime (I = 20 μA/cm2) noise of sufficient intensity induces 
APs in peripheral nodes. For weak coupling (κ = 0.3 mS/cm2) noise-induced APs in adjacent generations are not 
synchronized (superimposed spikes for peripheral nodes fill densely corresponding generation panels) and do 
not propagate beyond the 2-nd generation, which shows only sparse APs. Increasing the coupling strength leads 
to progressive synchronization of nodes in adjacent generations, resulting in APs in the central node. The degrees 
of synchronization of the peripheral nodes and of the entire networks are quantified using the Kuramoto order 
parameters, ρP and ρC, respectively.

As shown in Fig. 3(b), these order parameters increase with coupling strength following close dependencies 
and reflecting progressive synchronization of APs firing in the network. For κ > 10 mS/cm2, spiking activity of all 
nodes is synchronized and both order parameters approach one. We also note that strong coupling leads to slower 
and more random but synchronous firing of APs. Thus, synchronization leads to a global oscillatory response of 
the excitable tree, even though the peripheral nodes are excited by independent random inputs.

As observed for star networks42, the dynamics of the central node in a tree network depends 
non-monotonously on the coupling strength. As shown in Fig. 4, there exist optimal, rather small values of the 
coupling strength for excitable and oscillatory trees at which fastest (maximum firing rate) and most coherent 
(minimal coefficient of variation, CV) firing is observed, respectively. For extremely weak coupling APs, which are 
fired by different peripheral nodes, are not synchronized and fail to propagate to the central node (Fig. 3, upper 
left panel). Increasing the coupling strength leads to stronger interaction between the branch nodes and results 
in synchronous firing of all nodes.

However, the size of a tree, i.e. the number of generations, is critical for the firing statistics of the cen-
tral node. Furthermore, excitable and oscillatory trees demonstrate qualitatively different behaviour in the 
biologically-relevant strong coupling regime. In excitable trees, firing of APs becomes slower and more irregular if 
the coupling is strengthened and trees with more generations are considered. For large G and strong coupling fir-
ing stops [Fig. 4(a1)] since excitatory inputs to peripheral nodes are too weak to sustain firing of APs. In contrast, 
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Figure 3. Synchronization of APs firing in a tree with G = 5 generations and d = 3 branching in the excitable 
regime. Peripheral nodes were excited by the external currents (4) with parameters I = 20 μA/cm2 and 
D = 500 (μA/cm2)2 ms. (a): Voltage traces of the HH nodes. Each sub-panel shows 200 ms long superimposed 
voltage traces of nodes within a generation g, g = 1, …, 5, for the indicated coupling strength, κ (mS/cm2). 
Horizontal axis is time. Numbers next to voltage traces indicate generations within the tree, g = 0 corresponds 
to the central node and g = 5 corresponds to the peripheral generation, respectively. (b): Kuramoto order 
parameters of the network vs the coupling strength; ρP is calculated for the peripheral nodes only; ρC is 
calculated for all nodes.
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in oscillatory trees, the firing rate saturates for strong coupling [Fig. 4(a2)] and firing becomes more regular if 
strongly-coupled trees with more generations are considered [Fig. 4(b2)]. In order to understand this fundamen-
tal difference between excitable and oscillatory trees, we derive a theory for spike generation in strongly-coupled 
tree networks in the following.

Scaling of Effective Current and Noise intensity. In the strong coupling regime the dynamics of the 
central node of a tree network can be described by the dynamics of a single isolated node with membrane poten-
tial V0(t) and with effective input current Ieff and an effective Gaussian noise with intensity Deff, i.e. the influence of 
the coupling term on the dynamics can be approximated by a constant current and a white Gaussian noise. Then 
the dynamics of the membrane potential of the central node in Eq. (2) can be approximated by

ξ≈ + +˙CV f V I D tu[ , ] 2 ( ), (13)0 0 0 eff eff eff

≈ .


g Vu [ , u ]0 0 0

In the following, we derive those effective parameters for regular trees of diffusively-coupled nodes.
In the network model, the dynamics of the membrane potential of k-th node is given by
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In order to derive approximations for the scaling of the effective current Ieff and the noise intensity Deff, we 
extend the approach of Kouvaris et al.48, who considered the propagation of excitable waves in a tree network of 
identical Fitz-Hugh Nagumo nodes in the absence of noisy inputs. Following their approach, we consider the 
dynamics of the average membrane potential 〈V〉g (termed density by Kouvaris et al.) in each shell in a tree. Here 
and in the following 〈〉g denotes averaging over all nodes of the g th shell,

∑= .⟨ ⟩V
d

V: 1

(15)
g g

g
k

thshell

The dynamics of those densities can be obtained by averaging the respective equations for the dynamics of the 
membrane potentials, Eq. (14), over all nodes in one shell. Since the total number of connections between nodes 
in shell g and g − 1 is dg, we obtain
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Figure 4. Mean firing rate (a1, a2) and coefficient of variation of interspike intervals (b1, b2) of the central 
node versus coupling strength for tree networks of HH nodes with d = 2 branching for the indicated numbers of 
generations, G. Left panels (a1, b1) correspond to the excitable regime with the constant current I = 35 μA/cm2; 
right panels (a2, b2) refer to the oscillatory regime with I = 60 μA/cm2. The noise intensity is D = 500 (μA/cm2)2 
ms. Horizontal dashed lines indicate the theoretical strong coupling limits for an effective node with scaled 
input current and noise intensity according to Eqs (22) and (23), respectively.
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Note that, since peripheral nodes are subject to independent white Gaussian noises, the corresponding equation 
for the averaged membrane potentials of the peripheral generation contains white Gaussian noise ξG(t) with 
reduced intensity D/Np.

Since the coupling terms depend only on the difference between densities of the membrane potentials in adja-
cent generations ΔVg: = 〈V〉g − 〈V〉g+1, we consider the dynamics of those differences next. Subtracting equations 
for V g
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where ΔIg=−δg,G−1I and Δξg(t) δ ξ= − − t2 ( )g G
D
N G, 1

p
 is Gaussian white noise.

Next, we consider the case of strong coupling. In that case, ΔVg becomes small, and the membrane potentials 
of individual nodes approach the average potentials of the corresponding shell. Thus, we can approximate 〈f(V, 
u)〉g − 〈 f(V, u)〉g+1 by a Taylor expansion around ΔVg = 0, i.e. 〈 f(V, u)〉g − 〈 f(V, u)〉g+1 ≈ Δfg

0 + Δf ′gΔVg + h.o. It 
then follows for strong coupling, i.e.

∆ κ ∆= ′ = ... −f f g G0, , 0, 1, , 1, (18)g g
0

that the dynamics of the averaged potential is dominated by the coupling term and ΔVg can be approximated by 
a multidimensional Ornstein − Uhlenbeck process,

κ ξ∆ ≈ ∆ + ∆ + ∆ .C d
dt

tV B V I ( ) (19)

Here we introduced the G-dimensional vectors,

ξ ξ ξ
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G
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and the G × G tridiagonal Toeplitz matrix,

=







− + ...
− + .. . .. .

− + ...
... ... ... ...

.. − +







.

d d
d d

d
d

d

B

( 1) 0 0
1 ( 1)
0 1 ( 1) 0

0 0 1 ( 1) (20)

In the strong coupling limit (18), deviations of ΔV from its mean value decay extremely fast and we can use an 
adiabatic elimination49 to approximate ΔV by its mean value plus a white Gaussian noise. Both, the mean voltage 
difference and the intensity of the Gaussian white noise in the strong coupling limit can be obtained by setting the 
left-hand side of Eq. (19) to zero. This yields

∆
κ

ξ≈ − ∆ + ∆− tV B I1 ( ( )), (21)
1

where B−1 is the inverse of the matrix B. In order to obtain an approximation for the dynamics of the central node, 
we can use Eq. (21) to replace V0 − 〈V〉1 by ΔV0 in Eq. (16) for the central node, g = 0. This yields

ξ= = 



 + ∆ + ∆ .−

 C V CV f V d tu B I, ( ( )) (22)0 0 0 0
1

1

Here and in the following the index “1” denotes the first component of a G-dimensional vector. Next, the effective 
parameters Ieff and Deff can be obtained by comparing Eqs (22) and (13). This yields the effective input current and 
the intensity of the effective white Gaussian noise,

ξ ∆ξ= ∆ = .− −I d D t d tB I B( ) , 2 ( ) ( ( )) (23)eff
1

1 eff eff
1

1
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For the special case, considered in this study, that only peripheral nodes are subject to noisy inputs, i.e. 
ΔI = (0, 0, …, − I)T, and ∆ξ ξ= … −( )t D N t( ) 0, 0, , (2 / ) ( )p G

T
, the calculation of the effective parameters Ieff 

and Deff requires only a single component, (1,G), of the inverse matrix, B−1. Since B is a tridiagonal Toeplitz 
matrix, we can apply the results of Ref. 50 to calculate this component (see Supplemental Material for details on 
calculations) and find for the effective current,

= =I
N
N

I R G d I( , ) , (24)
p

eff

and for the effective noise intensity,

= =D
N

N
D R G d

N
D( , ) ,

(25)
p

eff 2

where the scaling factor R(G,d) is given by Eq. (11). It immediately follows that for large trees (G → ∞) the effec-
tive current approaches I(d − 1)/d and the effective noise intensity approaches zero.

Investigating the scaling of the effective parameters in more detail, we first note that our theory yields the 
scaling relation, Eq. (12), observed for the deterministic threshold current in Fig. 2(c). In fact, the same scaling 
relation applies to the bifurcation values of I in the deterministic model, e.g. the subcritical Andronov-Hopf 
bifurcation of the equilibrium or the saddle-node bifurcation of the limit cycles. Second, in Fig. 5, we demonstrate 
the validity of the theoretical scaling predictions by comparing results for the mean firing rate and the CV from 
direct simulation of tree networks with those from a single node (13) with input current and noise intensity scaled 
according to Eqs (24) and (25), respectively. As illustrated in Fig. 5, we find an excellent correspondence of both 
results. This indicates that in the strong coupling limit the response of the network can be predicted from the sto-
chastic dynamics of the effective central node. The statistics of interspike intervals for a single isolated node versus 
input current parameters, i.e. constant component, I, and noise intensity, D, can be easily computed numerically 
yielding two-dimensional maps, such as shown in Fig. 6. Then for a given size (number of generations, G) and 
branching, d, of a tree, the scaled parameters, Eqs (24) and (25), set an operation point for the tree on the para-
metric map of a single element. Figure 6 demonstrates this for trees of strongly-coupled HH nodes in the excitable 
and oscillatory regimes, with input currents to the peripheral nodes I = 35 and I = 60 μA/cm2, respectively. Each 
point on the map corresponds to a set (Ieff, Deff) resulting for a tree network. The color code then yields the firing 
rate and CV of a single node with (I,D) = (Ieff, Deff).

In trees with more generations G, the operation point is shifted towards smaller currents and lower noise 
intensities. This results from two aspects. First, as discussed above, trees with more generations have smaller rel-
ative numbers of peripheral nodes R. Thus, the noisy input current is distributed among more nodes. Therefore, 
the effective current Ieff is reduced. For trees with large numbers of generations, Ieff approaches I(d − 1)/d. Second, 
the superposition of the independent noises to the peripheral nodes yields an effective noise reduction, so that 
Deff → 0 for trees with large numbers of peripherals Np = dG. In combination, both effects cause the qualitatively 
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Figure 5. Mean firing rate, 〈 f 〉, (a1, a2) and coefficient of variation, CV, of interspike intervals (b1, b2) of the 
central node versus the number of generations of tree networks in the strong coupling regime, κ = 1000 mS/cm2 
and noise intensity D = 500 (μA/cm2)2 ms. Left panels (a1, b1) correspond to an excitable tree with constant 
current I = 35 μA/cm2; right panels (a2, b2) refer to an oscillatory tree with I = 60 μA/cm2. Symbols  and ○ 
mark results of numerical simulations of the corresponding network with the indicated branching, d; solid lines 
and symbols × show theoretical scaling predictions.
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different behaviour of excitable and oscillatory trees with large numbers of generations in the strong-coupling 
regime, mentioned in the previous section and illustrated in Fig. 5. In particular, excitable trees approach the 
well-known weak noise behaviour of excitable systems, i.e. slow and irregular firing. In contrast, AP generation in 
oscillatory trees occurs at finite firing and becomes more coherent.

Finally, we note that in the strong coupling limit the scaling relations (24, 25) are independent of the particular 
choice of the nodal model, i.e. they are expected to work for either Hodgkin-Huxley or Frankenhaeuser-Huxley 
nodal models.

Signal Detection. The signal detection efficiency of a neuron can be quantified using the discriminability 
and the Fisher information47, 51–54. In case of our model of coupled excitable elements on a tree, we use these 
measures to characterize how the tree topology affects its ability to distinguish between two stimuli, I and I + ΔI, 
applied to the peripheral nodes.

The preceding section showed that in the strong coupling limit, the stochastic dynamics of the network could 
be predicted from the dynamics of a single node with appropriately scaled parameters of the input current. Thus, 
we first analyze the lower bound of the Fisher information of a single node. Equation (9) indicates that the Fisher 

information is determined by two factors: the term µ( )d

dI

2
T , which is related to the slope of the so-called f − I curve 

(mean firing rate vs input current curve) and determines the sensitivity of a neuron to small variations of the 
input current. The sensitivity is largest in the vicinity of the bifurcation point, where the limit cycle is born, and 
where the slope of the f − I curve is the steepest. In this region, the Fisher information is high. However, the sec-
ond factor in Eq. (9), the variance of the spike count, may degrade the Fisher information. In the excitable regime, 
when the input current is below its bifurcation value and APs are induced by noise, the phenomenon of stochastic 
resonance is observed55, i.e. due to the competition of the two factors, the sensitivity and the spike count variance, 
the Fisher information possesses a maximum at an optimal noise intensity47.

Figure 7(a1) shows the lower bound of the Fisher information, JLB, for a single HH node as a function of 
input current and noise intensity. The Fisher information is maximal for an input current I, which brings the 
system close to the transition to periodic spiking, i.e. 28–29 μA/cm2. In Fig. 7(a1), a vertical section across the 
map corresponds to the dependence of the Fisher information on noise intensity. As can be seen, such a depend-
ence is non-monotonous in the excitable regimes, e.g. for I = 15 or I = 20 μA/cm2, indicating the phenomenon 
of stochastic resonance55, reported before for the original Hodgkin-Huxley neuron model in Ref. 47 Indeed, 
stochastic resonance is a generic phenomenon in excitable systems20, 55 and so the Frankenhaeuser-Huxley (FH) 
nodal model demonstrates qualitatively similar parameter dependence, shown in Fig. 7(a2). In the absence of 
noise, a stable equilibrium of the single FH node passes through a subcritical Andronov-Hopf bifurcation at 
IAH ≈ 60.19 μA/cm2. Consequently, the Fisher information in Fig. 7(a2) is maximal around this value, similar 
to the HH node. In the excitable regime, e.g. I = 40 μA/cm2, the Fisher information vs. noise intensity passes 
through a maximum, demonstrating stochastic resonance, again, qualitatively similar to the HH node.

The scaling relations for the input current and noise, Eqs (24,25), in combination with the relation between 
the discriminability and the lower bound of the Fisher information (10), enable us to predict the signal detection 
capability of tree networks in the regime of strong coupling. Given the branching, d and the input current to the 
peripheral nodes, an increase in the number of generations (i.e. tree size) results in a decrease of the effective 
input current and noise. Then, depending on the particular values of I and D, signal detection by the tree may 
show distinct dependencies on the tree size, G. This is illustrated in Fig. 7(a1,a2) by superimposing the scaling 
of the input current and noise intensity on the Fisher information map of the single node. In particular, our 
theory predicts that in the excitable regime, i.e. when the network does not produce sustained periodic firing 
in the absence of stochastic inputs, the scaling of I and D, may bring an effective operating point of the network 
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Figure 6. Heat maps of the mean firing rate, 〈 f〉 (a), and coefficient of variation, CV (b), vs input current, I, 
and noise intensity, D, for the single isolated HH node obtained from numerical simulations. Symbols and 
lines show the scaling of the current, Eq. (24), and noise intensity, Eq. (25), respectively, for tree networks with 
indicated values of the branching d (d = 2, circles; d = 3, triangles) and with increasing number of generations, 
G from 1 (top) to 10 (bottom). These lines correspond to Fig. 5. For tree networks, the input current to the 
peripheral nodes is I = 35 μA/cm2 (white lines) and I = 60 μA/cm2 (magenta lines) and the noise intensity is 
D = 500 (μA/cm2)2ms.
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across the local maximum of the Fisher information, which should result in larger values of the discriminability 
for corresponding tree network. As can be seen, for instance, for the input current I = 30 or 40 μA/cm2 for HH 
nodal model, an increase of the number of generations to G = 2–4 brings the effective operating point to regions 
of higher values of the Fisher information; further growth of the tree size eventually suppresses AP firing and 
thus small signals cannot be detected. In contrast, in the oscillatory regime (e.g. for I = 60 μA/cm2 for HH nodal 
model), the increase of the network size moves the operation point always to regions of higher values of the Fisher 
information and so the discriminability increases monotonously with the tree size, G. Interestingly, one could 
predict the input current to the network which for a tree with large enough generations would result in an effec-
tive operating point close to bifurcation value of the single node. For example, for the HH nodes, such a value of 
the external current is I = 55 μA/cm2 and for the FH node, I = 115 μA/cm2. For such currents increasing the tree 
size should result in a higher degree of signal discrimination.

To test these predictions we compare the discriminability, Eq. (8), of tree networks to that of the single node 
representation Eq. (13) with appropriately scaled current and noise intensity, Eqs (24) and (25), respectively. We 
also calculated the discriminability estimated from the lower bound of the Fisher information (10) from the maps 

I  [µA/cm2]
10 15 20 25 30 35 40

D
 [(

m
A

/c
m

2 )2 m
s]

1

10

100

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

20 30 40 55 60

J LB
1/2

I = I = 20
I = 30
I = 40
I = 55
I = 60

(a1) (b1)

I  [µA/cm2]
30 40 50 60 70 80 90

D
 [(

m
A

/c
m

2 )2 m
s]

1

10

100

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 

70 100 115 130I =

J LB
1/2

(a2) (b2)
I = 70
I = 100
I = 115
I = 130

G
1 2 3 4 5 6

di
sc

rim
in

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

G
1 2 3 4 5 6

di
sc

rim
in

ab
ili

ty

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 7. Signal detection by a single node and by tree networks. (a): Square root of the lower bound of the 
Fisher information (9) of the single HH (a1) and single FH (a2) node versus input current and noise intensity. 
Superimposed white lines with circle symbols show the scaling of the effective input current, Eq. (24), and 
effective noise intensity, Eq. (25), for tree networks with branching ratio d = 2 and increasing number of 
generations. Each of these lines corresponds to values of the external current to peripheral nodes, I, indicated 
at the top of panels (a). The number of generations, G, increases from 1 (top) to 6 (bottom). Noise intensity for 
tree networks is D = 500 [(μA/cm2)2ms]. (b): Discriminability (8) versus the number of generations, G, for tree 
networks with branching ratio d = 2 and indicated values of the input current I for HH (b1) and FH (b2) nodes. 
The increment of the input current is ΔI = 2 μA/cm2 and noise intensity is D = 500 [(μA/cm2)2ms]. Open circles 
refer to results from numerical simulations of corresponding tree networks. Solid lines with filled circles show 
the theoretical scaling predictions obtained from numerical calculations of the discriminability of a single HH 
or FH node with input current and noise intensity scaled according to Eqs (24) and (25), respectively. Dashed 
lines with symbols × show the theoretical predictions of discriminability obtained from the lower bound of the 
Fisher information of panels (a1, a2) using relation (10) with the input current increment scaled according to 
Eq. (24). In all panels the spike count statistics was calculated for T = 200 ms windows. The coupling strength on 
the panels (b1, b2) is κ = 1000 mS/cm2.



www.nature.com/scientificreports/

1 1Scientific RepoRts | 7: 3956  | DOI:10.1038/s41598-017-04193-8

in Fig. 7(a1,a2), with the scaled stimulus increment, ′ = ∆d R G d I J( , ) LB
1/2. Figure 7(b1,b2) shows good corre-

spondence between the theoretical and numerical discriminabilities.

Conclusion
We have studied the emergence of noisy periodic spiking in regular tree networks of coupled excitable elements. 
Using biophysical models of excitable nodes, we showed that noisy periodic network spiking can be generated, 
although the periphery of the tree is excited by random and independent inputs (Fig. 3). The firing rate and 
coherence of spiking can be maximized by varying the coupling strength and is altered by changing the network 
topology (Figs 4,5).

We put special emphasis on the strong coupling regime, which refers to the case of excitable nodes of Ranvier 
linked by myelinated (dendrite or axon) fibers of a neuron. It is intuitively clear that in the strong coupling limit, 
the collective dynamics of the network could be described by a single effective excitable system. We have derived 
the corresponding scaling relations for random inputs Eqs (24, 25) which allows for reliable predictions of the 
collective network response based on the stochastic dynamics of a single isolated node with scaled input parame-
ters. Stochastic excitable systems demonstrate non-trivial behaviour versus the noise intensity. Examples include 
the phenomena of coherence resonance56, whereby the variability of spiking events (e.g. coefficient of variation) is 
minimal for non-zero noise intensity, and stochastic resonance, characterized by non-monotonous dependence 
of a response to an external signal on the noise intensity55. Similar phenomena have been observed in networks of 
excitable elements. In particular, the phenomena of system size stochastic57 and coherence resonance22, which are 
also observed in strongly-coupled star networks of excitable elements42. As we have shown in the present paper, 
the phenomenon of system size stochastic resonance also occurs in strongly coupled tree networks, i.e. the num-
ber of generations in a tree network of excitable elements can be tuned in order to optimize the network ability 
to discriminate between different input signals. In particular, our analytical approach allows for the prediction of 
optimal tree sizes and branching ratios.

The analytical approach developed here for the strong coupling can be extended to random trees58 in which 
the branching ratio varies among different generations, yielding similar scaling relations in the strong coupling 
limit. While we considered networks of identical nodes, our approach can be readily extended to the inhomoge-
neous case, as long as the condition for strong coupling Eq. (18) is satisfied. Inhomogeneity in applied currents 
and/or noise intensity is also easily treatable using Eq. (23). Here, only the average current and noise intensity in 
each generation contributes, which indicates that strongly coupled tree networks effectively average over inputs, 
applied at the same distances to the central node.

Our results suggest a mechanism for the emergence of noisy periodic firing and information coding by periph-
eral sensory neurons which possess branched tree-like myelinated dendrites36. Such neurons may possess multi-
ple spike initiation zones at peripheral nodes (heminodes) and nodes of Ranvier at branching points. Examples of 
the muscle spindles35 and cutaneous mechanoreceptors39 indicate that myelinated dendritic trees extend to up to 
7 generations. Myelin provides low-resistance links between nodes and fast saltatory conduction of APs, allow-
ing for reliable coding and nonlinear integration of external stimuli from spatially extended receptive areas36. 
Myelinated segments correspond to strong coupling between the nodes of Ranvier. For example, diameters of a 
cat muscle spindles afferents ranges from 3 to 13 μm, while links between nodes are relatively short, 50–200 μm35. 
An estimate of the coupling strength from Eq. (3) yields values well within the range of the strong coupling regime 
used in our study. The collective noisy periodic firing then may occur due to the synchronized noise-induced 
generation of APs by stimulating the peripheral heminodes, as described by our model. Given the biophysical 
properties of the nodes of Ranvier and the sensory inputs, the variability of interspike intervals and the stimu-
lus discrimination capability of a neuron are mainly determined by the ratio of the number of signal-receiving 
peripheral heminodes to the total number of nodes in the network.
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