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Cellular responses to T-2 toxin and/
or deoxynivalenol that induce 
cartilage damage are not specific to 
chondrocytes
Yang Lei1, Zhao Guanghui2, Wang Xi1, Wang Yingting1, Lin Xialu1, Yu Fangfang1, Mary B. 
Goldring  3, Guo Xiong1 & Mikko J. Lammi  1,4

The relationship between T-2 toxin and deoxynivalenol (DON) and the risk of Kashin-Beck disease 
is still controversial since it is poorly known about their selectivity in cartilage damage. We aimed to 
compare the cytotoxicity of T-2 toxin and DON on cell lines representative of cell types encountered in 
vivo, including human chondrocytes (C28/I2), human hepatic epithelial cells (L-02) and human tubular 
epithelial cells (HK-2). In addition, we determined the distribution of T-2 toxin and DON in Sprague-
Dawley (SD) rats after a single dose exposure. T-2 toxin or DON decreased proliferation in a time- and 
concentration-dependent manner and their combination showed a similar antagonistic effect in C28/I2, 
L-02 and HK-2 cells. Moreover, we observed cell cycle arrest and apoptosis, associated with increased 
oxidative stress and decline in mitochondrial membrane potential induced by T-2 toxin and/or DON. In 
vivo study showed that T-2 toxin and DON did not accumulate preferentially in the knee joint compared 
to liver and kidney after an acute exposure in SD rats. These results suggest that T-2 toxin and/or DON 
inhibit proliferation and induce apoptosis through a possible mechanism involving reactive oxygen 
species-mediated mitochondrial pathway that is not specific for chondrocytes in vitro or joint tissues in 
vivo.

The trichothecenes are a large group of secondary metabolites mainly produced by the fungi of Fusarium genus1. 
They are commonly found on various cereals, including maize, wheat and barley, grown in the temperate regions 
of the world2. Ingestion of these toxins via contaminated food and feed can cause serious adverse effects on 
humans and animals3. The most prominent toxic effect of trichothecenes on eukaryotic cells is the inhibition 
of protein and nucleic acid synthesis, as well as induction of cell apoptosis4, 5. The T-2 toxin and deoxynivalenol 
(DON), belonging to type A and type B trichothecenes, are highly toxic and the most common mycotoxins 
because of their widespread dissemination1. Both T-2 toxin and DON promote the generation of cellular reactive 
oxygen species (ROS), which can further induce lipid peroxidation, DNA damage, and cell apoptosis in different 
cell types6, 7. Due to their co-occurrence in nature, the combined toxic effects of these mycotoxin mixtures have 
received more consideration8–12.

Kashin-Beck disease (KBD) is a chronic, disabling osteoarticular disease mainly distributed in a limited 
endemic area from Northeast to Southwest China, Southeastern Siberia, and North Korea13, 14. The onset of 
KBD commonly occurs in preadolescent and adolescent years, and leads to various types of disabilities in adult 
life15. According to the China statistical yearbook of health and family planning in 2015, there were 0.61 million 
patients with KBD, of which 13,453 children were under 13 years of age in 378 counties of China16. The incidence 
of KBD is variable, so that 60–90% of children may reveal signs of KBD in certain seriously affected regions17. In 
general, KBD incidence has been markedly reduced in recent years, but new patients are still detected in the west-
ern regions of China, particularly in the Qinghai and Sichuan provinces and Tibet Autonomous Regions18. The 
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commonly affected sites of KBD patients are the epiphyseal growth plate and the articular cartilage with pathol-
ogy characterized by chondronecrosis, which can result in impaired endochondral ossification, growth retar-
dation, and secondary chronic osteoarthropathy14. In addition, oxidative stress19, mitochondrial dysfunction20 
and excessive apoptosis of chondrocytes21 contribute to the pathology of KBD. Clinically, the disease manifests 
in enlarged and shortened fingers, arthritic pain, morning stiffness, and deformed, enlarged joints with limited 
motion in the extremities22.

The etiology of KBD remains elusive, although many hypotheses have been proposed. Contamination of food 
by mycotoxins, especially T-2 toxin and DON have been widely considered as risk factor for KBD mainly based 
on extensive epidemiological studies, which showed that cereal or food samples analyzed from KBD areas were 
more heavily contaminated with these toxins compared to those in non-KBD areas23–28. Changing grains has 
had obvious effects in the prevention and treatment of KBD in children29. In addition to these observations, in 
vivo and in vitro studies have also been done to show possible relationships between these mycotoxins and KBD 
occurrence30–32. Because no obvious damage was observed in anatomical sites in KBD patients other than the 
epiphyseal growth plate and articular cartilage, it appeared that the risk factors for KBD were selective for carti-
lage. However, previous studies only explored the toxic effects of mycotoxins on cartilage but without analysis of 
other tissues or organs as controls, and no study explored the effects of combinations of mycotoxins on cartilage.

Thus, to verify if different mycotoxins, either alone or in combination, could specifically damage cartilage, 
and to obtain more evidence about the relationship between mycotoxins and KBD prevalence, we compared the 
potential of T-2 toxin and/or DON to cause toxicity in cartilage, as well as hepatotoxicity and renal toxicity by 
using cell lines derived from those tissue. Thus, we assessed human chondrocyte (C28/I2), human hepatic epithe-
lial cells (L-02), and human tubular epithelial cells (HK-2) for changes in cell viability, morphological changes, 
cell cycle progression and apoptosis, as well as oxidative stress (ROS) and mitochondrial membrane potential in 
response to T-2 toxin and DON alone and together. In addition, to verify if mycotoxins could accumulate in joint 
tissues, we examined their tissue distribution in knee joint, liver and kidney of Sprague-Dawley (SD) rats after 
acute oral administration of T-2 toxin and DON.

Materials and Methods
Chemicals. T-2 toxin solution (NO. 34071, 100 μg/ml in acetonitrile), DON solution (NO. 34124, 100 μg/
ml in acetonitrile) and 3-[4,5-Dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide (MTT) were purchased 
from Sigma Chemical Co. (St. Louis, MO, USA). Dulbecco’s modified Eagle’s medium-F12 (DMEM-F12) and 
fetal bovine serum (FBS) were purchased from Gibco BRL (Grand Island, NY, USA). All other chemicals used 
were of analytical grade.

Cell culture and treatment. The human chondrocytic cell line (C28/I2) was reported previously33. The 
human hepatic epithelial cell line (L-02) and human tubular epithelial cell line (HK-2) were purchased from CHI 
Scientific Inc. (Jiangsu, China). All the three cell lines were maintained in monolayer cultures in DMEM-F12 
containing 10% FBS, 100 IU/ml penicillin and 100 μg/ml streptomycin at 37 °C in a humidified atmosphere of 
5% CO2 in air.

The working solutions of T-2 toxin and DON were made by direct dilution in culture medium. In each exper-
iment, cells were plated and incubated for 24 h to allow them to attach before treatment with mycotoxins, and 
untreated cells were used as controls. All studies were tested in three independent experiments.

Determination of cytotoxicity. The MTT assay was used to determine the cytotoxicity after exposure 
to T-2 toxin and/or DON. Briefly, cells in 96-well plates were treated with five dilutions of T-2 toxin (from 2.5 
to 40 ng/ml) or DON (from 100 to 1600 ng/ml), or a fixed constant ratio of the two mycotoxins (T-2 + DON, 
ratio = 1:40)11. Following 24, 48 and 72 h of exposure, the medium was replaced by fresh medium containing 20 μl 
(5 mg/ml PBS) MTT. After 4 h of incubation, the medium was removed and 150 μl DMSO was added to dissolve 
the formazan. Measurement of the absorbance was performed with an automatic ELISA reader (Infinite M200, 
Tecan, Switzerland) at 490 nm.

The combined effects of T-2 toxin and DON mixtures were analyzed using an isobologram method34, 35. 
According to the isobologram analysis, a combination index (CI) value was calculated for quantification of syn-
ergism or antagonism for two drugs, as below:
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where D is the dose (or concentration) of a drug, Dm is the median-effect dose (e.g., IC50, ED50, or LD50) that 
inhibits the system under study by 50%, fa is the fraction affected by D (e.g., percentage inhibition/100), and m is 
the coefficient signifying the shape of the dose-effect relationship. Dm and m values are used for calculating the 
CI values, where CI < 1, CI = 1, and CI > 1 indicate synergistic, additive, and antagonistic effects, respectively35. 
The calculations were achieved by the CalcuSyn software (Biosoft, Cambridge, UK).

Observation of cell ultrastructure changes. Based on the IC30 values of 10.42 ng/ml for T-2 toxin and 
842.17 ng/ml for DON after 24-h-exposure of C28/I2 cells (calculated by CalcuSyn software), we used 10 ng/ml of 
T-2 toxin and 800 ng/ml of DON, alone or in combination as the intervention concentrations in the subsequent 
experiments.

Cells were treated with T-2 toxin and/or DON in 6-well plates for 24 h, then were collected by digestion with 
trypsin, and fixed with 2.5% glutaraldehyde, post-fixed in 0.1% osmium tetroxide and embedded in Epon epoxy 
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resin. Ultrathin sections were cut, stained with 0.1% lead citrate and 10% uranyl acetate. The ultrastructure of cells 
was observed with a transmission electron microscope (HITACHI H-7650, Tokyo, Japan).

Hoechst 33324 staining. The morphological alterations of nuclei associated with apoptosis were observed 
with a Hoechst 33224 staining kit from Sigma Chemical Co. (St. Louis, MO, USA). Briefly, the cells were cultured 
in 6-well plates and exposed to T-2 toxin (10 ng/ml) or DON (800 ng/ml), alone or in combination for 24 h, the 
medium was removed, and cells were washed twice with PBS. Following incubation of the cells with 10 μg/ml 
Hoechst 33342 dye for 20 min at 37 °C, fragmented and intact nuclei were observed with an inverted fluorescence 
microscope (Nikon, Tokyo, Japan).

Flow cytometry analysis of cell cycle and apoptosis. The cell cycle was determined using a cell cycle 
assay kit (CWBIO, Beijing, China) according to the manufacturer’s instructions. Following treatment with T-2 
toxin (10 ng/ml) or DON (800 ng/ml), alone or in combination, in 6-well plates for 24 h, the cells were collected 
and washed once with cold PBS and fixed in 95% cold ethanol for 2 h. Then the fixed cells were washed once with 
PBS, treated with 400 μl propidium iodide (PI) dye solution, and incubated at 37 °C in the dark for 30 min before 
measurement.

An Annexin V-FITC/PI detection kit (4 A Biotech Co., Ltd, Beijing, China) was used to determine the cell 
apoptosis rates following the treatment of mycotoxins, as described above. Briefly, the cells were harvested, 
washed with cold PBS twice, and resuspended in 100 μl of binding buffer. After addition of 5 μl of Annexin 
V-FITC and incubation for 5 min in the dark, 10 μl of 20 mg/ml PI dye solution was added followed by addition 
of 400 μl of PBS for measurement.

Flow cytometric analysis (FACS) of cell cycle progression and apoptosis rates were performed using a 
Facscalibur Flow Cytometer (Becton Dickinson, Mountain View, CA, USA). Cell cycle and apoptosis data were 
acquired with the CellQuest software (BD Biosciences).

Measurement of ROS. The oxidative stress level was assessed by measurement of ROS with a fluorescent 
dye DCFH-DA assay kit (Beyotime, Jiangsu, China). In brief, cells were cultured in 6-well plates and exposed to 
T-2 toxin (10 ng/ml) or DON (800 ng/ml), alone and in combination for 24 h. DCFH-DA was added and cells 
were incubated at 37 °C for 30 min. Then, the cells were washed three times with serum-free medium and visual-
ized by an inverted fluorescence microscope (Nikon, Tokyo, Japan). The fluorescence intensity was analyzed by 
Image-Pro Plus 6.0 software.

Mitochondrial membrane potential assay. Mitochondrial transmembrane potential (ΔΨm) was meas-
ured using a fluorescent dye JC-1 assay kit (Beyotime, Jiangsu, China). Following treatment with T-2 toxin (10 ng/
ml) or DON (800 ng/ml), alone or in combination in 6-well plates for 24 h, cells were collected and resuspended 
in 0.5 ml of fresh medium. After addition of 0.5 ml JC-1 work solution, the cells were incubated at 37 °C for 
20 min. Then, cells were washed twice and re-suspended in JC-1 buffer solution. The fluorescence was measured 
using a Facscalibur Flow Cytometer (Becton Dickinson, Mountain View, CA, USA). Data were processed with 
the CellQuest software (BD Biosciences).

Experimental animals and groups. All animal protocols were approved by the Animal Ethics Committee 
of Xi’an Jiaotong University and were performed in accordance with the Guide for the Care and Use of Laboratory 
Animals of the National Institutes of Health. Eighteen 3-week-old SD rats weighing 30~60 g were purchased from 
Animal Experimental Centre of Xi’an Jiaotong University and randomly divided into 3 groups. Group A (6 rats) 
were administered with T-2 toxin as a single dose at 2 mg/kg body weight (bw) by oral gavage. Group B (6 rats) 
were administered with DON as a single dose at 10 mg/kg bw by oral gavage. Group C (6 rats) were given double 
distilled water at 0.2 ml/kg bw by oral gavage, and they were used to verify the viability of the analytical method 
by recovery tests. After 8 h of exposure, rats were euthanized, and the liver, kidney, and knee joint were collected. 
The samples were stored at −20 °C prior to their analysis.

Measurement of T-2 toxin and DON by ELISA. The T-2 toxin and DON concentrations in tissues were 
analyzed using a AgraQuant® T-2 toxin ELISA kit (COKAQ6000, Romer Labs Singapore Pte Ltd., Singapore) and 
a RIDASCREEN® DON ELISA kit (R5906, R-Biopharm, Darmstadt, Germany), respectively. The tissue homoge-
nates were prepared, as described by Pestka et al.36. The assays were performed according to the manufacturer’s 
protocols. After the reaction was stopped, the absorbance was measured with an automatic ELISA reader (Infinite 
M200, Tecan, Switzerland) at 450 nm for both T-2 toxin and DON. The concentrations of T-2 toxin and DON 
were quantified according to a standard curve. Data were reported as T-2 toxin or DON equivalents per g of organ 
tissue.

Statistical analyses. Data were expressed as mean ± standard error (SEM) or standard deviation (SD), as 
calculated by SPSS software. Statistical analyses were performed by one-way ANOVA among groups, and the 
Student’s t test was employed to determine the significant differences between two groups. P < 0.05 was consid-
ered to be significant.

Results
Cytotoxicity of mycotoxins T-2 toxin and/or DON. The C28/I2, L-02 and HK-2 cells were evaluated 
for cell viability by MTT assay after exposure to T-2 toxin or DON alone or in combination. As shown in Figs 1, 
2, and 3, cell proliferation, assessed as % of untreated control set at 100%, decreased in a time- and concentra-
tion-dependent manner in all three cell lines.
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The relative cytotoxic effects were evaluated by calculating the concentration of mycotoxin that produced 
50% inhibition of cellular proliferation (IC50). The IC50 values of both mycotoxins decreased with the increased 
exposure time (Table 1). According to the IC50 values, T-2 toxin was less cytotoxic on C28/I2 and HK-2 cells than 
on L-02 cells, and DON was less cytotoxic on C28/I2 cells than on L-02 and HK-2 cells (Table 1). T-2 toxin was 
also much more efficient inhibitor of proliferation than DON (Table 1).

Isobologram analysis. Isobologram analysis was used to determine the type of interaction between T-2 
toxin and DON on C28/I2, L-02 and HK-2 cells. The values for parameters Dm, m, and r, of the combined T-2 
toxin and DON, as well as CI values are presented for C28/I2 (Table 2), L-02 (Table 3) and HK-2 cells (Table 4). 
The IC10, IC25, IC50, IC75 and IC90 were the doses required to inhibit proliferation by 10%, 25%, 50%, 75% and 
90%, respectively (Tables 2–4). The combinations of T-2 toxin and DON showed antagonistic effects on C28/I2 
cells (CI = 1.59–2.60) and L-02 cells (CI = 1.30–4.50) at all times and deses tested (Tables 2 and 3). On HK-2 cells, 
the effects of T-2 toxin/DON combinations were antagonistic (CI = 1.13–3.41) after 24 and 48 h of exposure at 
all doses tested, but synergistic (CI = 0.83) at IC10 and antagonistic (CI = 1.01–2.36) at IC25 to IC90 after 72 h of 
exposure (Table 4).

Cell ultrastructure changes induced by T-2 toxin and/or DON. To visualize morphological changes 
in C28/I2, L-02, and HK-2 cells after exposure to mycotoxins for 24 h, the cellular ultramicroscopic structures 
were view by TEM. Compared to untreated control cells, the electron density in nucleus and cytoplasm of each 
cell line decreased to a different extent (Fig. 4a), and swelling, vacuolar degeneration, and increased density of 
mitochondria were also observed after exposure all three cell lines to T-2 toxin or DON alone or in combination 
(Fig. 4b).

Figure 1. Cytotoxicity of T-2 toxin and/or DON in the cartilage-derived cell line, C28/I2. Cells in 96-well plates 
were exposed to five dilutions of T-2 toxin (from 2.5 to 40 ng/ml) or DON (from 100to 1600 ng/ml), or a fixed 
constant ratio of the two mycotoxins (T-2 + DON, ratio = 1:40). After (a) 24 h, (b) 48 h and (c) 72 h of exposure, 
the cell viability was analyzed by the MTT assay. Each data point represents the mean ± SEM from three 
independent experiments with replicate samples, *p < 0.05 indicates significant differences between the mixture 
and T-2 toxin alone, #p < 0.05 represents significant differences between the mixture and DON alone.
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Cell cycle progression induced by T-2 toxin and/or DON. Flow cytometry analysis of cell cycle pro-
gression after exposure to T-2 toxin or, DON alone or in combination for 24 h is shown in Fig. 5a. For C28/I2 
cells, T-2 toxin significantly induced accumulation of cells in the G0/G1 phase, while DON alone or in combina-
tion with T2-toxin significantly induced accumulation of cells in the G2/M phase when compared to untreated 
control cells (Fig. 5b). For L-02 cells, T-2 toxin significantly induced accumulation of cells in the G0/G1 phase, 
but cell cycle arrest in the presence of DON alone or together with T2-toxin was not significantly from that in 
untreated control cells (Fig. 5c). For HK-2 cells, T-2 toxin and/or DON caused a significant arrest in the G0/G1 
phase, which was accompanied by decreased accumulation of cells in the S and G2/M phase when compared to 
untreated control cells (Fig. 5d).

Apoptosis induced by T-2 toxin and/or DON. Changes in the nuclei of C28/I2, L-02, and HK-2 cells due 
to T-2 toxin and/or DON exposure were studied by Hoechst 33342 staining. All three cell lines treated with T-2 
toxin or DON alone or in combination for 24 h exhibited typical morphologic changes of apoptotic cells, with 
the appearance of irregularly shaped nuclei and fragmented chromatin (Fig. 6a). Flow cytometry analysis showed 
that the proportions of apoptotic cells were significantly increased when cells exposed to mycotoxins for 24 h 
compared to untreated cells (Fig. 6b and c). HK-2 cells were most resistant against apoptosis.

Oxidative stress induced by T-2 toxin and/or DON. Oxidative stress is involved in the apoptosis 
induced by mycotoxins. In the present study, we found that the ROS production in C28/I2, L-02, and HK-2 cells 
was significantly increased by mycotoxin treatment for 24 h compared to untreated controls (Fig. 7a and b).

Mitochondrial membrane potential induced by T-2 toxin and/or DON. ROS accumulation induces 
mitochondrial permeability transition and mitochondrial membrane potential (ΔΨm) loss. The changes in ΔΨm 
induced by T-2 toxin and/or DON were detected with a fluorescent dye JC-1, which gives a red fluorescence when 

Figure 2. Cytotoxicity T-2 toxin and/or DON in the liver-derived cell line, L-02. Cells were exposed to 
mycotoxins for (a) 24 h, (b) 48 h and (c) 72 h and analyzed by the MTT method, as described in Fig. 1. Each 
data point represents the mean ± SEM from three independent experiments with replicate samples, *p < 0.05 
indicates significant differences between the mixture and T-2 toxin alone, #p < 0.05 represents significant 
differences between the mixture and DON alone.
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ΔΨm is high and green fluorescence when ΔΨm is low. C28/I2, L-02 and HK-2 cells treated with mycotoxin for 
24 h all displayed loss of ΔΨm with significantly decreased percentages of cells with high ΔΨm (Fig. 7c and d).

The distribution of T-2 toxin and DON in knee joint, liver and kidney. The recovery rates of T-2 
toxin and DON from tissues were 66%~114% and 65%~115%, respectively. Following 8 h of the acute contamina-
tion of SD rats, the concentrations of T-2 toxin were 14.34 ± 8.69, 10.41 ± 7.74, 11.66 ± 9.07 ng/g of organ tissue 
in knee joint, liver and kidney, respectively. The differences were not significant among the three tissues (Fig. 8a). 
Meanwhile, the concentrations of DON were 66.22 ± 28.64, 92.96 ± 46.14, 616.42 ± 415.31 ng/g organ tissue in 

Figure 3. Cytotoxicity of T-2 toxin and/or DON in the kidney-derived cell line, HK-2. Cells were exposed to 
mycotoxins for (a) 24 h, (b) 48 h and (c) 72 h and analyzed by the MTT method, as described in Fig. 1. Each 
data point represents the mean ± SEM from three independent experiments with replicate samples, *p < 0.05 
indicates significant differences between the mixture and T-2 toxin alone, #p < 0.05 represents significant 
differences between the mixture and DON alone.

Mycotoxin Time (h)

IC50 (ng/ml)

C28/I2 L-02 HK-2

T-2 toxin

24 36.84 ± 7.17a 17.51 ± 8.57a 72.76 ± 51.31a

48 22.10 ± 9.85a 9.91 ± 5.95b 16.82 ± 4.99ab

72 9.17 ± 4.12a 2.42 ± 1.38b 8.68 ± 1.56a

DON

24 1991.06 ± 159.83a 1095.77 ± 113.16b 1764.72 ± 493.28a

48 1168.52 ± 224.36a 740.96 ± 205.71b 412.34 ± 155.52b

72 751.45 ± 179.80a 439.46 ± 137.19b 194.98 ± 79.36b

Table 1. The IC50 values for T-2 toxin and DON on C28/I2, L-02 and HK-2 cells. IC50 is the dose required to 
inhibit cell proliferation by 50%. Results are expressed as mean ± SD (n = 3). Data in the same exposure time 
marked with different letters means significant difference (p < 0.05).
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Mycotoxin Time (h)

Dose–effect parameters CI values at the following effect levels

Dm m r IC10 IC25 IC50 IC75 IC90

T-2 toxin

24 38.52 0.65 0.9484

48 21.29 0.64 0.9529

72 8.73 0.82 0.9283

DON

24 2142.89 0.91 0.9722

48 1202.48 1.03 0.9905

72 761.61 1.24 0.9722

T-2 + DON

24 1847.50 0.78 0.9844 2.60 (Ant) 2.23 (Ant) 2.01 (Ant) 1.92 (Ant) 1.94 (Ant)

48 816.32 0.79 0.9913 2.17 (Ant) 1.78 (Ant) 1.60 (Ant) 1.59 (Ant) 1.75 (Ant)

72 471.09 0.89 0.9849 1.92 (Ant) 1.88 (Ant) 1.92 (Ant) 2.05 (Ant) 2.29 (Ant)

Table 2. Dose–effect relationship parameters and mean combination index (CI) values of T-2 toxin or DON 
alone or in combination on C28/I2 cells. The parameters m, Dm, and r are the slope, antilog of the x-intercept, 
and the linear correlation coefficient of the median-effect plot, which signifies the shape of the dose-effect curve, 
the potency (IC50), and the conformity of the data to the mass-action law, respectively. IC10, IC25, IC50, IC75, 
and IC90 are the doses required to inhibit proliferation by 10%, 25%, 50%, 75% and 90%, respectively. Ant 
indicates antagonistic effect.

Mycotoxin Time (h)

Dose–effect parameters CI values at the following effect levels

Dm m r IC10 IC25 IC50 IC75 IC90

T-2 toxin

24 16.49 0.60 0.9180

48 8.60 0.49 0.9400

72 2.11 0.63 0.9706

DON

24 1194.16 1.22 0.9510

48 728.91 1.03 0.9757

72 426.62 1.12 0.9555

T-2 + DON

24 785.86 0.66 0.9538 1.76 (Ant) 1.67 (Ant) 1.80 (Ant) 2.37 (Ant) 3.81 (Ant)

48 352.80 0.52 0.9600 1.35 (Ant) 1.30 (Ant) 1.47 (Ant) 2.21 (Ant) 4.50 (Ant)

72 123.01 0.63 0.9706 2.41 (Ant) 1.96 (Ant) 1.70 (Ant) 1.70 (Ant) 2.13 (Ant)

Table 3. Dose–effect relationship parameters and mean combination index (CI) values of T-2 toxin or DON 
alone or in combination on L-02 cells. The parameters m, Dm, and r are the slope, antilog of the x-intercept, and 
the linear correlation coefficient of the median-effect plot, which signifies the shape of the dose-effect curve, the 
potency (IC50), and the conformity of the data to the mass-action law, respectively. IC10, IC25, IC50, IC75, and 
IC90 are the doses required to inhibit proliferation by 10%, 25%, 50%, 75% and 90%, respectively. Ant indicates 
antagonistic effect.

Mycotoxin Time (h)

Dose–effect parameters CI values at the following effect levels

Dm m r IC10 IC25 IC50 IC75 IC90

T-2 toxin

24 55.48 0.80 0.9921

48 16.19 0.80 0.9802

72 8.57 1.04 0.9472

DON

24 1754.26 0.61 0.9463

48 381.38 0.56 0.9666

72 183.31 0.74 0.9753

T-2 + DON

24 1623.01 0.63 0.9906 1.37 (Ant) 1.46 (Ant) 1.62 (Ant) 1.88 (Ant) 2.28 (Ant)

48 412.02 0.54 0.9643 1.13 (Ant) 1.33 (Ant) 1.67 (Ant) 2.29 (Ant) 3.41 (Ant)

72 157.68 0.69 0.9451 0.83 (Syn) 1.01 (Ant) 1.29 (Ant) 1.71 (Ant) 2.36 (Ant)

Table 4. Dose–effect relationship parameters and mean combination index (CI) values of T-2 toxin or DON 
alone or in combination on HK-2 cells. The parameters m, Dm, and r are the slope, antilog of the x-intercept, and 
the linear correlation coefficient of the median-effect plot, which signifies the shape of the dose-effect curve, the 
potency (IC50), and the conformity of the data to the mass-action law, respectively. IC10, IC25, IC50, IC75, and 
IC90 are the doses required to inhibit proliferation by 10%, 25%, 50%, 75% and 90%, respectively. Ant and Syn 
indicate antagonistic and synergistic effect, respectively.



www.nature.com/scientificreports/

8Scientific RepoRts | 7: 2231  | DOI:10.1038/s41598-017-02568-5

knee joint, liver and kidney, respectively. Notably, the concentrations in knee joint and liver were significantly 
lower than that in kidney (Fig. 8b).

Discussion
Grain contamination with mycotoxins has been convincingly associated with KBD in the past decades. However, 
contamination with mycotoxins in food is a common problem existing in many countries. Whether KBD is 
simply an environmentally related disease or directly caused by mycotoxins remains controversial because KBD 
is found only in a limited regions, including Northeast to Southwest China, Southeastern Siberia, and North 
Korea13, 14. The present study compared the effects of individual and combined treatments with T-2 toxin and 

Figure 4. Ultrastructural changes induced by T-2 toxin and/or DON. C28/I2, L-02 and HK-2 cells were 
exposed to T-2 toxin (10 ng/ml) or DON (800 ng/ml), alone or in combination for 24 h and visualized by 
transmission electron microscopy (TEM) (a. TEM × 10,000; b. TEM × 30,000). Arrows indicate mitochondria.
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DON using three cell lines derived from kidney, liver, and cartilage and suggested that the damaging effects myco-
toxins on cartilage in KBD are not specific to chondrocytes.

The toxic effects of T-2 toxin and DON on cartilage are well established and previous studies have demon-
strated the possible relationship between these mycotoxins and the risk of KBD37, 38. Cartilage is the main ana-
tomical sites affected by KBD in patients. However, a previous study showed that the effects of fusarochromanone 
and T-2 toxin on articular chondrocytes were not specific39. The results of our study also showed that T-2 toxin or 
DON, alone or in combination, could inhibit cell proliferation of cell lines derived from cartilage (C28/I2), liver 
(L-02), and kidney (HK-2) cells in a time- and dose-dependent manner. This suggests that the damaging effects 
of T-2 toxin and DON are not specific for chondrocytes. In addition, the cytotoxicity of T-2 toxin and DON on 
L-02 and HK-2 cells were greater than on chondrocytes, which suggests that liver and kidney cells may be more 
sensitive than chondrocytes to these mycotoxin. Morphological examination showed decreased electron density 
in the nucleus and cytoplasm and altered mitochondria in the three in all three cell lines after T-2 toxin and/or 
DON exposure.

Mycotoxins coexist naturally in feed and food worldwide. Thus, it is necessary to take into account the toxicity 
of mycotoxin mixtures. The cytotoxicity of T-2 toxin and DON alone or in combination, has been investigated in 
Chinese hamster ovary (CHO-K1) and mammalian kidney epithelial (Vero) cells, and antagonistic effects were 

Figure 5. Cell cycle arrest induced by T-2 toxin and/or DON. (a) C28/I2, L-02, and HK-2 cells were exposed 
to T-2 toxin (10 ng/ml) or DON (800 ng/ml), alone or in combination, for 24 h. and cell cycle phase distribution 
was analyzed by flow cytometry. Cell cycle phase distribution was quantified as the percentage of total cells 
in C28/I2 (b), L-02 (c), and HK-2 (d) cells. Data are represented as the mean ± SD from three independent 
experiments; *P < 0.05 indicates significance versus untreated control values.
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observed10, 11. In the present study, T-2 toxin and DON combinations showed antagonistic effects on C28/I2, L-02 
and HK-2 cells at all times of exposure tested, there was synergism at a lower doses on HK-2 cells. The results indi-
cate that mixtures of T-2 toxin and DON exert similar antagonistic interaction effects on the three cultured cells.

Apoptosis is a form of programmed cell death that occurs in aging or damaged cells40. T-2 toxin and DON 
have been shown to induce apoptosis in many cell types41. Apoptosis has been assumed to be a crucial patho-
logical change in chondrocytes of KBD patients, and recent studies have indeed shown that T-2 toxin induced 
apoptosis in human chondrocytes. This finding suggests a relationship between T-2 toxin and risk of KBD32, 42.  
However, apoptosis is not the primary pathological feature in chondrocytes of KBD patients, and apoptotic 
chondrocytes and similar changes in expression of apoptosis-related genes were observed in the cartilage from 
patients with primary osteoarthritis43. Based on the results of our present study, T-2 toxin and DON individually 
or together can induce apoptosis in cell lines derived from tissues other than cartilage, suggesting that apoptosis 
induced by these mycotoxins is not specific to human chondrocytes.

Cell cycle arrest is one of the most important toxic effects of many mycotoxins. Previous studies showed that 
T-2 toxin induced G0/G1 phase arrest in differentiated murine embryonic stem cells7, and DON induced G2/M 
phase arrest in human umbilical vein endothelial cells and human epithelial cells44, 45. Our study showed that T-2 

Figure 6. Apoptosis induced by T-2 toxin and/or DON. C28/I2, L-02, or HK-2 cells were exposed to T-2 toxin 
(10 ng/ml) or DON (800 ng/ml), alone or in combination for 24 h and analyzed for (a) morphologic changes of 
apoptotic cells by staining with Hoechst 33342, visualized by a fluorescence microscopy (Magnification: 200×) 
and (b) apoptotic rate by flow cytometry; (c) apoptotic rate was quantified as the percentage of apoptotic cells. 
Data are represented as the mean ± SD from three independent experiments; *P < 0.05 indicated significant 
differences versus untreated control values.
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Figure 7. Oxidative stress and mitochondrial membrane potential induced by T-2 toxin and/or DON. C28/I2, 
L-02 and HK-2 cells were exposed to T-2 toxin (10 ng/ml) or DON (800 ng/ml), alone or in combination, for 
24 h. (a) ROS was visualized in cell layers by fluorescence microscopy (Magnification: 200×) and (b) quantified 
as ROS fluorescence intensity. (c) The changes in ΔΨm were analyzed by flow cytometry and (d) quantified 
as the percentage of cells with high ΔΨm. Data are represented as the mean ± SD from three independent 
experiments; *P < 0.05 indicates significant differences versus untreated control values.

Figure 8. The distribution of mycotoxins in the knee joint, liver, and kidney. Sprague-Dawley rats were 
administered a single dose of (a) T-2 toxin at 2 mg/kg bw or (b) DON at 10 mg/kg bw by oral gavage and tissues 
were harvested after 8 h analyzed for mycotoxin concentrations. Data are represented as mean ± SD (n = 6); 
*P < 0.05 indicates significant difference in DON concentration in the kidney versus knee joint and liver 
groups.
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toxin resulted in G0/G1 phase arrest in C28/I2, L-02 and HK-2 cells, while significant G2/M phase arrest induced 
by DON was observed only in C28/I2 cells. However, the limitation of this data is that we analysed cell cycle only 
using a single dose for 24 h.

Several studies have shown that oxidative stress is involved in the apoptosis induced by T-2 toxin and DON41. 
Our study showed that T-2 toxin or DON, either individually or combined, can significantly increase the ROS 
generation in C28/I2, L-02, and HK-2 cells. It is widely recognized that the induction of ROS can modulate the 
mitochondrial membrane potential, triggering the release of cytochrome c into the cytoplasm to initiate the 
apoptotic pathway46, 47. Moreover, many reports have shown that T-2 toxin and DON induce apoptosis through 
ROS-mediated mitochondrial pathway in different cell types7, 48–50. In the present study, we observed swelling, 
vacuolar degeneration and increased density of mitochondria in all three cell types after treatment with T-2 toxin 
and/or DON. In addition, a simultaneous decrease of mitochondrial membrane potential was also observed. 
These results suggest that ROS-mediated mitochondrial pathway was possibly involved in the T-2 toxin and/or 
DON-induced apoptosis of C28/I2, L-02 and HK-2 cells, but it need to be further investigated when blocking of 
ROS accumulation.

T-2 toxin and DON are rapidly absorbed and distributed in animal tissues after exposure. Previous studies 
showed that concentrations of T-2 toxin and DON in plasma and most tissues in mice peaked within 15 min 
following oral administration, and then rapidly declined in a biphasic pattern36, 51. In the present study, we 
analyzed the concentrations of T-2 toxin and DON in the knee joint, liver, and kidney of SD rats at 8 h after 
administration with a single dose of these two mycotoxins based on previous studies36, 52, 53, with consideration 
of the absorption and clearance features of these two toxins in animal bodies after exposure, and the sensitivity 
of the ELISA kits used in this study. The study showed that the concentrations of T-2 toxin in the knee joint, 
liver, and kidney were not significantly different, but the concentrations of DON in knee joint and liver were 
significantly lower than in the kidney. Our results suggest that T-2 toxin and DON do not preferentially accu-
mulate in joint tissues.

In conclusion, using cell lines derived from cartilage, liver, and kidney as models, we found that treatment 
with T-2 toxin and/or DON showed time- and concentration-dependent cytotoxic effects on cell viability. The 
combination of T-2 toxin and DON exhibited a similar antagonistic effect. Exposure to T-2 toxin or DON, alone 
or in combination could also induce cell ultrastructural changes, especially in the cytoplasm and mitochondria, 
increased oxidative stress with ROS generation, and decreased mitochondrial membrane potential, accompanied 
by cell cycle arrest and increased apoptosis in all three culture models of C28/I2, L-02 and HK-2 cell lines. In 
addition, T-2 toxin and DON accumulate in joint tissues to a similar extent as they do in liver and kidney. Our 
findings suggest, therefore, that the damaging effects of T-2 toxin and/or DON on chondrocytes were not specific 
in vitro. Whether T-2 toxin and DON contribute directly to the etiology of KBD and why these mycotoxins selec-
tively damage the cartilage in KBD patients will deserve further study.
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