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Novel Algorithms for Improved 
Sensitivity in Non-Invasive Prenatal 
Testing
L. F. Johansson1,2, E. N. de Boer1, H. A. de Weerd   1,2, F. van Dijk1,2, M. G. Elferink3, G. H. 
Schuring-Blom3, R. F. Suijkerbuijk1, R. J. Sinke1, G. J. te Meerman1, R. H. Sijmons1, M. A. 
Swertz1,2 & B. Sikkema-Raddatz1

Non-invasive prenatal testing (NIPT) of cell-free DNA in maternal plasma, which is a mixture of 
maternal DNA and a low percentage of fetal DNA, can detect fetal aneuploidies using massively parallel 
sequencing. Because of the low percentage of fetal DNA, methods with high sensitivity and precision 
are required. However, sequencing variation lowers sensitivity and hampers detection of trisomy 
samples. Therefore, we have developed three algorithms to improve sensitivity and specificity: the chi-
squared-based variation reduction (χ2VR), the regression-based Z-score (RBZ) and the Match QC score. 
The χ2VR reduces variability in sequence read counts per chromosome between samples, the RBZ 
allows for more precise trisomy prediction, and the Match QC score shows if the control group used is 
representative for a specific sample. We compared the performance of χ2VR to that of existing variation 
reduction algorithms (peak and GC correction) and that of RBZ to trisomy prediction algorithms 
(standard Z-score, normalized chromosome value and median-absolute-deviation-based Z-score). χ2VR 
and the RBZ both reduce variability more than existing methods, and thereby increase the sensitivity of 
the NIPT analysis. We found the optimal combination of algorithms was to use both GC correction and 
χ2VR for pre-processing and to use RBZ as the trisomy prediction method.

The discovery of cell-free fetal DNA (cffDNA) fragments in the maternal bloodstream1 in combination with 
the development of massively parallel sequencing has made it possible to perform non-invasive prenatal testing 
(NIPT). The traditional invasive procedures for prenatal aneuploidy testing, amniocentesis and chorionic villi 
biopsy, are associated with an elevated miscarriage risk2. This disadvantage can be overcome by NIPT, which 
can detect fetal aneuploidies in maternal blood as early as ten weeks into the pregnancy without the need for an 
invasive procedure3. NIPT makes use of cell-free DNA fragments isolated from blood plasma. Some of these frag-
ments, the cffDNA, originate from the placenta and are informative of the fetus: when a chromosomal trisomy is 
present, the number of fragments originating from that chromosome will be higher than what is expected based 
upon statistical analysis using a set of non-trisomy control samples. Because NIPT is based upon analysis of very 
small amounts of DNA, measurements are very sensitive to the introduction of variability between samples and 
experiments. The statistical analysis in NIPT was first improved by the introduction of the Z-score calculation4, 
which compares the individual sample with a set of non-trisomy controls. However, when applying the standard 
Z-score calculation without prior data correction, a high variability was found for chromosomes 13 and 185. This 
is undesirable because it lowers the sensitivity of the test. Thus, if a low fraction of cffDNA is present, there is a 
risk of false-negative results.

An important cause of variability is the guanine and cytosine (GC) content of the DNA fragments analyzed. 
There are various GC-bias correction methods, such as those based on locally weighted scatterplot smoothing 
regression (LOESS)5–8 or on the average coverage of genomic regions having a similar GC-content9. We used the 
latter method in combination with a peak correction that removes regions having significantly more reads than 
average9.
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Variability can also be reduced by adapting the Z-score calculation, for instance by using the normalized chro-
mosome value (NCV)6, 10 or the median absolute deviation (MAD) based Z-score11.

Our aim here was to further decrease variability and thus increase the sensitivity of NIPT. We therefore devel-
oped three new algorithms: the chi-squared-based variation reduction (χ2VR), the regression-based Z-score 
(RBZ), and the Match QC score. The χ2VR reduces the weight of the number of reads in regions that have a 
higher variation than expected by chance, regardless of the origin of the bias. The RBZ uses a model based on 
forward regression for prediction. The Match QC score calculates whether the non-trisomy control set is repre-
sentative for the analyzed sample.

We compared the performance of our algorithms against and in combination with existing algorithms. 
Furthermore, we show that the Match QC score can indicate whether a sample fits within a control set.

Material and Methods
To assess the added value of the χ2VR, RBZ and the Match QC score to the sensitivity and quality control of 
trisomy prediction, the performance of the algorithms was compared to that of existing variation reduction meth-
ods (peak correction and bin or LOESS GC correction) and trisomy prediction methods (standard Z-score, NCV 
and MAD-based Z-score) (Fig. 1). We included all methods used, except peak correction and the MAD-based 
Z-score, in NIPTeR, an R package publicly available under the GNU GPL open source license on CRAN and at 
https://github.com/molgenis/NIPTeR.

We focused on whole genome sequencing analysis, in which the fraction of sequenced reads originating from 
the chromosome of interest in the sample is compared with that of a set of non-trisomy control samples. In all 
analyses, only data from autosomal chromosomes was used.

Each chromosome was partitioned into bins of 50,000 base pairs. This bin size is in line with previous meth-
ods3, 5–7, 9. In each bin, the number of reads aligned to the forward and reverse strands reads were counted. The bin 
counts were used as the basic components for all further processing.

Chi-squared-based variation reduction.  The novel χ2VR reduces the weight of the number of reads in 
bins that have a higher variation than expected by chance and thus reduces the impact of these bins on the chro-
mosomal fractions. No prior knowledge on the origin of the variation is needed. The χ2VR performs a sum of 
squares calculation: per bin, the sum of the chi-squared value is calculated over all the selected control samples. 
For this calculation, the observed read counts o are first normalized by multiplying them with a normalization 
factor. This factor is the mean number of observed total read counts for all autosomal bins i of all control samples 
j divided by the mean number of observed total read counts for all autosomal bins of the sample s. In short, the 
observed normalized read count for a specific bin (oni) can be calculated as follows:
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where ni is the number of bins and nj is the number of control samples. Then, the chi-squared value for each bin 
i is calculated for each control sample j by dividing the squared difference between the expected and observed 
normalized read count by the expected normalized read count for that bin, where the expected normalized read 
count is the average normalized read count for a specific bin in all control samples (µij). The sum chi-squared 
value is calculated by adding up the chi-squared values of all the control samples for the bin:
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The sum chi-squared value for each bin is transformed to a standard normal distribution N(0, 1) by sub-
tracting the degrees of freedom df (number of control samples minus one) from the sum chi-squared value and 
dividing this by the square root of two times the degrees of freedom.
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This results in a Z-score, which shows the number of standard deviations (SD) an observation differs from 
the expectation. Reads in bins with a Z-score higher than 3.5 are divided by the sum chi-squared value divided 
by the degrees of freedom, thereby reducing the variability between the samples. Normalized read counts in bins 
with a Z-score lower than 3.5 are not corrected. The justification for this procedure is that probability plots show 
the expected chi-squared distribution up to a Z-value of about 3.5. Values above 3.5 are much more frequent than 
would be expected, so instead of ignoring those bins we chose to reduce the weights, assuming that there is still 
information present in the over-dispersed bin counts. An overview of the analysis steps and their effects is shown 
in Supplement 1.

Regression-based Z-score.  The RBZ combines linear regression with a Z-score calculation. In the RBZ cal-
culation the fraction of the chromosome of interest is predicted using stepwise regression with forward selection, 
in short forward regression. The reads aligned to the forward and reverse strands are used as separate predictors, 
because several chromosomes show a small, but consistent, over- or underrepresentation of reads aligned to the 
forward or reverse strand (Supplement 2). However, all reads aligned to the chromosome of interest are taken 
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together rather than separated, because the higher number of reads leads to a lower variability in the number of 
reads aligned to the chromosome of interest.

For each chromosome of interest, the four best predictor sets, which each consist of four predictors, are deter-
mined by forward regression, using the adjusted R squared of the model as a selection criterion. The predictors 
can have either a positive or a negative correlation with the chromosome of interest. Within each predictor set 
only one predictor can be selected from each chromosome, limiting the risk of introducing bias.

Using the models created for each control sample s the expected chromosomal fraction (ef) is calculated for 
the chromosome of interest. Subsequently, the observed chromosomal fraction of the total read count of the 
chromosome of interest (of) is divided by this expected fraction. In combination with the standard deviation of 
the prediction, a Z-score is calculated for each sample. Because the mean of the control group after regression is 
one, the coefficient of variation of the control group has the same value as the SD.

In short, the RBZ can be formulated as:

Figure 1.  Flowchart showing the analysis steps. (a) First, sequenced reads are aligned, partitioned into 
50,000 bp bins and counted. These bins are the units for further analysis and data quality can be improved 
using zero or more variation reduction methods. (b) Peak correction removes bins showing an unusually high 
coverage compared with the average coverage of bins on the same chromosome. GC correction corrects for 
coverage differences between bins having a different GC percentage, using one of two methods: ‘bin’ or ‘LOESS’ 
GC-correction. The chi-squared variation reduction corrects bins showing a higher variation in read counts 
between samples than expected by chance. Analysis is performed based on (corrected) read counts. (c) The 
Match QC indicates whether a control-group is informative for the analyzed sample. (d) Various algorithms 
(standard Z-score, MAD-based Z-score, Normalized Chromosome Value and Regression-based Z-score) are 
used for predicting trisomy.
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where s is the sample of interest, j is an individual control sample and n is the total number of control samples.
The RBZ not only uses information from chromosomes having a positive correlation of read counts with the 

chromosome of interest, but also from chromosomes showing a negative correlation. An overview of an example 
RBZ calculation is shown in Supplement 3.

Match QC score.  For the sample of interest, the novel Match QC score algorithm calculates how well the 
overall pattern of chromosomal fractions matches the pattern of the control samples. If the pattern of the sample 
differs too much from that of the controls, the sample does not fit within the control group, making the control set 
non-representative for the sample. Cut-offs are control-group-specific and can be set using the Match QC scores 
of the individual control group samples. The Match QC score uses the data used for trisomy prediction as input. 
Variation reduction, e.g. GC-correction or χ2VR, is applied before calculating the Match QC score.

To obtain the Match QC score, first the chromosomal fractions (of) are calculated for the sample and all con-
trol samples. This is done by dividing the (weighted or corrected) total read count of each chromosome by the 
total read count of all autosomal chromosomes, excluding chromosomes 13, 18 and 21. Subsequently, for each 
control sample, the sum of squared differences of the chromosomal fractions between the sample and the control 
for all autosomal chromosomes, excluding chromosomes 13, 18 and 21, is calculated.

In short, the Match QC score between a sample of interest s and an individual control sample j can be formu-
lated as:
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where k is the chromosome and m is the total number of chromosomes, excluding chromosomes 13, 18 and 21.
Smaller differences indicate a better match. An overall Match QC score is calculated by taking the average of 

the results of all samples. The formula for the overall Match QC score is:
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where n is the number of control samples.

Validation of algorithms.  Samples.  To assess the effects of different variation reduction and trisomy pre-
diction algorithms, we sequenced 128 non-trisomy and 43 trisomy samples using the SOLiD Wildfire platform 
(Life Technologies, Carlsbad, CA, USA) and 142 non-trisomy and 7 trisomy samples using the HiSeq 2500 plat-
form (Illumina, San Diego, CA, USA). A further 34 non-trisomy samples had an alternative plasma-isolation and 
were sequenced on a HiSeq. The trisomy status of all samples was determined using karyotyping or quantitative 
fluorescence PCR following amniocentesis or chorionic villi biopsy.

Samples were selected in accordance with and as part of the trial by Dutch laboratories for evaluation of 
non-invasive prenatal testing (TRIDENT) program, supported by the Dutch Ministry of Health, Welfare and 
Sport (11016-118701-PG). The program was also approved by the Ethics Committee of the University Medical 
Center Groningen. All participants signed an informed consent form.

Plasma isolation, sample preparation and sequencing.  Plasma was obtained from two different sources. The first 
source was fresh EDTA blood, either processed within 3 hours of blood collection or within 24 hours if stabiliz-
ing reagent was present in the tubes (Streck Inc., Omaha, NE, USA). For samples sequenced using the Illumina 
platform, blood was first centrifuged at 1200 rcf for 10 minutes, without using brakes to stop the rotor. The plasma 
was then transferred to another tube and centrifuged at 2400 rcf for 20 minutes. The plasma was transferred to a 
third tube and stored at −80 °C. For samples sequenced on the SOLiD platform, the centrifugal forces used were 
1600 rcf and 16000 rcf, respectively. The second source of plasma was obtained using an alternative isolation 
method using only the first centrifugation step at 1200 rcf, after which the blood plasma was stored at −20 °C.

For samples sequenced on the HiSeq, we isolated cell-free DNA (cfDNA) from 1.5 ml plasma with the 
QIAamp MinElute Virus Spin kit (Qiagen, Valencia, CA, USA) (90 non-trisomy and 6 trisomic samples), the 
Qiagen circulating nucleic acid kit (Qiagen) (21 non-trisomy samples) and the Akonni TruTip kit (Akonni 
Biosystems, Frederick, MD, USA) (31 non-trisomy samples and 1 trisomic sample). After DNA isolation, sample 
preparation was performed with NEBNext Multiplex Oligos for Illumina (New England Biolabs Inc., Ipswich, 
MA, USA). Before the amplification step, we performed a two-step size selection using Agencourt AMPure xp 
beads (Beckman Coulter, Inc., Brea, CA, USA), using a beads/sample ratio of 0.6:1 in the first step and a ratio of 
1.2:1 in the second step. Samples were sequenced with a 50 bp read length on a HiSeq 2500 sequencing platform 
(Illumina).

For samples sequenced on the SOLiD, cfDNA was extracted from 1 ml plasma using the QIAamplDSP DNA 
blood mini kit (Qiagen). Libraries were prepared according to factory protocol and sequenced with a 35 bp read 
length on the SOLiD 5500 Wildfire sequencing platform (Life Technologies).

Read alignment.  For Illumina data, after an initial quality control of the fastq data using the program fastqc 
(v.0.7.0), the data were aligned to the human reference genome build b37 as released by the 1000 Genomes 
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project12 using BWA aln samse (0.5.8_patched) with default settings13. After alignment a Sam output file14 was 
created for each sample. Using Picard tools 1.6.1, a set of tools designed by the Broad Institute (Cambridge, USA) 
(http://broadinstitute.github.io/picard/) for processing and analyzing next generation sequencing data, the Sam 
files were transformed into Bam files. These Bam files were sorted and Bam index files formed. The Bam index 
files link the reads to the genome position. Quality metrics files were then created and the duplicate reads in the 
Bam files marked.

For SOLiD data, raw reads were mapped against the human reference genome (GRCh37/ hg19) using BWA 
v0.5.913. Options used for mapping were −c, −l 25, −k 2, and −n 10. The Bam files were filtered using Sambamba 
v0.4.515 to retain non-duplicate reads, uniquely mapped reads (XT:A:R), reads with no mismatches to the refer-
ence genome (CM:i:0), and reads with no second best hits in the reference genome (X1:i:0).

After filtering and removal of duplicate reads, the total autosomal read count was on average 20.2 million (SD 
5.6 million) for SOLiD data and 12.5 million (SD 2.2 million) for Illumina data.

Variation reduction.  Aligned reads were divided into 50,000 bp bins and variation between samples was reduced 
using all possible combinations of zero or more variation reduction methods: peak correction, GC-correction 
and χ2VR. When more than one method was used, they were performed in the order described above (Fig. 1). 
A maximum of one GC-correction method was used. Since the LOESS GC-correction has been described more 
often5–8 than the weighted bin GC-correction9, we used LOESS GC-correction to evaluate the other variation 
reduction and prediction methods.

Peak correction.  Peak correction was performed as described by Fan and Quake9. This method removes bins 
having a read count that significantly differs from the average using the information of all control samples. A 
bin was considered to deviate from normal if the total read count fell outside 1.96 SD compared with total read 
counts in the bins on the same chromosome for that sample. We interpreted bins to have a consistent pattern of 
region-specific variations if the variation deviated from normal in 95% or more of the control samples.

GC-correction.  An important factor explaining the systematic uncontrolled variation between chromosomes is 
the guanine and cytosine (GC) content of the DNA fragments analyzed. When this GC-bias is corrected during 
preprocessing of the data, it results in a significantly lower variability8. GC-correction was performed based on 
total read counts using two different methods. The first GC-correction method is based on a LOESS curve fitted 
to the reads counts in bins sorted on GC content5–8 and based on R v3.0.2 default settings (span 0.75; degree = 2). 
The second GC-correction method is based on the average coverage of bins having a similar GC-content9. The 
GC% of each bin is determined for both methods. Bins not containing any reads and bins with an unknown base 
composition are ignored. The weights of the correction factors were based on GC-content intervals of 0.1% and 
consisted of the average coverage of the bins within the GC-interval divided by the average coverage of all bins.

Trisomy prediction.  We predicted trisomies using four different prediction methods: standard Z-score predic-
tion5, NCV, using only the most informative chromosomes10, MAD-based Z-score11 and RBZ. Depending on 
the variation reduction methods employed, we used corrected or uncorrected read counts for prediction. For all 
analyses chromosomes 13, 18 and 21 were not used as predictor chromosomes, since the prediction would be 
affected if a trisomy was present in one of the chromosomes used for prediction.

In short, the standard Z-score calculates the fraction of reads originating from the chromosome of interest 
compared with all reads originating from autosomal chromosomes, and then subtracts the mean fraction – which 
is the expected fraction – of the chromosome of interest in a set of control samples. The result is then divided by 
the SD of the fraction in the control set.

The NCV does not use all the autosomal chromosomes to calculate the fraction of the chromosome of interest, 
instead using the most informative chromosomes, which were selected using a training set10. All combinations of 
denominator chromosomes were tested for both the Illumina and SOLiD datasets, and the combinations yielding 
the lowest CVs were selected. The NCV is sometimes compared to using an internal reference6 because, during 
analysis, the selected reference chromosomes behave similarly to the chromosome of interest. This positive cor-
relation results in less sample to sample variation, reduces the need for GC correction, and increases prediction 
precision.

The MAD-based Z-score replaces the SD by 1.4826 * MAD, making the calculation more tolerant of outliers 
in the control set11. The MAD was calculated in three steps. First, the median of the fractions of the chromosome 
of interest in the control set was calculated. Second, the absolute difference of the chromosomal fraction to the 
median was calculated for each control sample. Finally, the MAD was calculated by taking the median of these 
absolute differences.

Comparison of the algorithms.  In comparing the algorithms we used the CV as a benchmark for performance. 
The CV is a standardized measure of dispersion of a probability distribution and is defined as the ratio of the 
SD to the mean. In this manner it enables comparison between normal distributions with a different mean. The 
height of the CV of the control group, together with the percentage cffDNA, determines the discriminative power 
between normal and trisomic samples. When the CV decreases, the sensitivity increases (Supplement 4). We 
determined the added value of each variation reduction or prediction algorithm to lowering the CV to determine 
the best combination of algorithms.

For our analysis, we used all the non-trisomy samples sequenced with the same platform that underwent the 
same plasma isolation procedure as control samples. This resulted in control group sizes of 142 for the Illumina 
and 128 for the SOLiD sequencer. For all algorithms, the control group is only used when it is normally distrib-
uted as determined using the Shapiro Wilk statistical test (p > 0.05).
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Algorithm combinations tested.  We evaluated the effects of both peak correction and χ2VR on the CV of the 
control samples, the effect of the two different GC correction methods in combination with all prediction meth-
ods on the CV, and the effect of the different prediction methods on CV and Z-scores in combination with all pos-
sible variation reduction methods, except peak correction and the bin GC correction. The consistency of the RBZ 
trisomy prediction was determined by estimating three additional trisomy prediction models for each analysis.

Match QC score.  To provide a proof of principle for the Match QC score performance, we divided the 
Illumina control group into a training set of 85 and a test set of 57 samples. The 34 Illumina samples that under-
went a different plasma isolation protocol were used as an example of samples having undergone an alternative 
procedure.

We then calculated the Match QC score for all samples, using uncorrected, χ2VR, LOESS GC, and combined 
LOESS GC and χ2VR-corrected data. Cut-offs for the Match QC score were set on the average Match QC of the 
training set plus three SD. For all samples Z-scores were calculated for chromosomes 13, 18 and 21 to determine 
whether the scores fall within three SD of the average of the control set.

Results
For both the SOLiD and Illumina control groups, the CV of chromosomes 13, 18 and 21 was determined for all 
combinations of variation reduction and trisomy prediction methods and their theoretical effect on sensitivity 
and specificity was calculated (Supplement 5). The estimated percentages of cffDNA in the tested trisomy samples 
are shown in Supplement 6.

Effect of peak correction.  To examine the effect of correcting bins with a coverage that deviates signifi-
cantly from the average, we compared the CV of the peak-corrected data with that on which no peak correction 
was performed. Peak correction reduced the CV in most analysis strategies (Fig. 2). The largest relative effect for 
all chromosomes was observed when a GC-correction was also performed. The effect was largest in chromosome 
21, which was the chromosome showing the lowest GC-bias when no correction was applied, suggesting that the 
influence of coverage peaks on variability only comes to light when GC-bias is limited. In data that was also χ2VR 
corrected, the variation did not further decrease but it did sometimes increase after use of a peak correction. This 
suggests that the peak correction and the χ2VR are partly correcting the same sources of bias.

Effects of the two GC correction methods.  To examine the performance of the weighted bin GC correc-
tion and the LOESS GC-correction, we compared the performance of both methods in combination with all other 
variation reduction and prediction methods for chromosomes 13, 18 and 21 (Fig. 3). For chromosome 13, both 
GC correction methods performed equally well regardless of the other variation reduction and prediction meth-
ods used. For chromosome 18, the weighted bin GC correction had a better performance for the NCV and RBZ 
compared to LOESS GC correction. However, the Z-score and MAD-based Z-score predictions performed better 
using the LOESS GC-correction. For chromosome 21, the weighted bin GC correction performed best, regardless 
of the other methods used. The data sets used made no difference to the performance of either GC-correction 
method.

Effect of chi-squared-based variation reduction.  To examine the performance of the χ2VR, we com-
pared the control group CV using all other variation and prediction methods, with and without the χ2VR (Fig. 4). 
The χ2VR resulted in a lower CV in most analysis strategies for all chromosomes. The effect was most striking in 
chromosome 21, regardless of the other methods used.

Figure 2.  Effect of peak correction on the CV of control samples. The effect is shown for SOLiD (white) and 
Illumina data (black) with no other correction, for data that also had a chi-squared correction, or LOESS 
GC correction, or both LOESS GC and chi-squared correction. For each type of correction the CV of four 
prediction algorithms (standard Z-score, MAD-based Z-score, Normalized Chromosome Value and regression-
based Z-score) are shown for (a) chromosome 13, (b) chromosome 18 and (c) chromosome 21. –not peak 
corrected; *peak corrected.
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Effect of trisomy prediction algorithms.  To examine the effect of the prediction algorithms (standard 
Z-score, MAD-based Z-score, NCV and RBZ), we compared the CV using uncorrected, χ2VR, LOESS GC, and 
combined χ2VR and LOESS GC corrected data. Since the peak correction provides no added value to the χ2VR, 
it was not used for comparison. The RBZ produced the lowest CV for all variation reduction methods except the 
SOLiD combined LOESS GC and χ2VR corrected data, in which the MAD-based Z-score for chromosome 13 
produced an even lower CV (Fig. 5). The variation using the NCV is higher than that using the RBZ, but the CV 
is still much lower than the CVs of the methods that used all autosomal chromosomes. The standard Z-score had 
the highest coefficient of variation in all models.

A lower CV yields a more extreme Z-score, which means that in the case of a trisomy, the Z-score is more 
likely to be higher than the threshold, resulting in a higher sensitivity. The Z-scores of the trisomy samples of the 
four prediction algorithms for the uncorrected, χ2VR, LOESS GC, and combined χ2VR and LOESS GC cor-
rected data are listed in Supplement 7. False-negative and false-positive results were determined for all the above 
combinations of variation reduction algorithms and prediction algorithms, based on a 99.7% confidence interval 
(Z-score threshold of three) (Supplement 8).

Of the 50 trisomic samples, a false-negative result was found in two trisomy 13 and three trisomy 18 samples 
for the Z-score or the MAD-based Z-score when no variation reduction was done. One confirmed trisomy 18 
sample did not give a positive result with any combination of algorithms, possibly due to a low fetal percentage. 
No false-negatives were found for chromosome 21. For all true-positive results, all four RBZ models showed a 
Z-score higher than three.

To better show the effect of the different variation reduction and prediction algorithms on the Z-score, we 
selected three samples, sequenced on the SOLiD platform, each having a trisomy 13, 18 or 21 (Fig. 6). Based on 
the Z-scores and CVs, each sample had an estimated fetal percentage of 5–6%. The NCV and RBZ consistently 
yielded higher Z-scores than the standard Z-score and the MAD-based Z-score. The effect of the GC-correction 

Figure 3.  Comparison of the effect of two GC correction methods (bin GC correction and LOESS GC 
correction) on the CV of the control samples. SOLiD data (white) and Illumina data (black). For each type 
of correction the CVs of four prediction algorithms (standard Z-score, MAD-based Z-score, Normalized 
Chromosome Value and regression-based Z-score) are shown for (a) chromosome 13, (b) chromosome 18 and 
(c) chromosome 21. #Chi-squared corrected; –not corrected; *peak corrected.

Figure 4.  Effect of chi-squared-based variation reduction on the CV of control samples. SOLiD (white) and 
Illumina data (black) with no other correction, or with a peak correction, or LOESS GC correction or both 
LOESS GC and peak correction. For each type of correction the CVs of four prediction algorithms (standard 
Z-score, MAD-based Z-score, Normalized Chromosome Value and regression-based Z-score) are shown for 
(a) chromosome 13, (b) chromosome 18 and (c) chromosome 21. –not chi-squared corrected; #chi-squared 
corrected.
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is reflected in the results of the standard Z-score and the MAD-based Z-score for chromosome 13 and the effect 
of the χ2VR shows in the chromosome 21 results.

Of the 270 non-trisomy samples, four samples showed a false-positive result for more than one predic-
tion algorithm. For one sample, all four prediction methods showed a result higher than three. The more sen-
sitive NCV and RBZ prediction methods resulted in more false-positive results than the standard Z-score or 
MAD-based Z-score because more parameters are estimated, which leads to some overfitting and therefore 
underestimation of the prediction accuracy for new samples. This effect will be reduced when larger control 
groups are used. Three other false-positive results were only seen in one of the variation reduction methods, one 
for NCV and three for RBZ. In all these cases, Z-scores were just above three. In all cases adding or removing a 
variation reduction step, resulted in a negative call. For samples having a false-positive RBZ result, at least one of 
the additional RBZ predictions resulted in a negative prediction, except for the sample having a Z-score higher 
than three in all prediction methods.

Match QC score.  To examine whether the Match QC score could accurately predict whether a sample fits 
within a control group, we calculated the Match QC scores and all the Z-scores for a training set, a test set of 
samples that had been prepared in the same manner as the training set, and a third set of samples originating 
from single centrifuged plasma. For all three sets, we used uncorrected, χ2VR, LOESS GC and combined χ2VR- 
and LOESS GC-corrected data (Fig. 7). Test set samples had Match QC scores in the same range as the training 
set samples and Z-scores that fell within three SD of the mean for all types of corrected data. Single centrifuged 
samples, however, showed Match QC scores in the same range as the control group samples for uncorrected and 
χ2VR corrected data, but above the three-SD threshold for LOESS GC corrected data and combined LOESS GC- 
and χ2VR-corrected data.

Z-score distributions for the training set samples and the test set samples were indistinguishable for all cor-
rection methods, but Z-scores based on uncorrected or χ2VR corrected data were not normally distributed for 

Figure 5.  Effect of the different prediction algorithms on the CV of control samples. SOLiD data (white) and 
Illumina data (black). Results from the four different prediction algorithms (standard Z-score, MAD-based 
Z-score, Normalized Chromosome Value and regression-based Z-score) are shown for (a) chromosome 13, 
(b) chromosome 18 and (c) chromosome 21. –Variation was not reduced, #chi-squared corrected, “ LOESS GC 
corrected, #” both LOESS GC and chi-squared corrected before prediction.

Figure 6.  Z-scores for three trisomies using different combinations of variation reduction and prediction 
algorithms. All three examples are based on SOLiD data. Results from the four different prediction algorithms 
(standard Z-score, MAD-based Z-score, Normalized Chromosome Value, and regression-based Z-score), in 
combination with uncorrected, chi-squared corrected, LOESS GC corrected, and both LOESS GC and chi-
squared corrected are shown for (a) chromosome 13, (b) chromosome 18 and (c) chromosome 21.
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chromosomes 13 and 18. For the single centrifuged samples, Z-scores did not deviate from the normal distribu-
tion for the uncorrected data of chromosome 21. Match QC scores for all the samples analyzed, thresholds and 
Z-score distributions for chromosomes 13, 18 and 21 are shown in Supplement 9.

Discussion
We show that both the χ2VR and the RBZ reduced the variability of the NIPT result and thus increased its sen-
sitivity in both Illumina and SOLiD data. Furthermore, we show that a Match QC exceeding a three-SD thresh-
old, determined using control samples, identified those samples for which the controls were not representative. 
Although the algorithms described in this study are designed to improve analysis of NIPT data, they may also 
be of use in similar types of analyses that need high sensitivity such as copy number variation detection in liquid 
biopsy data16, 17.

The lower variability between samples decreases the percentage of fetal DNA needed for NIPT. A low per-
centage of fetal DNA is an important contributor to false negative or inconclusive results18. Moreover, the average 
percentage of fetal DNA is lower in trisomy 13 and trisomy 18 pregnancies than in non-trisomy pregnancies19, 

20. A low variability is therefore even more important for these pregnancies for the test to have a high sensitivity. 
Moreover, our novel algorithms produce a lower variability for a given number of reads, resulting in the need 
for fewer reads and lowering sequencing costs. Alternatively, only DNA-fragments originating from regions of 
interest could be selected21–23. However, such a selection requires additional amplification during sample prepa-
ration, which could also create additional variation due to increased over-dispersion24, 25. We therefore chose to 
reduce variation by correcting for bias in read counts before analysis, leading to a more comparable distribution 
of reads over the chromosomes between samples. Other studies have shown that variability can be introduced by 

Figure 7.  Match QC scores and Z-scores for matching and non-matching samples. (a) Match QC scores per 
sample for uncorrected, chi-squared corrected, LOESS GC corrected and both LOESS GC and chi-squared 
corrected data for the control group, matching samples, and non-matching samples. Chromosome 21 Z-scores 
for (b) uncorrected data, (c) chi-squared corrected data, (d) LOESS GC corrected data and (e) both LOESS 
GC and chi-squared corrected data. + and black line, control group samples; ^ and green line, samples that 
underwent the same sample preparation procedure; ~ and red line, single centrifugation plasma samples.
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bias present in the data, such as GC-bias3, 5–9, or peaks of extreme coverage, probably caused by repeats9. However, 
due to a higher number of available reads, better results were obtained using a non-repeat-masked reference 
genome5, 7. For this reason, we did not mask any regions based on mappability tracks or blacklisted regions in our 
comparison.

In our comparison the lowest CVs for chromosomes 13, 18 and 21 were produced using the combination of 
the weighted-bin-based GC-correction method and the χ2VR with the RBZ. However, each variation reduction 
algorithm we tested reduced the variability when used alone. The effect of the peak variation reduction was 
small when combined with the χ2VR. This shows that the χ2VR corrects bias caused by regions of extreme 
coverage. Moreover, since the χ2VR focuses on variation present in each specific bin, and not on chromosomal 
averages, it can correct for variation that is too subtle for peak correction. And since no assumptions are made 
about the origin of the bias, no prior knowledge is needed for correction. However, when using the χ2VR on 
the X-chromosome, variability should be determined using only data from pregnancies of a female fetus to pre-
vent variability in the fetal percentage adding to the total variability on that chromosome. After application of 
GC-correction, χ2VR reduced variation even further, suggesting that χ2VR corrects for sources of bias other than 
that from GC. Since up to 50% of the human genome is repetitive26, we suggest that part of the extra corrected bias 
is due to repeat structures. It has also been suggested that biological factors play a role in bias in NIPT27, 28, so part 
of the corrected bias might have a biological origin.

Where peak correction and χ2VR only remove reads to reduce variation, GC-correction removes reads 
in bins having a GC-percentage containing more reads than average, but it adds virtual reads in bins with a 
GC-percentage containing fewer reads than average. Although, after GC correction, more reads seem to be 
present for several chromosomes, dispersion is still based on the original number of reads aligned to those 
chromosomes.

We demonstrated that the prediction method used can also reduce variability and increase sensitivity. The 
RBZ resulted in the lowest variability and decreased the need for GC-correction because this method takes this 
kind of systematic bias into account. However, there may be some pitfalls. Similar to the NCV, prediction is based 
on a limited number of predictor chromosomes. The effect of an aberration in one of the predictor chromosomes 
on the prediction is larger for the RBZ and NCV than for the standard Z-score, which uses all autosomes for 
prediction. To limit the effect of possible aberrations, we recommend comparing four independent predictor sets 
for the RBZ. Conflicting results of different models are a warning of possible false-positive results. In our data, all 
49 trisomies detected were predicted independently by the four RBZ prediction sets. Only one false-positive call 
was made by all four sets. This call was also made by all the other prediction methods, suggesting that there may 
indeed be a higher fraction of reads of the called chromosome present in the data. Since the NCV can be based on 
only one denominator chromosome, we suggest multiple predictions using different denominators should also 
be used for NCV.

Our results show that a Match QC score below the three-SD threshold does not guarantee that the control 
group is representative for a sample, but a score exceeding the threshold does indicate that the analysis is not 
accurate. The main assumption in NIPT analysis is that the control set is representative of the sample analyzed. 
A non-representative control set leads to an inaccurate prediction and possibly to false-positive or false-negative 
results. It is therefore important that all samples undergo the same preparation, sequencing procedure and bioin-
formatics analysis. However, even when standard procedures are used, bias can vary between sequencing runs29. 
Prediction methods with a higher sensitivity are more vulnerable to the effects of unaccounted biological vari-
ation because deviations in the expected chromosomal fractions will more rapidly lead to false-positive results. 
Sample quality metrics are therefore essential for reliable analysis.

Our study shows that both the χ2VR and the RBZ increase the sensitivity of NIPT compared to previously 
published methods. Furthermore, we show that the Match QC score identifies samples for which the non-trisomy 
control set was not informative. Moreover, these algorithms may have a broader applicability than NIPT analysis, 
for instance in analysis of copy number variations in liquid biopsy data. We recommend our novel algorithms, as 
included in the NIPTeR package, as a useful addition to the NIPT analysis toolbox, resulting in a higher sensitiv-
ity, in theory making it possible to detect trisomies in blood with a fetal DNA amount as low as 2%.
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