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Mutational screening of SLC39A5, 
LEPREL1 and LRPAP1 in a cohort of 
187 high myopia patients
Chun-Yun Feng, Xiao-Qiong Huang, Xue-Wen Cheng, Rong-Han Wu, Fan Lu & Zi-Bing Jin  

High myopia (HM) is a leading cause of mid-way blindness with a high heritability in East Asia. Although 
only a few disease genes have been reported, a small proportion of patients could be identified 
with genetic predispositions. In order to expand the mutation spectrum of the causative genes in 
Chinese adult population, we investigated three genes, SLC39A5, LEPREL1 and LRPAP1, in a cohort 
of 187 independent Chinese patients with high myopia. Sanger sequencing was used to find possible 
pathogenic mutations, which were further screened in normal controls. After a pipeline of database and 
predictive assessments filtering, we, thereby, identified totally seven heterozygous mutations in the 
three genes. Among them, three novel missense mutations, c.860C > T, p.Pro287Leu and c.956G > C, 
p.Arg319Thr in SLC39A5, c.1982A > G, p.Lys661Arg in LEPREL1, were identified as potentially 
causative mutations. Additionally, the two heterozygous mutations (c.1582G > A, p.Ala528Thr; 
c.1982A > G, p.Lys661Arg) in one patient in LEPREL1 gene were reported in this study. Our findings 
will not only augment the mutation spectrum of these three genes, but also provide insights of the 
contribution of these genes to adult high myopia in Chinese. However, further studies are still needed to 
address the pathogenicity of each of the mutations reported in this study.

High myopia is one of the most severe eye disorders with a strong genetic component1, 2. This disease is resulted 
primarily from excessive axial elongation of the eyeball (longer than 26 mm)3, concomitant with obvious refrac-
tive error (greater than 6 diopters4). It can also predispose the affected individuals to several ocular comorbidities, 
such as retinal detachment5, 6, macular degeneration7, 8 and glaucoma9. On the other hand, myopia prevalence 
rates vary and have been increasing worldwide. Multiple studies have shown that its prevalence ranges between 
30% to 50% in American, European and Australian populations10–12, and is as high as about 71–96% in Asian 
countries, particularly in China, Singapore and Japan13–15.

High myopia has been widely accepted as a complex disorder. Both genetic and environmental factors have 
been shown to involve in the etiology of myopia16, 17. Family and twin studies have indicated that genetic factor, in 
particular, plays a significant role in the development of high myopia18, 19.

Despite intensive study on myopia, its exact molecular mechanism remains unclear, and it is mostly regarded 
as a polygenic disorder. Genome-wide association studies (GWAS) have mapped several genomic loci associ-
ated with myopia to chromosomes 11q24.120, 15q1421, 15q2522, 5p1523, 4q2524, 13q12.1225in large cohorts. On 
the other hand, at least 39 susceptibility loci have been identified by linkage analysis for nonsyndromic mono-
genic myopia26. In addition, mutations in six genes associated with high myopia have been detected by next 
generation sequencing. Of the six, three genes, including ZNF644 (c.2156A > G, p. Ser672Gly; c.725C > T, 
p.Thr242Met; c.821A > T, p.Gln274Trp; c.2014A > G, p.Ser672Gly)27, 28; SCO2 (c.157C> T; p. Gln53*)29 and 
SLC39A5 (c.141C > G; p.Tyr47*, c.T911C; p.Met304Thr)30, have been reported for autosomal dominant high 
myopia, and three other genes have been reported for autosomal recessive high myopia, including LEPREL1 
(c.13C > T, p.Gln5X; c.1523C > T, p.Gly508Val)31, 32; LRPAP1 (c.605delA, p.Asn202Thrfs*8; c.863_864del, 
p.Ile288Argfs*118)33 and CTSH (c.485_488del, p. Leu162Profs*66)33. Recently, Jiang et al.34 has identified five 
novel mutations in several disease-causing genes in 298 unrelated Chinese patients with high myopia, includ-
ing three heterozygous mutations (p.Lys369Met, p.Ala55OThr and p.Asp851His) inZNF644, a frame shift muta-
tion (p.Gln67Sfs*8) in LRPAP1 and a heterozygous mutation (p.Gly413Ala) in SLC39A5. Up to now, limited 
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mutations in the six causative genes have been confirmed, which contributed to very few high myopia cases being 
genetically deciphered. In summary of these previous studies, we proposed that those genes mutation exert their 
characteristics in different regions. SLC39A5, LEPREL1 and LRPAP1 were more likely to associate with Chinese 
high myopia patients. Therefore, we screened mutations in the three HM associated genes, SLC39A5, LEPREL1 
and LRPAP1, and discovered additional mutations in a group of 187 unrelated Chinese patients with high myopia.

Materials and Methods
Patient recruitment. A total of 187 patients were enrolled in this study. All patients were clinically diag-
nosed with high myopia greater than −6.0 D. We selected totally 200 subjects as healthy controls, who met the 

Primer name Forward Reverse

Chr3:189972991 TCAATGCAAGCTAGTGCCTG TTTGCCTTGTTTCATTTCCC

Chr3:189681799 AGCCAGAGAAGCAGGAGTTG TTCTTTTCCTCAGACGAAGC

Chr3:190120600 GAGGGAAGGTGGGAGAGG ACTGAACAGAGATGACGGGG

Chr12:56231524 GATGTTTCGGGGAGAATAGGAG ATTTGTAACTCCAGGGATCTCG

Chr12:56629399 AGTAGAGCATATGAGCGAAGGC CAGTTCTTGACTGGGACTCTGG

Chr12:56630190 GTGGAACCAGGTGTTCATCTTC CAGCTGATAACTAGGAGCCCTG

Chr4:3514801 GTCCTTGCAGTTCACCCG CGGCCTCATCTTTCCTGC

Table 1. PCR Primers for Sequences Harboring the Mutations in Present Study.

Figure 1. Location of the identifiedmutations in SLC39A5, LEPREL1 and LRPAP1. Exons of human SLC39A5, 
LEPREL1 and LRPAP1 (upper), and positions of mutated residues corresponding to the topological model 
of the polypeptides (under). A total of seven missense mutations colored red were identified in this study. 
All mutations were located in the functional domains, except for the heterozygous mutation c.250C > T 
(p.Arg84Trp) in SLC39A5 (A,B,C). Pfam ZIP domain is responsible for metal ion transmembrane transporter 
activity (A). Proteins containing TPRs are involved in many biological processes, such as cell cycle regulation, 
mitochondrial and peroxisomal protein transport, neurogenesis and protein folding, RPT is an internal repeat, 
P4Hc domain participatesin inoxidoreductase activity (B). Alpha-2-MRAP isa Pfam domain that binds to the 
alpha-2-macroglobulin receptor (C).
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following criteria: aged more than 60, with no systemic diseases and no high myopia and other known ocular 
diseases. Written informed consents were obtained from all the participants or their statutory guardians prior to 
the collection of their genomic DNA. The study was conducted in adherence to the tenets of the Declaration of 
Helsinki, and was approved by the Ethics Committee of the Eye Hospital of Wenzhou Medical University.

Mutational screening. Sanger sequencing was used as a direct and rigorous method to identify poten-
tial mutations in all three genes, the reported novel variants were further screened in matched controls. In detail, 
genomic DNA was extracted from leukocytes in the subjects’ peripheral venous blood using the Blood DNA Mini 
Kit (Simgen, Hangzhou, China) according to the manufacturer’s recommendations, and finally dissolved in TE 
buffer. PCR primer pairs were designed using the online program ExonPrimer35 (http://genome.ucsc.edu/cgi-bin/
hgBlat) to amplify all coding regions and intron boundary of SLC39A5, LEPREL1 and LRPAP1. The seven primer 
pairs amplified sequences harboring the mutation were provided in Table 1. All amplified products were separated 
with polyacrylamide gel electrophoresis. Sequencing was performed with ABI 3730XL automated DNA sequencer 
(Thermo Fisher Scientific, Carlsbad, CA, USA). The sequences were compared against the known reference 
sequences obtained from the UCSC genome browser hg1936 (http://genome.ucsc.edu/cgi-bin/hgGateway) in order 
to retrieve and identify SNPs, insertions or deletions. All mutations (Table 2) were screened in 200 healthy controls.

Bioinformatics analysis. We evaluated all identified mutations using the following software and online 
database37. Polymorphism Phenotyping v238 (PolyPhen-2, http://genetics.bwh.harvard.edu/pph2), Sorting 
Intolerant from Tolerant39 (SIFT, http://sift.jcvi.org) and Mutation Taster40 (http://www.mutationtaster.org/) 
were employed to assess protein structure/function and evolutionary conservation. PROVEAN41 (http://
provean.jcvi.org/index.php) was used to align and measure the similarity between mutation sequence and pro-
tein sequence homologs. Mutations detected in potential splice-sites were analyzed by Human Splice Finder42 
(HSF, www.umd.be/HSF). SNPs minor allele frequency (MAF) was evaluated by 1000 Human Genome Project43 
(ftp://1000genomes.ebi.ac.uk/vol1/ftp) and Exome Aggregation Consortium44 (ExAC, http://exac.broadinstitute.
org/). Mutation assessor45(http://mutationassessor.org/) was used to predict the effect of evolutionary conser-
vation.With Clustal Omega46 (http://www.ebi.ac.uk/Tools/msa/clustalo/), we also acquired multiple-sequence 
alignment of SLC39A5, LEPREL1 and LRPAP1 in different species, including Homo sapiens, Pan Troglodytes, 
Macacamulatta, Bostaurus, Feliscatus, Mus musculus, Gallus gallss and Danio rerio. SMART47 (http://smart.
embl-heidelberg.de/) was used to simulate the topological model of the relative genes polypeptide. Furthermore, 
associated crystal structures of mutant and wild-type proteins were predicted by Phyre248 (http://www.sbg.bio.
ic.ac.uk/phyre2/html/page.cgi? id=index) and then visualized by Pymol Molecular Graphics System (Pymol)49.

Mutation criteria. Mutations identified in the three genes from all subjects with high myopia were filtered 
by the following criteria34, 50:

 (1) Variants in noncoding region that did not affect splicing sites based on prediction of the Berkeley Drosoph-
ila Genome Project (http://www.fruitfly.org/) were excluded;

 (2) Synonymous mutations in genes that did not alter splicing sites were subtracted;
 (3) Mutations with minor allele frequency (MAF) less than or equal to 0.01 in the Exome Aggregation Consor-

tium (ExAC) were extracted;
 (4) Nonsynonymous single nucleotide mutations predicted to be benign by three commonly used silico tools 

(Mutation Taster, SIFT and Polyphen-2) were excluded;
 (5) Mutations were verified using dbSNP146 and those without rs number, were regarded as novel rare 

mutations.

Chr.position Gene Exon Mutation Status Patient

Mutation

SIFT PolyPhen2 PROVEAN

Mutation

Note ExACTaster Assessor

Chr12:56231524 SLC39A5 4 c.250C > T 
(p.Arg84Trp) Het HM_h16 DC (0.935) D (0.004) Pr.D (0.995) N (−1.97) L (1.61) rs199681035 0.0001771

Chr12:56629399 SLC39A5 8 c.860C > T 
(p.Pro287Leu) Het HM_95 DC (0.995) D (0.047) B (0.231) N (−0.57) N (0.555) Novel 0.0001895

Chr12:56630190 SLC39A5 9 c.956G > C 
(p.Arg319Thr) Het HM_71 P (0.283) D (0.022) B (0.174) N (−0.84) L (1.09) Novel —

Chr3:190120600 LEPREL1 1 c.132C > A 
(p.Phe44Leu) Het HM_101 DC (0.996) T (0.191) B (0.002) N (−1.58) L (1.59) rs367659257 0.0001129

Chr3:189972991 LEPREL1 11 c.1582G > A 
(p.Ala528Thr) Het HM_68 DC (0.999) D (0.014) Pr.D (0.977) D (−3.55) M (2.83) rs199877373 0.000132

Chr3:189681799 LEPREL1 14 c.1982A > G 
(p.Lys661Arg) Het HM_68 DC (1) T (0.594) B (0.000) N (1.06) N (−0.22) Novel 3.30E-05

Chr4:3514801 LRPAP1 7 c.962 G > A 
(p.Arg321His) Het HM_h32 P (0.016) T (0.17) Pos.D (0.884) N (−0.60) M (2.2) rs140947105 0.00015

Table 2. Summery of Mutations in LEPREL1, SLC39A5 and LRPAP1. Notes: Het, heterozygous; Mutation 
taster (DC, disease-causing; P, polymorphism); SIFT (D, damaging; T, tolerated); PolyPhen2 (Pr.D, probably 
damaging; pos.D, possible damaging; B, benign); PROVEAN (D, deleterious; N, neutral); MutationAssessor (M, 
medium; L, low; N, neutral).

http://genome.ucsc.edu/cgi-bin/hgBlat
http://genome.ucsc.edu/cgi-bin/hgBlat
http://genome.ucsc.edu/cgi-bin/hgGateway
http://genetics.bwh.harvard.edu/pph2
http://sift.jcvi.org
http://www.mutationtaster.org/
http://provean.jcvi.org/index.php
http://provean.jcvi.org/index.php
http://www.umd.be/HSF
http://exac.broadinstitute.org/
http://exac.broadinstitute.org/
http://mutationassessor.org/
http://conservation.With
http://conservation.With
http://www.ebi.ac.uk/Tools/msa/clustalo/
http://smart.embl-heidelberg.de/
http://smart.embl-heidelberg.de/
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi
http://www.fruitfly.org/
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Results
We screened for mutations in SLC39A5, LEPREL1 and LRPAP1 in a cohort of 187 high myopia patients with 
Sanger sequencing. A total of seven heterozygous mutations from six subjects were confirmed (Fig. 1) by apply-
ing the filtering criteria described in the Methods section. All mutations were located in the functional domains, 
except for the c.250C > T, p.Arg84Trp in SLC39A5, according to the prediction of SMART (Fig. 1A–C). None of 
these mutant alleles were detected in the control population.

SLC39A5Mutations. Three heterozygous mutations were detected in SLC39A5 (c.860C > T, p.Pro287Leu; 
c.956G > C, p.Arg319Thr; c.250C > T, p.Arg84Trp) from three sporadic cases (Fig. 2A–C), among which p.Pro-
287Leu and p.Arg319Thr were novel (Table 2).The substitution p.Pro287Leu was predicted to be pathogenic by 
both SIFT and Mutation Taster at a low allele frequency. Besides that, mutated amino acid is evolutionarily highly 
conserved among all the tested species apart from danio after multiple orthologous sequence alignment (Fig. 3B), 
illustrating that it is important for protein function. Consequently, structural modeling demonstrated the absence 
of bonds between the mutated residue 287 leucine and residue 284 asparticacid, 290 serine, 291 valine (Fig. 4B). 
The mutation p.Arg319Thr was predicted to be damaging by SIFT (Table 2). In addition, 3D modeling demon-
strated a newly formed bond between residue 319 and residues 320, 322 (Fig. 4C). The mutation p.Arg84Trp 
caused a substitution of arginine to tryptophan at position 84. This was predicted as damaging by 3 different in 
silico tools (PolyPhen-2, SIFT and Mutation Taster). This mutation was very rare in the ExAC database (Table 2). 
Furthermore, R84Wwas shown to affect highly evolutionarily conserved amino acid residues (Fig. 3A). In addi-
tion, 3D structural modeling revealed the absence of a bond between the mutated tryptophan at residue 84 and 
glycine at residue 83 (Fig. 4A).

Figure 2. Potentially pathogenic mutations detected in this study. Pedigree plots of mutations. The black arrow 
represents the patient (left). Sequence profiles of identified mutations and wild type (right) were also shown 
(A–E).
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LEPREL1 Mutations. In LEPREL1, three heterozygous mutations were detected in two isolated individuals. 
Among them, two heterozygous mutations were found in one patient (Fig. 2D,E). The c.1982A > G, p.Lys661Arg 
and c.1582G > A, p.Ala528Thr located in exon14 and exon11, respectively. The heterozygous p.Lys661Arg was 
a novel conservative mutation (Table 2) (Fig. 3E) that was predicted to be disease-causing by Mutation Taster. 
The p.Ala528Thr has been annotated as an exceedingly rare SNP (rs199877373), and it was predicted as a path-
ogenic mutation by all 5 pathogenicity prediction tools used in this study (PolyPhen-2, SIFT, Mutation Taster, 
PROVEAN and Mutation Assessor). Furthermore, the A528T mutation occurred at a remarkably conserved 
region in various species (Fig. 3D, Table 2), and was projected to produce a substituted bond between the mutated 
residues 528 and 529, in the 3D protein model (Fig. 4D). The third mutation c.132C > A, p.Phe44Leu was highly 
conserved among the different species (Figure S1A–C). Nevertheless, it was excluded based on the inheritance 
pattern of the gene. As expected, the mutation p.Phe44Leu was estimated as benign by both Polyphen-2 and SIFT 
(Table 2), and no noticeable fundamental changes were observed in protein modeling (Figure S1D, E).

LRPAP1 Variant. A heterozygous variant c.962G > A, p.Arg321His was detected in a HM patient 
(Figure S2A,B). It was predicted to be a benign polymorphism by both SIFT and Mutation Taster (Table 2). 
Likewise, R321H was excluded according to the inheritance pattern of the gene and its resulting change in resi-
dues showed no effect on crystal structure modeling (Figure S2C–E).

Discussion
To date, tremendous efforts have been made to better understand the genetics of high myopia. However, only a 
few studies that explored mutations in the six causative genes (SLC39A530, 34, LEPREL131, 32, LRPAP133, 34, CTSH33, 
SCO229, 34 and ZNF64427, 34) have been reported. In this study, we attempted to replicate previous results and 
broaden the mutation spectrum of HM associated genes in a Chinese high myopia cohort. Based on previous 
reports, we proposed that SLC39A5, LEPREL1 and LRPAP1were more likely to associate with Chinese high myo-
pia patients. We regarded them as preferential genes, and set out to screen mutations in these three genes using 
Sanger sequence. We identified a total of seven mutations that were predicted to influence the functional residues. 
These included three heterozygous mutations in SLC39A5 (p.Pro287Leu; p.Arg319Thr and p.Arg84Trp) from 
three sporadic cases, three heterozygous mutations (p.Lys661Arg; p.Ala528Thr and p.Phe44Leu) in LEPREL1 in 
two isolated individuals, a heterozygous mutation p.Arg321His in LRPAP1. Among these seven mutations, three 
mutations, p.Pro287Leu and p.Arg319Thr in SLC39A5 and p.Lys661Arg in LEPREL1, have not been previously 

Figure 3. Conservation analysis revealed evolutionary conservation of the mutations. Clustal Omega results 
showing multiple alignments of the amino acids from different species. The arrow indicates the location of the 
mutations (A–E).

http://S1A�C
http://S1D, E
http://S2A,B
http://S2
http://C�E
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reported. Our results were consistent with those reported in previous study in that missense mutations accounted 
for the largest proportion of the four mutation types in reported monogenic high myopia patients50.

SLC39A5 encodes the solute carrier family 39, member 5, which is a key member of the ZIP transporters for 
metal ions, especially in mammalian zinc omeostasis51. SLC39A5 has also been shown to express in all devel-
opmental stages of mouse ocular tissues, and is especially abundant in the sclera and in several layers of the 
retina. In addition, SLC39A5 might be involved in high myopia by regulating BMP/TGF-β, and the disruption 
of this pathway may be the underlying mechanisms of high myopia30. Guo et al. first identified that mutations 
in SLC39A5 were associated with autosomal dominant high myopia in two Chinese family, which included a 
nonsense mutation (c.141C > G, p.Tyr47*) and a missense mutation (c.911T > C, p.Met304Thr)30. Jiang et al. 
subsequently reported another heterozygous missense mutation c.1238G > C, p.Gly413Ala in a sporadic case34. 
In this study, three missense mutations p.Arg84Trp; p.Pro287Leu and p.Arg319Thr were detected in three isolated 
patients, and two of them have never been reported. Through secondary structure modeling, we found a novel 
mutation p.Pro287Leu, which was locatzed in the Pfam ZIP domain of the SLC39A5 (Fig. 1A). We modeled the 
3D structure of SLC39A5 protein by applying Phyre2 program52. The structural modeling showed an absence 
of bond between the mutated residue 287 leucine and the residues 284 asparticacid, 290 serine and 291 valine 
(Fig. 4B). Since residue 290 was predicted to be a phosphorylation site, the p.Pro287Leu mutation may affect 
phosphorylation events. Further functional studies are needed to elucidate the molecular mechanism of high 
myopia as related to SLC39A5, however, our results may provided additional genetic evidence for potential con-
tribution of SLC39A5in high myopia.

LEPREL1encodes a member of the prolyl 3-hydroxylase subfamily of 2-oxo-glutarate-dependent dioxygenase 
(P3H2). Expression of LEPREL1 has been detected in various collagen fibril-containing tissues, including the 
eye53. As reported, P3h2n/nmouse suffered from a significant defect in collagen prolyl 3-hydroxylation compared 
with their wild type littermates, which led to result in structural abnormalities in multiple eye tissues. These 
findings suggested that altered collagen hydroxylation caused by loss of LEPREL1 can potentially contribute 
to the myopia54.Mordechai et al.31 previously identified a homozygous mutation c.1523G > T, p.Gly508Val in 

Figure 4. Predicted three-dimensional structure of proteins. Predicted crystal structures of wild type (left) and 
mutant (right) proteins. Yellow represents residue of wild type (left) and mutant (right), while green indicates 
residues that interact with wild-type (left) and mutant residue (right) (A–E).
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LEPREL1from affected individuals in a Bedouin kindred. Co-segregation of one homozygous nonsense mutation 
in LEPREL1 (c.13C > T, p.Gln5*) with autosomal-recessive high myopia was reported in Chinese family by Guo 
et al.32. In this study, we identified two heterozygous mutations p.Ala528Thr and p.Lys661Arg in one high myopia 
patient. Of note, we also found a heterozygous mutation p.Phe44Leu in LEPREL1, which was excluded in this 
study due to the inheritance pattern of the gene.

LRPAP1encodes a Low Density Lipoprotein (LDL) Receptor-Related Protein Associated Protein 1, a 357 
amino acid protein that binds and protects the LDL receptor-related protein (LRP1), which is known to influence 
transforming growth factor-βactivity33, 55, 56. Furthermore, TGF-β signal pathway has been highlighted as the 
responsible factor for regulation of scleral metabolism in myopia57. Therefore, LRPAP1 may affect the forma-
tion of myopia by regulating TGF-β signaling. So far, three homozygous frame shift mutations (Asn202Thrfs*8; 
Ile288Argfs*118; Gln67Serfs*8) inLRPAP1have been reported to associate with autosomal recessive high myo-
pia in Arabic and Chinese families33, 34. Here, we detected a heterozygous mutation p.Arg321His in LRPAP1. 
However, p.Arg321His already existed in the database (rs140947105) and was excluded based on the inheritance 
pattern of this gene. Nevertheless, co-segregation analysis could not be performed due to the unavailability 
of familiar samples. In addition, functional consequences of these mutations need to be investigated in future 
studies.

In conclusion, we carried out mutational screening in three causative genes in a large cohort of high myopia 
patients. We identified seven mutations, including three novel mutations. Our findings widen the mutation spec-
trum of known HM-genes and provided additional genetic evidence thatSLC39A5 and LEPREL1may be associ-
ated with high myopia in Chinese population. Nevertheless, given the paucity of our data on the pathogenicity of 
these genes, further studies are needed to better understand the potential roles of these genes in the development 
of high myopia.
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