
1Scientific Reports | 7: 1156  | DOI:10.1038/s41598-017-01200-w

www.nature.com/scientificreports

Physical Links: defining and 
detecting inter-chain entanglement
Michele Caraglio1, Cristian Micheletti   2 & Enzo Orlandini3

Fluctuating filaments, from densely-packed biopolymers to defect lines in structured fluids, are prone 
to become interlaced and form intricate architectures. Understanding the ensuing mechanical and 
relaxation properties depends critically on being able to capture such entanglement in quantitative 
terms. So far, this has been an elusive challenge. Here we introduce the first general characterization 
of non-ephemeral forms of entanglement in linear curves by introducing novel descriptors that extend 
topological measures of linking from close to open curves. We thus establish the concept of physical 
links. This general method is applied to diverse contexts: equilibrated ring polymers, mechanically-
stretched links and concentrated solutions of linear chains. The abundance, complexity and space 
distribution of their physical links gives access to a whole new layer of understanding of such systems 
and open new perspectives for others, such as reconnection events and topological simplification in 
dissipative fields and defect lines.

Mutual entanglement of fluctuating filaments is ubiquitous in nature. In physical contexts, entangled filaments 
can be created as defect lines in colloidal liquid crystals1, 2, turning them into metamaterials with unconventional 
and tunable physical properties3, 4. Linked optical vortices can be formed in propagating laser beams as singulari-
ties of the wave’s phase5. In chemistry, the syntesis of interlocked molecules is one of the most actively-sought top-
ics6–8, with potential applications in the design of molecular machinery with directed molecular motion, complex 
functionality, novel forms of chirality and self-assembling capabilities9–12. Finally, in biology, circular interlocked 
DNA structures or catenanes arise as physically inevitable byproducts of replication and recombination13–15.

Mathematically, the topological entanglement of two curves is defined only if they are both closed. In such 
case, their linked state can be detected, and its complexity quantified, with suitable topological invariants16.

Open curves, being topologically unlinked, are by definition beyond the scope and reach of such invariants. 
Therefore no measure is currently available for capturing their degree of mutual intricacy nor for locating where 
the entanglement actually is on the given curves.

Yet, a simple definition inspired by a common sense notion of physical entanglement between chains (see 
Fig. 1a,b) is needed in countless contexts. In response to this necessity various ad hoc approaches and observa-
bles have been introduced in to describe the intertwining of polymers in a melt17–19, of peptide chains in protein 
complexes20, 21.

Here, we tackle this unsolved problem by providing an intuitive, robust and efficient method to close pairs of 
open chains and use the resulting topological states to define the physical links formed by the curves (see Fig. 1). 
The method is general, straightforward to implement, and hence applicable to the diverse physical situations 
where multi-chains interactions are relevant. It has the further advantage of being applicable to any pair of chains, 
be they open or closed, to identify their linked portions.

The notion of physical link, therefore, allows for detecting multi-chain entanglement both at the global level, 
through the type and complexity of the physical link, and at the local one, by pinpointing the chain portions 
where it resides.

In the following we first introduce the concept of physical links and the key algorithmic steps of the method 
used to define it. We next illustrate its application in different contexts of general interest. Specifically, we first 
discuss two linked rings that are pulled apart mechanically, then move to the scaling analysis of the physically 
entangled region in equilibrated links, and finally address the challenging and debated case of concentrated solu-
tions, or melts, of linear chains.
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Results
Physical links.  To illustrate the idea of physical links let us consider the two pairs of chains shown in Fig. 1a,b. 
Since the chains are open, both instances are not topological links, and their nominal geometrical complexity is 
equivalent, because they both present 4 inter-chain crossings when viewed from most angles. Yet, their entan-
glement is readily perceived as being qualitatively, or physically different. In fact, pulling the chains in opposite 
directions - a case discussed below -results in a further tightening of the entanglement in (a), while it would 
disengage and separate the chains in (b).

These differences, which are elusive to topological or geometrical measures, can actually be detected and 
formalised with the procedure described in Fig. 1(a,b). The essential step of the method is to turn a physical link 
into a proper topological one by suitably closing each chain. Several possible closure schemes can be envisaged. In 
fact, various ones have been adopted for closing single chains and establish their physical knotted state22–27. Here, 
because the added closing arcs should minimally interfere with the chain entanglement, we close each chain “at 
infinity” with an auxiliary arc that points away from the centre of mass of the other chain, see Fig. 1(a,b). After 
such step, the original spatial mutual entanglement of the open chains in panels (a) and (b) of Fig. 1 is appropri-
ately captured as a Solomon link and an unlink, respectively. This simple procedure therefore provides an intui-
tively correct assignment of the physical linking state of the original pair of chains.

Linked portions of open or closed curves.  The notion of physical links can be seamlessly used to locate 
the portions of the two chains where their physical entanglement resides. The required steps are sketched in 
Fig. 2(a,b), which portrays two physical links that are identical by type (Hopf physical link) but are otherwise 
clearly different for the extension of their linked portions.

To locate the latter, one starts by considering the whole ensemble of pairs of sub-arcs from the two chains. 
Next, one retains only the pairs of arcs that have the same physical link type as the entire chains. Of these pairs, 
the one with the smallest total arc-length is the sought physically-linked portion of the original chains.

This search scheme is applicable to both open and closed curves. If fact, it can detect the entangled region of 
two chains of irrespective whether they establish a physical link, or a topological one.

As it is shown in Fig. 2, the search strategy correctly returns regions of very different total arc-length for the 
examples of Fig. 2(a,b).

In practical contexts, the identification of the physically-linked portion requires a two-tier approach for sifting 
through the combinatorial space of the sub-arcs while computing the corresponding link types (after closure). 
Effective strategies for performing either steps are presented in the methods section and in Figs S1 and S2 of the 
Supplementary Information, SI).

Tensile mechanics of links.  The mechanical pulling of two concatenated rings is an ideal system for apply-
ing these concepts and validate them, too. At sufficiently high stretching forces, in fact, the physical entanglement 
is easily revealed and located by simple visual inspection.

Although such systems are nowadays experimentally accessible to molecular design and micromanipulation 
techniques, the effects of topology on the elastic response of catenanes is still largely unexplored. We show that 
much physical insight into this relationship can be gleaned by applying the notion of physical links and, in par-
ticular, of linked portions.

In our setup we consider four different link types: the Hopf link (21
2), the Solomon link (41

2), the Whitehead 
link (51

2) and the Star of David link (61
2). The rings, which are modelled as semi-flexible circular chains of N = 120 

beads each in canonical equilibrium at temperature T, are pulled in opposite directions by a constant force (see 
Methods for details).

Figure 1.  Detection of physical links: The sketches illustrate a key step of the procedure, namely how a pair of 
open chains can be turned into rings by closing each of them with an auxiliary arc (thick dashed lines) pointing 
away from the centre of mass of the partner chain (filled circles). To minimize the additional entanglement that 
may arise during closure, the segments pointing away from the centre of mass of the other chain are typically 
chosen to be much longer than the radius of gyration of the chains. This closure “at infinity” turnes the two 
chains, Γ1 and Γ2, into the components, L1 and L2, of a proper link, whose topology can be established with 
suitable invariants, such as the multivariate Alexander polynomial. The procedure correctly distinguishes 
between the non-trivial entanglement in panel (a), a Solomon physical link, from the unlink of panel (b). The 
two link types are indicated, respectively, as 41

2 and 01
2 in the Rolfsen’s notation16.
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Typical configurations of the Solomon link at different stretching forces are given in Fig. 3a. The link con-
figuration at high force is clearly elongated in the stretching direction, which is taken as the z Cartesian axis. Its 
physically-linked portion, highlighted in black, is tight and matches the region that one would pick from visual 
inspection. The same high force causes an analogous tightening for the other types of links although, as the link 
complexity increases the length of the chain used up to maintain the topological constraint, i.e. the linked portion, 
increases too, see Fig. S2 in SI. As shown in the other panels of Fig. 3a, when the force is reduced, the rings relax 
and the physically-linked region expands concomitantly.

The force-extension profiles for the links are given in Fig. 3b. The curves portray the relative average span of 
the links measured along the pulling direction, 〈Z〉/N, as a function of the adimensional (reduced) force strength, 
f . For reference, the relative span of a single ring of equivalent length (2N) is shown too.

Figure 2.  Linked portions of open or closed curves: The linked region of two curves, Γ1 and Γ2 is defined as the 
shortest portion that, upon closure, has the same topology of the original physical link. For open curves, such 
region can be found by a stochastic top-down reduction of the chains from their termini, as illustrated here. The 
two panels pertain to physical links with the same topology, the Hopf or 21

2 link, but with large differences for 
the length of their linked portion, which is indicated with a * subscript in the right part of the panels. For closed 
chains, the contour reduction can be started from randomly chosen points on the rings, see also Figs S1 and S2 
in SI.

Figure 3.  Stretching topologically linked loops: (a) Configurations of linked pairs of loops (Solomon link) in 
canonical equilibrium at temperature T at three values of the stretching force, f. Each loop is modelled as a 
semiflexible ring of N = 120 beads and persistence length lp = 5σ where σ is the bead diameter. The linked 
portions are highligted in black and Z is the span projected in the stretching direction, which cannot be larger 
than half the total contour length, N. (b) Average normalized span, 〈Z〉/Nσ, as a function of the reduced force 

σ=f f k T/ B . The solid curves refer to different link types (see labels) while the dashed one is for a single loop 
twice longer (2N = 240). (c) Force dependence of the average contour length of the linked portions for the 
linked loops of (b).
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The spread of the force-extension curves in Fig. 3b gives a vivid illustration of how significantly the tensile 
response depends on the topology of the catenate. In particular one notes that the stretching compliance varies 
monotonically with the nominal complexity of the entanglement: It is highest for the single ring and lowest for the 
star-of-David links. This trend could be expected in the limit of high forces since the extension of the linked rings 
should be smaller than the “doubled” single ring by an amount about equal to the shortest possible length of the 
linked portion, which clearly increases with link complexity. Figure 3b shows that this trend holds at all forces and 
that, surprisingly, the topology-dependent variations in extension are largest at intermediate forces.

To better clarify this intriguing behaviour, we profiled the average contour length of the physical link, 


, as a 
function of f . The curves for the normalised length, 

 N/2 , are given in Fig. 3c. One sees that at large forces, 
>f 2, the chain fraction covered by the physical link is relatively small (<20%), and only weakly dependent on 

the link type. Instead, for intermediate forces ( . < <f0 3 2) the linked region varies rapidly with f . This arguably 
reflects the entropy driven swelling of the linked portion that outcompetes the mechanical tightening at these 
forces, similarly to what happens for tensioned knots28. Finally, for small forces, < .f 0 3, the linked region is 
delocalized over a significant fraction of the rings (as much as 50% for the Star of David link). The delocalization 
somewhat loosens the geometry-topology coupling and, consequently, the extension has a weaker dependence on 
the link-type.

The non-monotonic force-dependence of the spread of the extension curves in Fig. 3b is clearly a notable 
feature from the point of view of polymer physics and may be of applicative relevance too. In fact, it suggests that 
stretching curves, nowadays experimentally accessible by micromanipulation or microfluidic techniques29, 30, 
could be used as a topological fingerprints. This rich and unexpected phenomenology cannot be unveiled without 
the concepts and tools introduced here.

Scaling properties of linked portions.  As a further application, we examine how the average contour 
length of the linked region, 


, depends on the chain length, N, at zero force. The 


 versus N curves for Hopf and 

Solomon link are given in Fig. 4a.
The data points are well interpolated by the dotted lines that correspond to power scaling laws,

∼ .α
 N (1)

with α = 0.36 ± 0.05 and α = 0.54 ± 0.05 respectively for the Hopf and Solomon link. The fact that in both cases α 
is well below 1, is a strong indication that, even discounting finite size corrections, the average length of the linked 
region grows sublinearly with N.

This implies that the average inter-chain entanglement of long rings is weakly localised. This is reminescent of 
the weak localization observed for intra-chain entanglement, i.e. knots26, 28, 31, 32. The two cases, however, present 
qualitative differences in the length distribution of the entangled portion. In fact, the modal length of the linked 
portions appears to increase with chain length (see Fig. S5 in SI), while the modal knot length does not32–34. More 
importantly, at fixed N, the shape of the distribution P( ) depends qualitatively on the link type being broader for 
more complex links (see Fig. 4b and Fig. S5 in SI).

Physical links and polymer melts.  We now turn to a paradigmatic case for inter-chain entanglement, 
namely a concentrated solution of linear chains. This is a classic, and yet still open problem in polymer theory, 
with important practical ramifications19 and implications for biological systems35.

Here we consider concentrated dispersions of hundreds of semi-flexible chains (lp = 5σ), each composed by 
hundreds of beads. A typical configuration, or microstate, is shown Fig. 5a which shows an ensemble of 20 chains 
of 250 beads at the monomer density ρσ3 = 0.0125.

The characterization of such systems is typically based either on global invariants from knot theory36–38 or on 
primitive path analysis and entanglement length17–19, 39–41. The latter concepts have, indeed, proved particularly 

Figure 4.  Scaling and statistical properties of linked portions: (a) Average contour length of the linked 
portions, 


, as a function of the total contour length 2N, for Hopf (red circles) and Solomon (green diamonds) 

links formed by semi-flexible rings each of N = 100 beads. For each set of data the solid curve corresponds to 
power law fits (see Eq. 1). Panels (b) and (c) Probability distribution of the fraction of contour length in the 
linked portion,  N/2 , for Hopf (b) and Solomon (c) links.
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valuable to rationalize in quantitatively reliable terms, the ensuing viscoelastic, rheological and relaxation prop-
erties19, 42, 43.

We recall that the primitive paths of a microstate are obtained by contracting the contours of the chains while 
keeping their termini fixed and without allowing strand passages. When the chains are disentangled, the con-
tracted paths are essentially straight segments and their contour lengths closely matches the distance of the chain 
endpoints. However, for a genuinely intricate microstate, each primitive path will typically be interlocked with 
several contacts with other paths, forming hooked kinks. In this case, the contour length of the primitive paths 
will be appreciably longer than their end-to-end distances.

The latter point is illustrated in Fig. 5d which shows the primitive paths of the microstate in panel a, which 
is picked at the smallest considered density, ρσ3 ~ 0.0125. Those paths that feature one or more kinks are shown 
with a thicker trace. One notes that at this relatively small density, the kink or interlocking points involve only 
two chains at a time, consistent with earlier findings19, 44. Yet, individual chains can be entangled with more than 
one partner chain, see e.g. the triplet of interlocked chains in the upper left part of panel d. At the same density, 
ρσ3 ~ 0.0125, about 60% of the filaments are entangled with one or more other ones; this percentage grows rapidly 
with the solution density and saturates already at ρσ3 ~ 0.1, see panel f.

As we now discuss, the valuable insight offered by primitive path analysis can be aptly complemented by the 
concepts of physical links and linked portions, which give access to an additional layer of quantitative profiling.

As a first step we queried all chain pairs and, using the detection scheme of Fig. 1, identified those that were 
physically linked, see thicker traces in Fig. 5b.

The good correspondence of the physically linked chains and the interlocked primitive paths is well evident 
from the visual inspection of panels (b) and (d). From a more quantitative point of view, the consistency of the 
two strategies to single out inter-chain entanglement is shown in Fig. 5e. This plot shows, for various system 
densities, the ensemble averages of the number of interlocked primitive paths versus the number of physical links 
that a chain forms pairwise with the other chains. The correlation of the two quantities is excellent and shows, 
a posteriori the robustness of the local entanglement detection with either strategies. In this respect it would be 

Figure 5.  Physical links in melts: (a) Equilibrated configuration of a solution of 20 semiflexible linear chains 
(lp = 5σ) each with 250 beads of diameter σ. The system has a monomer concentration ρσ3 = 0.0125. (b) 
Topological characterisation of configuration (a) made in terms of physical links (brighter and thicker chains). 
For comparison the corresponding primitive path representation is given in panel (d) where paths with at least 
one kink are made thicker. In panel (d) only the linked portions of the physical links in (b) are highligthed. Note 
that, unlike the primitive path representation (d) the one based on either physical links (b) or linked portions 
(c) resides in the original configurational space. (e) Quantitative comparison, at different solution density, 
betwen description (b,d) made in terms of the average number of physical links experienced by a chain vs the 
average number of primitive paths in contacts with a given path. (f) Fraction of chains that are physically linked 
(red circles) and fraction of beads involved in the linked portions (green diamonds).
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interesting to use the strategy based on physical links to estimate the entanglement length, a goal that will require 
a more systematic study of these systems at various, and larger, polymer contour lengths.

The additional, novel element that is brought about by the present analysis is the identification of the 
physically-linked portions, which are captured in their original (uncontracted) positions along the chains and in 
the embedding three-dimensional space.

For the microstate of interest, the linked portions are highlighted in Fig. 5c. The image provides a vivid rep-
resentation of how local entanglement is distributed in space, and particularly, for the fact that they appear to be 
organised in small clusters, a feature that, to our knowledge, has not been pointed out before. At the same density 
of the microstate in panel (a) the linked portions cover, on average, about 12% of the contour length of the chains. 
This percentage steadily grows with the system density and retains a good dynamic range even when other con-
ventional order parameters, such as the percentage of physically linked chains, have saturated already, see Fig. 5f.

Topological spectrum of polymer melts.  An even more relevant description of the entanglement com-
plexity of the solution can be obtained, within our general framework, by looking at the topological spectrum of the 
melt, that is the relative abundance of the various topological types observed in the physical links. This is reported 
in Fig. 6a for different solution densities.

For sufficiently diluted solutions the spectrum consists mostly of Hopf physical links with a minor presence of 
Solomon rings. These are the first two topologies in the complexity ladder of the Rolfsen’s table16 of links. In fact, 
one observes the most common links at all considered densities are the Solomon and Hopf types, the latter being 
more probable by several times.

Moving to the less common physical links we note the occurrence of the Whitehead links, see Fig. S6, which 
is particularly notable because it is the simplest non-trivial link that is not homologically linked (i.e. has linking 
number zero)16. This indicates that, for an accurate and exhaustive topological profiling of physical links in a 
polymer melt, one must necessarily resort to invariants, such as the multivariate Alexander determinant, that are 
more sophisticated than the linking number.

Besides the Whitehead case, the more complex links include the Star-of-David topology as well as exotic links 
such as those visualised in Fig. 6(b,c) (see also movies M1 and M2 in SI). They represent two paradigmatic exam-
ples of link families: one (panel b) is a physical Whitehead-like link where one component is also tied in a trefoil, 
or 31 knot, while the other (panel c) is a 5-component link made by 3 Hopf links and one Solomon link.

As the contour length of the chain increases, the complexity of their physical linking will increase too. In 
particular, homotopical links should progressively outnumber homological ones45 (i.e. links with Lk ≠ 0) and the 
inevitable chain overlaps should eventually result in giant multicomponent links. In such clusters many filaments 

Figure 6.  Topological complexity in melts: (a) Topological spectrum associated to the physical links found 
in the melt at different solution density ρσ3. As ρ increases, the category “other”, where all the more complex 
links are collected, gets more and more populated. Two configurations of this category, found at ρσ3 = 0.1, are 
represented in panels (b,c). Panel (b) refers to a physical Whitehead link that additionally host a physical knoy 
(trefoil). Panel (c) represents a 5 component physical link where the chains are catenated in pairs with either 
Hopf or Solomon links.
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of the system are linked either by direct physical interlocking or indirectly, via the concatenation of few mediating 
chains. Small-scale example of both cases are shown in Fig. 6c and Fig. S7d in SI.

A systematic search for multicomponent links can be straightforwardly accomplished by taking suitable pow-
ers of the Boolean matrix, M, whose general entry Mij, is equal to 0 or 1 depending on whether the chains i and 
j are linked or not. The entries of the k-th power of M that are equal to 1 will correspond to chain pairs that are 
linked via k−1 mediating filaments.

By applying this search scheme one establishes that already at ρσ3 = 0.1, the system displays practically a single 
giant multi-component physical link. In fact, Fig. S7c in SI shows that almost any chain in the system is physically 
linked to any other via at most 4 intermediate chains. For ρσ3 = 0.4 any two given chains are typically linked via 
as few as 2 intermediate chains, see Fig. S7b in SI.

One caveat regarding the aforementioned multicomponent-link search scheme is that it is inherently depend-
ent on the detection of the pairwise linking of their components. As a consequence, Brunnian links, which 
include the well-known Borromean links, cannot be detected16. These more general instances could be addressed 
by higher-order topological invariants16, 46 or, also, by a mechanical pulling procedure that could extract all topo-
logically linked chains after they have been closed. To do that, one would need to adopt more generalised closure 
schemes than the one discussed here, that is inherently pairwise in its formulation.

Dynamics and reconnection of physical links: perspectives.  So far we focussed on the equilibrium 
or static properties of entanglement filaments and rings. The dynamical evolution of entanglement is, however, a 
source of fascinating phenomenology for various complex physical systems.

Besides polymer melts, where one can monitor the temporal development of de Gennes’ tubes created by top-
ological constraints18, 19, the most promising applications are arguably for systems where the entangled string-like 
objects are free from physical connectivity constraints. Such systems include defect lines in liquid crystals2, 47, flux 
lines in fluids48 and superfluids49, 50 and optical vortex lines5, 51, 52. It is precisely for the lack of a physically-bonded 
backbone, that these entangled defect or vortex lines can evolve, anneal and break up in dramatic ways.

Characterizing such systems as physical links could provide an unprecedented insight into their dynamical 
behaviour by allowing for monitoring the size, position (both in space and along the lines contour) and com-
plexity of the entangled portions. We envisage that this would lead to better understanding of the intriguing 
phenomenology of reconnection events of dissipative flux and vortex lines and of the conservation laws that 
typically underpin them53.

Conclusions
To summarize, we have introduced a novel approach to detect and measure the entanglement between open 
chains that relies on the notions of physical links and of linked portions. The viability and usefulness of these con-
cepts was illustrated in different prototypic contexts for multi-chain entanglement. These were: the elastic proper-
ties of topologically-linked loops under stretching, the scaling behavior of the linked portion of equilibrated links, 
and the spatial arrangement of linear polymers in a melt. Among the results obtained in these examples we cite 
the scaling behaviour of the portion of catenanes involved in the physical links and a full characterisation of the 
melt entanglement established in terms of a topological link spectrum and spatial distribution of the linked por-
tions. This definition of mutual entanglement has the remarkable advantage of being very simple to implement 
and general enough to be applied to disparate contexts where the entanglement between fluctuating filaments is 
relevant, including the reconnection events and topological simplification recently reported for dissipative fields 
and defect lines2, 5, 47–50.

Methods
Model and simulation setup.  Filaments are modelled as chains of N beads of mass m and diameter σ. The 
potential energy of each chain includes the following three contribution which account respectively for the chain 
connectivity54, the excluded volume interaction and the chain bending rigidity
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 d r ri j i j,  (ri denotes the position of the i-th bead) and ≡ −+
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 b r ri i i1  is the i-th chain bond. The param-
eter R0 = 1.5σ is the maximum bond length, θ is the Heaviside function and  is the characteristic unit of energy 
that we set equal to kBT. By setting K = 5.51, we simulate semiflexible chains with persistence length lp = 5σ. This 
choice is dictated by the need of simulating a sufficiently realistic model of a semiflexible chains at varius contour 
lengths and to keep the computational costs of link identification at a manageable level. Simulations of linked 
loops under tensile forces have been performed with the constant force pulling protocol implemented as follows: 
for a given initial linked configuration we choose the bead with the smallest z-coordinate. This left-most bead, 
that identifies one loop (say loop 1) is kept fixed in space. We then apply a force f along the positive z direction to 
the right-most bead of loop 2. Denoting by L the distance, along the z coordinate, of the two beads, this amount 
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to add a potential energy, Upull = −fL. Given the total potential energy U = UFENE + Ubend + ULJ + Upull, the 
dynamic of the i-th bead is described by the Langevin equation: ξ ζ= − − ∇ +

� �� ��̈mr r Ui i  where ξ is the friction 
coefficient and ζ

��
 is the stochastic delta correlated noise. The variance of each Cartesian component of the noise, 

σζ
2 satisfies the fluctuation dissipation relationship σ ξ=ζ k T2 B

2 .
As customary54, we set ξ τ=m/ LJ  with τ σ σ= =m m k T/ /LJ B  and the Brownian time τ σ= D/Br b with 

ξ=D k T /b B  the characteristic simulation time step. In all the simulations of linked loops the initial configuration 
is a pair of unknotted rings interlocked by hand with the desired link type. The Langevin equation of motion are 
integrated numerically with the LAMMPS package by using standard values for the friction coefficient, beads 
mass and with time step τ∆ = . ∼ .t 0 05 0 4LJ  ns55.

For each link type, we generate 100 trajectories in which the force is progressively diminished from its max-
imum value to zero by discrete amounts. At each value of the force the dynamics is followed for 107 timesteps, 
thereby covering a time period of 3.7 ms. This time has been estimated to be sufficiently long to achieve an equil-
ibrated system at a given force.

For the melt problem we consider M semiflexible (lp = 5σ) linear chains with N = 250 beads. Equilibrated 
samples of such systems were generated at different monomer density ρσ3 by changing either M or the simulation 
box size and with the stochastic scheme of ref. 56.

Detection of physical links.  The detection of a physical link requires first the transformation of each chain 
into a loop. The closure procedure is sketched in Fig. 1 where it is applied to two different physical links ((a) and 
(b)): given two open chains Γ1 and Γ2 (left panel) we first compute their centre of mass. We then draw two seg-
ments starting from the extremities of Γ1 and pointing away from the centre of mass of Γ2. The transformation 
of Γ1 into a loop is then performed by joining the ends of these segment along the surface of a sphere with radius 
very large compared to the extension of the pair (red dashed arc). This closure at “infinity” is repeated for Γ2. The 
final outcome is a pair of loops (L1, L2) whose topology τ is determined by computing the two-variables Alexander 
polynomial16, 57.

Locating the linked portion.  Given a pair of either open or closed chains (Γ1, Γ2) with link τ the estimate 
of the linked portion, (Γ⁎

1, Γ⁎
2), is obtained by looking for the shortest physical link whose topological link, com-

puted upon closure, is compatible with τ (see Fig. 2). To determine the physical link of all possible pairs of 
subchains (γ1, γ2) included in (Γ1, Γ2) can be very computationally demanding and here we adopt a top-down 
searching scheme based on a bisection method. Moreover, to avoid the detection of physical links in regions of 
(Γ1, Γ2) that at iteration k−1 (i.e. more coarse grained) were not found compatible with the topological target τ, a 
self-learning proceure is implemented. This decreases substantially the set of potential pairs (γ1, γ2) to be exam-
ined at iteration k. If at iteration k a pair (γ1, γ2) is physically linked with topology τ while no pairs with the same 
topology are found at the next (more refined) iteration k + 1, the procedure stops and (γ1, γ2) is identified with 
Γ Γ⁎ ⁎( , )1 2  (see red arrow in Fig. 2). The flow chart of the algorithm is drawn in Figs S1 and S2 of SI and detailed in 

their figure caption.
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