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Longitudinal characterization of early brain growth in-utero has been limited by a number of 
challenges in fetal imaging, the rapid change in size, shape and volume of the developing brain, 
and the consequent lack of suitable algorithms for fetal brain image analysis. There is a need for an 
improved digital brain atlas of the spatiotemporal maturation of the fetal brain extending over the 
key developmental periods. We have developed an algorithm for construction of an unbiased four-
dimensional atlas of the developing fetal brain by integrating symmetric diffeomorphic deformable 
registration in space with kernel regression in age. We applied this new algorithm to construct a 
spatiotemporal atlas from MRI of 81 normal fetuses scanned between 19 and 39 weeks of gestation 
and labeled the structures of the developing brain. We evaluated the use of this atlas and additional 
individual fetal brain MRI atlases for completely automatic multi-atlas segmentation of fetal brain MRI. 
The atlas is available online as a reference for anatomy and for registration and segmentation, to aid in 
connectivity analysis, and for groupwise and longitudinal analysis of early brain growth.

Early stages of human brain development are particularly important as any abnormality in development may 
result in long-term neurodevelopmental impairment and may even affect the survival in the perinatal period 
and later in childhood1–10. Precise characterization of neural development and cortical maturation encompassing 
neurogenic events such as cell proliferation, neuronal migration, and myelination may enable improved diag-
nosis, which is critical for appropriate prenatal counseling and medical treatment and intervention. In addition, 
adequate characterization of these developmental processes may provide insight into pathophysiology under-
lying neurological disorders such as autism and developmental delay, which are thought to begin in the very 
early stages of life11. In the future, these findings could even suggest therapeutic targets for interventions12–15. 
Postnatally, highly accurate in-vivo analysis is critical to the development of neural rescue therapies, such as brain 
hypothermia3, 8, 16, 17, and precise delineation of injury or malformation4, 5, 7, 10.

There have been numerous studies in the past decade on the analysis and characterization of early brain devel-
opment by means of magnetic resonance imaging (MRI)18–34. The MRI study of the developing brain, however, has 
been much more difficult than the longitudinal studies of aging and disease progression in adults and children, 
because of (1) the challenges in scanning fetuses and neonates including fetal/maternal and neonatal motion and 
limited resolution, and (2) rapid changes in brain structure and function during the early stages of growth specif-
ically during the third trimester of pregnancy. There has been a gap in technology and a critical need for imaging 
and image processing tools and resources, in specific digital brain atlases, that enable automatic segmentation, and 
volumetric, morphologic, longitudinal, and groupwise analysis of brain development based on in-vivo fetal MRI. 
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Fetal MRI is challenged by intermittent fetal and maternal motion that disrupts the spatial encoding needed for 3D 
imaging, thus is limited to fast 2D slice acquisitions. A series of studies, however, have shown that fetal MRI may be 
reconstructed in 3D through retrospective inter-slice motion correction and volume reconstruction35–42. This evolv-
ing technology has enabled significant new advances in computational analysis of fetal brain MRI including atlas 
construction, automatic fetal brain MRI segmentation, and groupwise analysis25–27, 43–48.

Since the brain size, shape, and structure changes rapidly during the fetal and neonatal periods, atlases that 
cover these periods should be spatiotemporal (dynamic or 4D) rather than being static or 3D. The construction 
of digital spatiotemporal MRI atlases of early brain development is relatively new: Kuklisova-Murgasova et al.49 
developed a 4D probabilistic atlas of early brain growth from in-vivo MRI of 142 preterm infants in the 29 to 44 
weeks post-menstrual age. They used pairwise affine registration of anatomy with kernel regression in age for 
atlas construction. Serag et al.46 used a non-rigid registration approach based on Bspline free-form deformations 
(FFD)50 and showed a marked improvement over the use of affine registration in atlas construction. Makropoulos 
et al.48 used a similar approach to construct a probabilistic spatiotemporal atlas of the neonatal brain from 420 
segmented MRIs of neonates (including preterm neonates) scanned between 27 to 45 weeks post-menstrual age. 
To improve the FFD-based 4D atlas construction framework, Schuh et al.51 developed diffeomorphic registration 
based on the Log-Euclidean mean of inverse consistent FFD transformations. MRI acquisition in the prematurely 
born baby is simpler than fetal MRI, as three dimensional imaging is possible due to the reduced motion of the 
preterm infant as compared to the fetus. However, key early brain development occurs before the age at which 
prematurely born infants are viable, and the factors which lead to premature birth may alter brain anatomy in a 
number of ways, including by direct injury such as stroke, and by delayed maturation. There is an increasing need 
for digital fetal brain MRI atlases that extend over the second and third trimesters of gestation in which the brain 
passes an exponential phase of growth.

The development of fetal brain MRI atlases is more difficult than neonatal atlases because of the challenges in 
high-quality fetal MRI acquisition and its 3D reconstruction and the rapid changes in brain anatomy and shape 
throughout the course of in-utero brain maturation. The first spatiotemporal probabilistic MRI atlas of the fetal 
brain44 was developed through polynomial fitting and non-rigid groupwise registration of manually segmented 
fetal brain tissue in 20 healthy fetuses in the GA range of 20.57 to 24.71 weeks. More recently the FFD-based 
atlas construction method46 was used to construct a spatiotemporal atlas of the fetal brain in the GA range of 22 
to 38 weeks from MRI of 80 fetuses52. This atlas is available online through brain-development.org. There are a 
few other fetal brain atlases, such as a spatiotemporal latent atlas of the fetal brain in 20 to 30 weeks GA based on 
annotated fetal brain MRIs53, a spatiotemporal cortical surface atlas of the fetal brain through sulcal matching 
from MRI of 80 healthy fetuses54, and an ex-vivo spatiotemporal MRI atlas of the fetal brain in GA range of 15 to 
22 weeks from 34 postmortem human fetal brains55. For a review of developmental brain atlases we refer to Gui 
et al.56.

The majority of previous works on fetal and neonatal atlases focused on the construction of probabilistic 
atlases which relied upon manual segmentations of original data44, 48, 49, 52–54, 57. In this study, we focused on the 
construction of a sharp deformable spatiotemporal atlas of the fetal brain to facilitate the use of a probabilistic 
label fusion approach for atlas labeling and segmentation. Affine or low-dimensional FFD transformations were 
used for probabilistic atlas construction in most of the earlier studies, however, the capacity of low-dimensional 
and non-diffeomorphic transformations is intrinsically limited in capturing the anatomical variability of the pop-
ulation for deformable atlas construction. This motivated the use of high-dimensional deformation models such 
as the FFD model50 and its diffeomorphic extensions58, 59 for spatiotemporal atlas construction46, 51. The inability 
to bring the same anatomy in to alignment across the group of subjects and across age is reflected in the lack of 
sharp boundaries. In this work we aimed to build a detail-preserving sharp anatomical atlas of the fetal brain that 
is an unbiased average representative of the anatomy at all key gestational ages. For this purpose, we integrated 
kernel regression in age with symmetric diffeomorphic deformable registration60 in space. Symmetric diffeomor-
phic deformations generate inverse consistent transformations that allow large deformations61–63. Every pair of 
source and target images are affected equally by the symmetric deformation and interpolation thus asymmetric 
bias is reduced. In contrast, in free-form deformations, deformations should be small otherwise invertability is 
not guaranteed. In our earlier work64 we examined different configurations and observed that a formulation based 
on symmetric diffeomorphic deformations outperformed alternative configurations based on FFD and Demons 
deformation models.

To provide an atlas as a useful resource for automatic segmentation and computational analysis of fetal brain 
MRI in this work we (1) constructed an in-vivo detail-preserving spatiotemporal MRI atlas of the fetal brain in the 
GA range of 21 to 37 weeks from in-vivo MRI of 81 healthy fetuses scanned in the GA range of 19 to 39 weeks, (2) 
labeled developing brain tissue and structures on the fetal brain MRI atlas, and (3) evaluated the use of this atlas 
and additional individual subject fetal brain MRI atlases in multi-atlas segmentation. The paper is organized as 
follow: In the materials and methods we describe our atlas construction method and the techniques we used to 
generate labels on our spatiotemporal and individual-subject atlases. The quality and sharpness of the constructed 
atlas helped us to effectively use a recently-developed probabilistic label fusion algorithm that combines intensity 
and local map images of multiple templates to train a local Gaussian mixture model65. We used this algorithm 
along with neonatal brain atlases66, 67 as a guide to initiate segmentations on late-gestation points of our spatio-
temporal atlas and carried out extensive manual segmentations to generate fetal atlas labels. The results section 
presents the atlas and its labels and a segmentation evaluation. The atlases with labels are available online at one 
week intervals between 21 and 37 weeks of GA and can be generated at any given continuous age point within 
this range.
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Materials and Methods
Imaging data. Fetal brain structural MRI is performed through repeated T2-weighted half-Fourier acqui-
sition single shot fast spin echo (T2wSSFSE) scans in the orthogonal planes of the fetal brain68. The data for atlas 
construction in this study was obtained from fetal MRI of 81 healthy fetuses scanned at a GA between 19 and 39 
weeks (mean = 30.1, stdev = 4.5). A different set of subjects were used for test. The test set was based on research 
MRI scans of 7 healthy fetuses in the GA range of 23 to 38 weeks (mean = 32.1, stdev = 5.4). Exclusion criteria 
were multiple-gestation pregnancy, maternal contraindication to MRI, known fetal congenital infection, fetus 
with brain or body abnormalities detected by prenatal ultrasound or MRI, and known chromosomal abnormal-
ities by clinical genetic testing. All fetuses were scanned either by 3-Tesla Siemens Skyra or Trio MRI scanners 
(Siemens Healthineers, Erlangen, Germany) with 18-channel body matrix coils, or by a 1.5-Tesla Achieva scan-
ner (Philips Medical System, Netherlands) with a 5-channel phased-array cardiac coil. Multi-planar repeated 
T2wSSFSE imaging was performed with a 2 or 4 interleaved acquisition, with effective echo time 100 and 120 ms, 
repetition time of 1400–2000 ms, variable field of view based on the fetal and maternal size, 2-mm slice thickness, 
no inter-slice gap, and 256 × 204, 256 × 256, or 320 × 320 acquisition matrices with in-plane resolutions between 
0.9 and 1.1mm. The duration of MRI acquisitions for the images used in this study was 15 to 30 minutes. No 
maternal sedation was used. All methods and experiments were performed in accordance with relevant guide-
lines and regulations. The study was approved by the Boston Children’s Hospital Institutional Review Board and 
the Committee on Clinical Investigation and written informed consent was obtained from all participants.

Pre-processing. The preprocessing steps of volumetric fetal brain MRI reconstruction are shown in Fig. 1; 
where (a) shows a coronal view of an original axial T2wSSFSE scan, (b) shows the volumetric image obtained after 
5 iterations of motion correction and robust super-resolution volume reconstruction38. Four to 15 (mean = 8) 
scans were used for reconstruction, for which the fetal brain region was cropped automatically using an ellipsoid 
mask manually placed on the brain region. The reconstruction processing time was between 1 and 20 hours 
depending on the size and number of the images and the amount of motion, and involved between 3 to 10 itera-
tions of motion correction and super-resolution volume reconstruction using38 which was done automatically. (c) 
in this figure shows the brain mask obtained from supervised level set segmentation in itksnap69 followed by man-
ual refinement. Manual refinement of brain masks took between 15 minutes to 2 hours for each case depending 
on the size and position of the fetal brain and the surrounding structures and the quality of the reconstruction, 
and (d) shows the image after intensity inhomogeneity correction and rigid alignment to the atlas space. Intensity 
inhomogeneity was corrected using the N4 algorithm70, which is an improved version of the nonparametric non-
uniform intensity normalization (N3) algorithm71. The N4 algorithm was applied with brain masks and generated 
smooth bias fields that did not locally affect the appearance of small structures. The intensity range of the output 
images was normalized between subjects by linearly rescaling the intensities to match the maximum values cor-
responding to the CSF. In order to compensate for the non-orthogonal orientation of the fetal brain MRI after 
reconstruction, the reconstructed images were reoriented by using the direction cosines matrix of one of the orig-
inal scans. The brain images were then registered to the anatomic space of the atlas through first order geometric 
moments matching followed by multi-scale mutual information based rigid registration as previously described45. 
The MRI scans of the 7 fetuses in the test set were reconstructed by volume reconstruction using42, and processed 
in a similar fashion, but were manually labeled using the manual labeling procedure that is described in the Atlas 
Labeling and Segmentation section.

Atlas construction. We aimed to develop a four-dimensional (3D + time) atlas that characterizes normal 
fetal brain development in-utero. This spatiotemporal atlas should effectively capture and encode the anatomic 
variability of the population across gestation. To achieve this, we integrate kernel regression over age72 with sym-
metric diffeomorphic deformable registration based on a viscous fluid deformation model60 in space. A key char-
acteristic of this approach, as compared to the spatiotemporal atlas construction methods recently applied to fetal 
brain MRI, is the use of diffeomorphic deformations that are smooth and invertible62, 73.

Given a collection of M images →I x R R( ):i
3  acquired at the corresponding GA ti from fetuses in the popula-

tion, we formulate the problem as finding a set of transformations →h R R:i
3 3 and a template →I x t R R( , ): 4  

that is a weighted minimum distance representation of the population anatomy at any given age t. The problem is 
formulated as:

Figure 1. The preprocessing steps in fetal brain MRI analysis: (a) shows the out-of-plane view (coronal view) 
of an original axial T2wSSFSE scan, (b) is the volumetric image obtained from iterations of inter-slice motion 
correction and robust super-resolution volume reconstruction38, (c) shows the brain mask obtained through 
supervised levelset segmentation and manual refinement, and (d) is the reconstructed image, reoriented and co-
registered to the common atlas coordinate space after N4 bias field correction and intensity normalization.
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Equation (1) involves two terms that minimize the disimilarity between the images and the atlas and the 
Sobolev norm of velocity fields vi; and Equation (2) shows the Lagrangian ordinary differential equations that 
define the model of deformation flow with the simulated time variable s. We use an iterative numerical approach 
through Algorithm 1 to solve this problem. The algorithm starts by assuming identity transformations hi, with an 
initial estimate of I obtained from weighted averaging of rigidly co-registered images Ii. Symmetric deformable 
registration is performed between I and every Ii in each iteration, and the average deformation is computed by 
kernel-weighted averaging of the deformation fields.

The algorithm converges in 5 to 10 iterations and generates a sharp anatomical image at a given age point t, 
that is an unbiased representative of the population anatomy at that age. The contribution of each subject to the 
atlas at any age point is proportional to the distance of the subject age to the atlas age point. We used a Gaussian 
kernel with standard deviation of 1. All kernel weights above 0.01 were retained and were normalized to fulfill the 
sum-of-unity property. Figure 2 shows the distribution of subjects contributed to each point of age for atlas con-
struction. We used the negative of the cross correlation similarity metric between two images as the cost function 
in Equation (1). The minimization in step 2 of the algorithm was performed through symmetric diffeomorphic 
deformable registration using ANTS tools60 with greedy symmetric normalization, gradient step size of 0.05, 
Gaussian regularization (2, 0.05), and 100 × 100 × 20 maximum iterations.

Atlas labeling and segmentation. As an average representation of normal anatomy, the spatiotempo-
ral fetal brain MRI atlas delineates tissue characteristics of the fetal brain across gestation with relatively high 
signal-to-noise ratio, thus provides a relatively reliable framework for tissue-type structural segmentation and 
labeling. To generate atlas labels we started from the manually labeled ALBERTs neonatal brain atlases that have 
been generously distributed by their developers at brain-development.org66, 67. The ALBERTs templates include 
high-resolution T2-weighted MRI scans of 20 neonates manually labeled to 50 anatomically specified regions.

We preprocessed the ALBERTs labels to prepare them for the purpose of segmenting our spatiotemporal fetal 
brain MRI atlas at late GAs. This included refinements to use an automatic atlas and intensity based segmentation 

Algorithm 1:

 1. For each simulated time s, initialize vi with Identity Transform;

 2.  For i = 1…M solve = +⁎v x t argmin E I t I h Lv( , ) [ ( ( ), , ) ]i vi x t i i i( , )
2

 3.  Set optimal ⁎v x t( , ) as
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where .K( ) is a kernel function.

 4. Find the new h x t( , ) based on v x t( , )

 5. Repeat until h x t( , ) converges and It is obtained.

Figure 2. Frequency distribution of subjects contributed to atlas construction at each gestational age point 
in weeks. The number of subjects used in atlas construction at lower GAs was, on average, smaller than the 
numbers at higher GAs, which was acceptable as the fetal brain has less features and variability at lower GAs 
compared to higher GAs.
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algorithm to propagate labels from the ALBERTs atlases to the spatiotemporal fetal brain MRI atlas. This first 
step involved tissue-type segmentation to add labels for white matter, cortical gray matter, and extracerebral CSF 
and merging the cortical layer labels to improve registration and automatic segmentation. For initial tissue-type 
segmentation we constructed probability mass functions of 10 clusters through intensity clustering74. Each class 
label in the 10-class clustering was considered a tissue type which captured local and fine intensity information. 
The tissue types were then combined to guide CSF, gray matter, and white matter manual segmentations. As part 
of this process we also corrected some errors such as missed slice or region segmentations. The entire procedure 
used to generate atlas labels and individual subject segmentations is shown in Fig. 3 which includes examples of 
the neonatal atlases after tissue segmentation and manual refinement on the right.

In the second step, we used ANTS symmetric normalization with greedy optimization and the correlation 
ratio similarity metric60 to map the neonatal atlases to the late GA atlases of the fetal brain. We propagated the 
labels and used the probabilistic STAPLE method65 for label fusion. This is a multi-atlas segmentation method 
that incorporates local quality of probabilistic segmentations to propagate atlas labels from the refined ALBERTs 
atlases to the spatiotemporal fetal brain atlas at 35 to 38 weeks gestation only. In the third step, we manually gen-
erated labels on the fetal atlases and propagated them to lower GAs again using the probabilistic STAPLE method. 
Each round of manual segmentation of each atlas took between 1 to 5 days depending on the GA (i.e. the size and 
complexity of the brain). Labeled fetal MRI atlases at ages t + 2, t + 1 and t were used to generate labels for the 
atlas at age t−1. This procedure was repeated along with manual labeling to segment the entire age range of the 
spatiotemporal fetal brain MRI atlas at one week intervals.

Through manual segmentation the following structures (right and left, when applicable) were labeled on fetal 
brain MRI atlases: hippocampi, amygdala, fornix, cerebellum, brainstem, caudate nuclei, thalami, subthalamic 
nuclei, lentiform nuclei, corpus callosum, lateral ventricles, developing white matter, cortical plate, and cere-
brospinal fluid (CSF). For most of these structures segmenters followed the segmentation protocol by Gousias 
et al.66, and consulted75, 76 as reference for labeling structures at lower gestational ages. Corpus callosum which 
appeared by hypointensity compared to nearby structures was segmented primarily on sagittal planes, and was 
repeatedly visualized in 3D and refined in other planes based on local contrast and its dark appearance. Ventrally 
it bounded with fornix which also appeared as hypointensity and was mainly segmented in the axial plane and 
refined in other planes. Hippocampi, which appeared darker than the surrounding developing white matter, were 
segmented primarily on sagittal planes and refined on coronal planes. Thalami segmentation started in the sagittal 
plane and was visualized and refined in the other planes. All other structures, including the lateral ventricles and 
cortical plate were segmented in multiple planes and visualized in 3D to ensure smooth and accurate segmenta-
tion. When applicable, we segmented three transient zones (left and right): subplate zone, intermediate zone, and 
ventricular zone, as described below.

Transient zones of the early developing brain31, 34, 77, 78 were distinguished on the spatiotemporal fetal brain 
atlas between 19 and 31 weeks gestation and gradually became less visible towards the end of the third trimester. 

Figure 3. The procedure to generate atlas labels and segmentations: Step 1: labels and tissue-type segmentation 
of 20 neonatal ALBERTS atlases66, 67 were refined manually. Step 2: The segmented neonatal atlases were used 
to generate initial labels on the spatiotemporal fetal brain MRI atlas at higher GAs (35–37 weeks) through 
multiatlas segmentation using probabilistic label fusion65. Step 3: Fetal brain MRI labels were manually defined 
and propagated in iterations from the higher GAs to the lower GAs. Step 4: Atlases within one week of any 
query subject were used to generate an initial segmentation of that subject. The initial segmentations of all 
subjects within one week of the query subject were used to segment that subject.
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While the subplate zone could be reliably segmented throughout this timeframe using published in-vivo imaging 
protocols79, 80, the ventricular and intermediate zones were variably distinguishable. The inner boundary of the 
subplate zone was defined by the transition from hyperintensity to hypointensity. This was done by adjusting the 
contrast and windowing around the medium intensity values. We initially manually segmented the subplate zone 
on the spatiotemporal atlas defined for 26 and 27 weeks gestation when it was well-visualized following the man-
ual segmentation protocol described in ref. 79 and consulted additional reference MRI19, 31, 81 and pathology75, 76 
images in cases where boundaries were difficult to define. For additional references on anatomy and a discussion 
on available resources we refer to the book chapter by Judas82. The segmentation was then propagated serially to 
younger and older GAs, manually editing each atlas before the next propagation. Above 27 weeks gestation, as the 
subplate gradually became more difficult to visualize, the segmentation relied mostly upon the atlas propagation. 
The ventricular zone was defined as the hypointense region adjacent to the ventricles and using34. The intermedi-
ate zone was defined by the outer boundary of the ventricular zone and the inner boundary of the subplate zone.

In the fourth step, we used the labeled spatiotemporal fetal brain MRI atlas along with a bootstrapping 
approach to segment the 81 subjects in our cohort. In this process, an initial segmentation was generated for each 
subject by using the three atlases closest to the GA of the subject. Then the initial segmentations of all subjects 
within one week of the GA of the query subject were used as new atlases to segment that subject (a bootstrapping 
strategy). This boosted the number of atlases and the accuracy of multi-atlas segmentation using probabilistic 
STAPLE65 which was particularly effective due to the use of estimated local quality of probabilistic segmentations 
of a relatively large number of atlases. After probabilistic atlas-based segmentation, we applied a Gaussian mixture 
model to correct for partial voluming effects between cortical gray matter and white matter, and cortical gray 
matter and CSF48, 83.

For quantitative evaluation of atlas-based segmentation, we used a leave-one-out strategy on the test set. 
Manual segmentation of the test subjects was performed in several rounds in different planes and took anywhere 
between 4 to 10 days depending on the age of the fetus. These subjects were also used as new and additional 
individual-subject atlases for the evaluation of multi-atlas segmentation. We used the probabilistic STAPLE seg-
mentation approach and calculated the Dice Similarity Coefficient (DSC) for the test subjects. We compared the 
performance of segmentation using the spatiotemporal atlas and using the combination of the spatiotemporal 
atlas and individual-subject atlases. In the next section, we show the atlas, compare it to the fetal brain MRI atlas 
at brain-development.org, and present the results of automatic fetal brain MRI segmentation.

Results
The spatiotemporal fetal brain MRI atlas. The fetal brain MRI scans were pre-processed by the steps 
discussed in the Methods Section. Volumetric fetal brain MRI was reconstructed for all fetuses with an isotropic 
resolution of 1 mm3 in 3D using robust super-resolution volume reconstruction38. The processed images were 
then used for spatiotemporal atlas construction through Algorithm 1. Figure 4 shows axial, coronal, and sagittal 
views of the spatiotemporal atlas across multiple GAs. Note that with Algorithm 1 an unbiased average atlas of the 

Figure 4. The spatiotemporal fetal brain MRI atlas (CRL fetal brain atlas) at six representative GAs: 22, 25, 
28, 31, 34, and 37 weeks. Axial, coronal, and sagittal views of the atlas have been shown at each age point. 
Note that the spatiotemporal atlas construction process is a time-continuous process, therefore the atlas can 
be constructed at any continuous age point within the age range of the subjects used in the atlas construction 
process.



www.nature.com/scientificreports/

7Scientific RepoRts | 7: 476  | DOI:10.1038/s41598-017-00525-w

Figure 5. Visual comparison of our spatiotemporal fetal brain MRI atlas (A) and the atlas from brain-
development.org (B). We did not register or resample the atlases to avoid artificial blur; we instead tried to 
compare the closest planes in each view at three ages (24 weeks, 30 weeks, and 36 weeks GA). The images in (B) 
are generally smoother than those in (A) but lack anatomic details compared to the images in (A). Red circles 
and markers point at some of the areas with relatively blurred anatomy on the atlas from brain-development.org 
but with more details on the CRL fetal brain atlas. Both atlases are available online.
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fetal brain anatomy is achieved at any given continuous age point, so these are only representative age points. The 
atlas (CRL fetal brain atlas), along with its labels, is available online at http://crl.med.harvard.edu/research/fetal_
brain_atlas/ at one week intervals. Figure 5 compares the CRL atlas with the atlas accessed through brain-devel-
opment.org in 2016. It is interesting to report that despite being based on different imaging at two different sites 
with different image reconstruction and processing methods, the two atlases comply very well. Side-by-side visual 
comparison in this figure suggests that the CRL atlas is sharper and better preserves anatomical details. Note that 
we did not register or resample the atlases to avoid inducing blur artifacts, and rather tried to compare the closest 
match between different planes.

Atlas labels and segmentation. We generated labels on the spatiotemporal fetal brain atlas by the process 
described in the Methods Section. Figure 6 shows tissue and anatomic structural labels on the spatiotemporal 
fetal brain MRI atlas. To evaluate automatic multi-atlas segmentation using the spatiotemporal atlas and the 
individual subject atlases, we used label propagation through symmetric diffeomorphic deformable registration60 
between each subject’s anatomical image and atlases within one week of the subject’s GA. This was followed by 
label fusion in the subject’s anatomical space using the probabilistic label fusion approach65.

We compared two scenarios for multi-atlas segmentation: 1) using spatiotemporal atlases (STA), and 2) using 
the combination of spatiotemporal atlases and the individual subject atlases (ISA + STA), all within one week of 
the query GA. Figure 7 shows visual comparison of the segmentations obtained from these methods compared 
to the reference on the right (3). Visual inspection of the results showed that multi-atlas segmentation performed 
fairly well in many areas, but there were also some errors highlighted by rectangles and circles. The results also 
indicated slight improvement by using individual-subject atlases in addition to the spatiotemporal atlases. This 
was expected and attributed in part to the use of a larger number of atlases and in part to the diversity in anatomy 
provided by ISAs compared to STAs. The number of STAs for each subject was 3 and the number of ISAs was 
between 0 and 2 depending on the age. Table 1 shows average DSC metrics for STA and STA + ISA for different 
structures. Overall, these values also indicate slight improvement in performance by using ISAs in addition to 
STAs. The improvement in performance was relatively large for corpus callosum.

Figure 8 shows quantitative automatic multi-atlas segmentation results based on the DSC metric averaged for 
the test subjects in three different GA groups. This analysis indicated that by using multiple atlases at 1 week inter-
vals around the query subject GA, accurate automatic segmentation of fetal brain MRI was achieved with DSC 
values around 0.84 to 0.91 for the cortical plate, between 0.89 and 0.95 for the developing white matter, around 0.9 
to 0.95 for the ventricles, CSF, and brainstem, and between 0.7 and 0.8 for the corpus callosum, which was very 
challenging due to its narrow shape and the effect of partial voluming. It was also observed that in average more 
accurate segmentations were obtained for fetuses at lower GAs and the task became more challenging as the brain 
evolved to have more complex shape and structures. This trend was specifically observed in the DSC of the larger 
tissue types like cortical plate, developing white matter, and CSF. On the other hand, automatic segmentation of 
small and narrow structures such as corpus callosum appeared particularly challenging at lower GAs (DSC of 0.7 
at <27 weeks GA). We attribute this to the thin shape and size of these structures that is not much larger than the 
effective spatial resolution of fetal MRI. Consequently, partial voluming affects the appearance and contrast of 
these structures and reduces the accuracy of deformable registration and in turn the accuracy of label propagation 
and segmentation.

Discussion and Conclusion
In this study, we generated a 4D spatiotemporal MRI atlas of the fetal brain from reconstructed 3D brain MRI of 
81 healthy fetuses scanned at different GAs. The prerequisite for the construction of this 4D atlas was reconstruc-
tion of individual 3D fetal brain MRIs from multiplanar stacks of 2D slice acquisitions, which was performed 
using a robust super-resolution volume reconstruction algorithm38. In contrast to previous works that focused 
on probabilistic atlas construction which relied upon manual segmentations of original data44, 48, 49, 51–53, 57, we 
focused on the construction of a deformable spatiotemporal atlas by integrating kernel regression in time (age) 
with symmetric diffeomorphic deformable registration in space. This method allowed effective compensation 
of spatiotemporal variability between subjects scanned at different GAs and led to sharp atlases with anatomical 

Figure 6. Tissue segmentation and structural labels defined and overlaid on the spatiotemporal fetal brain MRI 
atlas at six representative GAs: 22, 25, 28, 31, 34, and 37 weeks. The labels visible on these axial sections include 
the developing white matter, cerebrospinal fluid (CSF), corpus callosum, and left and right gray matter (cortical 
plate), ventricles, thalami, hippocampi, and lenticular and caudate nuclei.

http://crl.med.harvard.edu/research/fetal_brain_atlas/
http://crl.med.harvard.edu/research/fetal_brain_atlas/
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details that helped us generate tissue and anatomical labels on the atlas. Atlas construction using kernel regression 
based on symmetric diffeomorphic deformations guarantees inverse consistent large deformations that reduce 
asymmetric bias. These properties cannot be easily achieved by free-form deformations. On top of the techni-
cal differences mentioned above, the CRL atlas covers a wider GA range than the atlases developed by Habas 
et al.44, Dittrich et al.53, and Zhan et al.55. The CRL atlas is most similar in nature to the atlas that is available at 
brain-development.org52 (compared in Fig. 5).

Our atlas labeling procedure, illustrated in Fig. 3 and discussed in Section Atlas Labeling and Segmentation, 
relied upon two main components: probabilistic STAPLE label fusion65 which was used in steps 2 to 4 (Fig. 3) for 
iterative label propagation, and manual segmentation which was the most time consuming and laborious part of 
the procedure. We took a major step forward by labeling subcortical brain structures and the developing zones 
of the brain when they were reliably visible and distinguishable on the atlas. It is important to note the intrinsic 

Figure 7. Visual assessment and comparison of atlas-based segmentation of fetal brain MRI using multiple 
atlases: (1) segmentation using the spatiotemporal fetal brain MRI atlas (STA), (2) segmentation using the 
combination of the spatiotemporal atlas and individual-subject atlases (STA + ISA), and (3) reference standard. 
The circles and squares point at some of the areas in which the methods performed differently. Overall the 
results were satisfactory. As expected due to the use of a larger number of atlases, slightly better performance 
was observed for STA + ISA. For quantitative comparison of methods (STA and STA + ISA) we relied on 
the analysis of average DSC metrics reported in Table 1. Labels that are visible on these images are CSF, 
corpus callosum, developing white matter, and left and right cortical plates, ventricles, thalami, hippocampi, 
amygdalae, and caudate nuclei.

ThalL ThalR CC VentL VentR Brainstem CPL CPR WML WMR CSF

STA 0.916 0.931 0.677 0.930 0.938 0.972 0.925 0.922 0.872 0.877 0.900

STA + ISA 0.918 0.933 0.766 0.932 0.933 0.974 0.927 0.924 0.876 0.880 0.901

Table 1. Comparing average DSC metrics for multi-atlas segmentation using the spatiotemporal atlases (STA) 
and the combination of STA and individual subject atlases (STA + ISA). ThalL: left thalamus, ThalR: right 
thalamus, CC: corpus callosum, VentL: left lateral ventricle, VentR: right lateral ventricle, Brainstem: brainstem, 
CPL: left cortical plate, CPR: right cortical plate, WML: left white matter, WMR: right white matter, and CSF: 
cerebrospinal fluid. In average higher DSC values were obtained from STA + ISA, which was expected due to 
the use of larger number of atlases. The difference was particularly high for CC.
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limited spatial resolution and contrast of in-vivo fetal MRI and its effect on the resolution and accuracy of this 
atlas and its labels. The CRL atlas is aimed to facilitate and improve in-vivo fetal brain MRI analysis. It is not 
comparable to and should not replace high-resolution atlases based on histology or ex-vivo MRI. For detailed 
high-resolution pictures and description of the anatomy we refer to the books and papers based on histology and 
ex-vivo imaging31, 34, 75–78, 82. There are certainly many small structures or substructures that could not be reliably 
visualized and labeled on this atlas. The smaller structures also should be used with caution. Many of these struc-
tures were visualized in 3D on the spatiotemporal fetal brain MRI atlas because of the inherent boost in signal due 
to temporal averaging of the anatomy of samples from the population. The 3D appearance of these structures on 
individual in-vivo fetal brain MRI scans depends on the quality of the scans (which is mainly affected by fetal and 
maternal motion) and the reconstruction procedure. The use of a robust motion correction and reconstruction 
procedure is crucial.

The deformable spatiotemporal fetal brain MRI atlas, presented here, characterizes normal fetal brain devel-
opment. The atlas may be used as a reference for registration and spatial normalization in groupwise and longi-
tudinal studies. The atlas with labels may be used for atlas-based segmentation in volumetric or morphometric 
analysis, or as a reference for connectivity analysis. As a direct application of the developed atlas, we used it for 
automatic multi-atlas segmentation of reconstructed fetal brain MRI. Qualitative and quantitative results, based 
on visual inspection and DSC, calculated and reported on the test set, indicate that accurate automatic fetal brain 
MRI segmentation can be achieved by using a robust multi-atlas segmentation approach. As expected65, 84, 85, we 
observed that higher number of atlases and more diverse pool of atlases resulted in more accurate multi-atlas 
segmentations. It was also observed that the segmentation accuracy could be relatively low (DSC around 0.7–0.8) 
for small and narrow structures such as corpus callosum, especially at lower GAs when the size of these structures 
were comparable to the effective spatial resolution of fetal MRI. As mentioned earlier, small and narrow structures 
can be obscured and affected by partial voluming on reconstructed in-vivo fetal MRI scans, therefore may not 
be reliably segmented even with a robust multi-atlas segmentation strategy. This is not a limitation of the atlas 
but is mainly a limitation of in-vivo fetal MRI. The accuracy of the segmentation of these structures depends on 
the quality of the original scans and the reconstruction and post-processing procedures, as the lack of contrast 
will adversely affect the performance of deformable registration and label propagation. As a result, atlas-based 
segmentation of small and narrow structures, such as hippocampus, corpus callosum, and amygdala, should be 
performed cautiously. Fetal MRI analysis has advanced significantly in the recent years68. With widespread use of 
advanced imaging, reconstruction tools, and resources like the developed atlases, we expect major improvements 
in efficiency and accuracy of large-scale studies on early human brain development.
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