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Mapping annual 10-m soybean 
cropland with spatiotemporal 
sample migration
Hongchi Zhang   1,2,3,11, Zihang Lou1,2,3,11, Dailiang Peng1,2 ✉, Bing Zhang   1,3 ✉, Wang Luo4, 
Jianxi Huang   5, Xiaoyang Zhang   6, Le Yu   7, Fumin Wang8, Linsheng Huang9, Guohua Liu10, 
Shuang Gao10, Jinkang Hu1,2,3, Songlin Yang1,2,3 & Enhui Cheng1,2,3

China, as the world’s biggest soybean importer and fourth-largest producer, needs accurate mapping 
of its planting areas for global food supply stability. The challenge lies in gathering and collating 
ground survey data for different crops. We proposed a spatiotemporal migration method leveraging 
vegetation indices’ temporal characteristics. This method uses a feature space of six integrals from the 
crops’ phenological curves and a concavity-convexity index to distinguish soybean and non-soybean 
samples in cropland. Using a limited number of actual samples and our method, we extracted features 
from optical time-series images throughout the soybean growing season. The cloud and rain-affected 
data were supplemented with SAR data. We then used the random forest algorithm for classification. 
Consequently, we developed the 10-meter resolution ChinaSoybean10 maps for the ten primary 
soybean-producing provinces from 2019 to 2022. The map showed an overall accuracy of about 93%, 
aligning significantly with the statistical yearbook data, confirming its reliability. This research aids 
soybean growth monitoring, yield estimation, strategy development, resource management, and food 
scarcity mitigation, and promotes sustainable agriculture.

Background & Summary
Soybeans (Glycine max) are extensively grown for their high oil content, abundant protein, and substantial con-
tribution to energy production1. Over the last two decades, soybeans have consistently played a vital role in the 
Chinese diet1 and have been a crucial source of oil and animal feed. China is the world’s largest consumer of soy-
beans2. China produced 20.28 million tons of soybeans in 2022 while importing an additional 91.08 million tons 
from countries such as Brazil, the United States, and Argentina3. Forecasts indicate that China’s soybean demand 
will reach around 133 million tons by 2035, increasing the pressure on domestic production and imports4,5. 
Utilizing satellite-based earth observation data for national-scale mapping of soybean is a cost-effective method 
to gather comprehensive information6,7. This spatial information can effectively reveal soybeans distribution, 
laying a strong foundation for agricultural management and yield prediction6,7.

Since the late 1990s, remote sensing imagery has progressively assumed a pivotal role in the identification 
and monitoring of crops8,9. Numerous researchers have undertaken nationwide and regional-scale crop mapping 
utilizing remote sensing data10–13. In the early years, researchers typically utilized single-phase or multi-temporal 
images as primary data sources for crop remote sensing identification, obtaining one or more images during 
the critical growing season to facilitate crop identification14–16. This method has a small amount of data and 
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computational complexity, but the crop identification features extracted are relatively limited, so the accuracy is 
relatively low. Time-series data has garnered increased attention in recent years for crop identification due to its 
capacity to capture crop growth patterns accurately. Several studies have employed time-series data for precise 
crop identification17–21. Regarding classification, machine learning algorithms, with their robust self-learning 
and generalization capabilities, have consistently exhibited exceptional accuracy and stability in classifying crops 
through remote sensing, rendering them among the most widely utilized techniques22,23. Despite substantial 
advancements in data and methods for remote sensing crop classification, accurately distinguishing specific crop 
types such as soybeans, corn, and wheat from imagery remains a formidable challenging24.

While various crops exhibit categorical differences, their shared vegetative characteristics often lead to subtle 
spectral distinctions. Consequently, it is essential to incorporate vegetation index and specific spectral bands 
to capture the distinct biophysical attributes of crops, particularly soybeans, which frequently encounter pro-
nounced spectral overlap with certain other crops8. Previous studies have highlighted a noteworthy feature of soy-
beans related to reduced canopy water content during the growing season, distinguishing them from some other 
crops at comparable phenological stages25,26. The short-wave infrared (SWIR) bands effectively capture this infor-
mation27,28. Additionally, the red-edge bands (Sentinel-2) and vegetation index derived from these bands, such as 
Red Edge Normalized Difference Vegetation Index (RENDVI) and Red Edge Position Index (REPI), play a crucial 
role in discriminating soybean from corn, thereby enhancing the classifier’s accuracy in soybean classification20,29.

Methods for crop recognition relying on spectral or vegetation indexes as input features often depend on 
specific datasets and ground references. However, obtaining sufficient ground-truth crop data typically consti-
tutes the most demanding, time-consuming, and expensive aspect of crop mapping30. Consequently, numerous 
researchers have focused on studying crop mapping in scenarios with either no samples or limited samples. 
For instance, researchers have explored the physicochemical characteristics of crops by analysing their spec-
tral and vegetation index profiles. They have developed techniques such as knowledge transfer topologies31, 
multi-temporal Gaussian mixture models32, and the integrated Greenness and Water Content Composite 
Index (GWCCI)27 for mapping soybeans and corn in space. However, these methods are often more suitable 
for regions with extensive soybean or corn cultivation and may be sensitive to other types of vegetation or 
crops in areas with intricate planting patterns. Consequently, some researchers have chosen to employ crop 
ground-truth samples from preceding years for feature transfer or sample migration33,34. Despite potential var-
iations in certain crop features across time and space, these characteristics tend to exhibit a consistent level of 
stability35. Supervised learning methods are subsequently employed to conduct crop classification in subsequent 
years22,33,36. Results obtained through these limited or zero-sample methods may not be optimal but still demon-
strate acceptable performance and accuracy.

Developing nationwide crop maps presents a formidable challenge that necessitates the availability of 
high-quality remote sensing data, abundant ground-truth crop data, and well-designed classification methods37. 
In China, soybean cultivation spans approximately 8% of arable land, with nearly half concentrated in the north-
eastern region3. However, in the northeast, soybeans cultivation merely encompasses 5% of the available arable 
land38. These factors highlight the distinctive nature of soybean cultivation in China, characterized by a small 
cultivation area, dispersed plots, and considerable annual variations. Consequently, the creation of nationwide 
soybean distribution maps is a highly intricate undertaking. Majority of the current spatial maps for soybean 
in China are primarily concentrated in the northeastern region24,25,39, and only one product in 2019 covers the 
whole country (GLAD maize and soybean map)13. One of the primary obstacles in generating high-resolution 
soybean maps lies in the absence of reliable ground-truth data. While some methods have been devised to 
classify and map soybeans with minimal or no samples27,31, as well as perform early-season classification using 
data using previous years22, these approaches possess limitations, particularly in the diverse crop landscape of 
Huang-Huai-Hai Plain and the Middle-Lower Yangtze Plain. Moreover, intricate planting practices on small 
farms are affected by various factors, including economic shifts and alterations in land use policies40,41, thereby 
leading to annual variations in crop types and rendering crop identification more challenging. Despite earnest 
efforts to map crops at a 10-meter resolution throughout China, soybean mapping remains restricted, especially 
in regions like Sichuan, Anhui, and Henan, which boast high levels of soybean production and lie beyond the 
primary Northeastern cultivation areas.

In response to the challenges posed by the lack of high spatial resolution soybean mapping and the absence of 
ground truth samples in China, our study aims to create China’s annual soybean map based on limited samples 
and spatiotemporal migration methods. Initially, based on the growth physical and chemical characteristics 
of soybeans, we generate samples from limited ground survey samples for the target year and region. We then 
employed random forest classification, utilizing soybean temporal features derived from time series of vegeta-
tion indexes and spectral bands as input. These features encompassed statistical measures, phenological char-
acteristics, and harmonic fitting parameters. In regions with frequent cloud cover or a shorter soybean growing 
season, SAR data were incorporated to complement features. This involved utilizing statistical features and 
principal component features of backscatter coefficients and their combinations. Our comprehensive approach 
enables nationwide mapping of soybean planting areas. We successfully generated spatial maps of soybean cul-
tivation for 10 provinces in China, including Heilongjiang, Jilin, Inner Mongolia, Henan, Sichuan, and others, 
covering the years from 2019 to 2022 at a 10-meter resolution.

Methods
Our soybean cropland mapping process includes four steps, as illustrated in Fig. 1: data preprocessing, sample 
generation, classification and validation.

Study Area.  This study aimed to map the distribution of the soybean planting areas from 2019 to 2022 in ten 
provinces, namely Heilongjiang, Inner Mongolia, Anhui, Sichuan, Henan, Jilin, Jiangsu, Shandong, Hubei, and 
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Liaoning (Fig. 2). These provinces are recognized as the top soybean-producing regions in China, collectively 
accounting for more than 80% of soybean production3. To effectively map the soybean annual planting area in 
China, we categorized them into three main regions: (a) Northeast China, encompassing Heilongjiang, Jilin, 
Liaoning, and the northeastern Inner Mongolia; (b) Huang-Huai-Hai Plain and the Middle-Lower Yangtze Plain, 
covering Shandong, Henan, Anhui, Jiangsu, and Hubei; and (c) Sichuan Basin.

Data.  The Sentinel-2 satellite, with a spatial resolution of 10 meters and a revisiting period of 5 days, offers 
optimal support for the comprehensive and long-term identification of crops. Equipped with the Multispectral 
Instrument (MSI), Sentinel-2 can effectively even the slightest variations between different crops. For our study 
area, we acquired all available Sentinel-2A/B (S2) Level-2A surface reflectance (SR) data from 2019 to 2022 
through the Google Earth Engine (GEE) platform. To enhance data quality, cloud masking and Savitzky-Golay 
(SG) filtering techniques were applied to the acquired data.

Two categories of spectral data were utilized to classify soybeans and other crop types: (1) reflectance from 
five spectral bands and (2) the values of nine spectral indices (refer to Table 1). The five bands selected for 
classification are red edge 1 (RE1), red edge 2 (RE2), red edge 3 (RE3), shortwave infrared 1 (SWIR1) and 

Fig. 1  Workflow for mapping soybean planting areas using the sample-generation and pixel-based algorithm. 
Sentinel-2 SR, sentinel-2 surface reflectance products in Google Earth Engine; Sentinel-1 SAR, a dual-
polarization C-band Synthetic Aperture Radar data at 5.405 GHz; S-G filter, Savitzky-Golay filter; ESA, 
European Space Agency; VIs, Vegetation Indices; RMSE, root-mean-square error; MAE, mean absolute error; 
R2, R-squared; OA, overall accuracy; PA, producer’s accuracy; UA, user’s accuracy.
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shortwave Infrared 2 (SWIR2). The red-edge bands are important indicator bands that reflect plant pigments 
and health status. The short-wave infrared bands can reflect changes in moisture and other biochemical compo-
nents in crop leaves42. Previous research has confirmed the significant role they play in distinguishing between 
soybeans and corn13,20,43. Additionally, nine commonly employed spectral indexes were computed: Enhanced 
Vegetation Index (EVI)44, Green Chlorophyll Vegetation Index (GCVI)45, Land Surface Water Index (LSWI)46, 
Red Edge Position Index (REPI)47, Red Edge Normalized Difference Vegetation Index (RENDVI)48, Normalized 
Difference Phenology Index (NDPI)49, and Soil-Adjusted Vegetation Index (SAVI)50, Optimized Soil-Adjusted 
Vegetation Index (OSAVI)51, Transformed Chlorophyll Absorption in Reflectance Index (TCARI)52. The use of 
NDVI and EVI time series is widespread for extracting temporal characteristics and phenological indicators of 
various crops. LSWI can effectively differentiates and classifies rice due to the heightened responsiveness of corn 
and soybeans to leaf and soil moisture. RENDVI and REPI, which leverage the S2 Red Edge bands, are particu-
larly suited for estimating canopy chlorophyll II and nitrogen content. OSAVI proficiently mirrors the dynamic 
growth of crops while simultaneously minimize the impact of background soil51. There exists a high correlation 
between crop OSAVI and their canopy chlorophyll content, which displays significant variations throughout the 
growth season of the crops. In crops with high chlorophyll content, such as soybeans, corn, and rice, changes in 
TCARI are comparatively slow. Therefore, TCARI/OSAVI demonstrates considerable sensitivity to flux in chlo-
rophyll content52. Cash crops such as peanuts, cotton, potatoes, and sunflowers, potentially outside of soybeans, 
are derived using TCARI/OSAVI25.

The availability of suitable Sentinel-2 images was limited due to frequent cloud cover and rain during the 
soybean growing season. This presented challenges in creating the necessary time-series spectral features for 
classification. To address this issue, Sentinel-1 SAR (Synthetic Aperture Radar) data was utilized to establish the 
required time-series spectral features for classification. Sentinel-1 is equipped with a C-band synthetic aperture 
radar operating at a center frequency of 5.045 GHz. It provides four imaging modes: Stripmap, Interferometric 
Wide swath, Extra Wide swath, and Wave modes. Sentinel-1 offers dual-polarization SAR data (HH+HV, 
VV+VH) and has four product specifications: RAW Level-0, SLC (Single-Look Complex), GRD (Ground Range 
Detected), and OCN (Ocean). Due to data storage limitations, Sentinel-1 images in GEE are accessible in the 
GRD format, which lacks phase information. The data in GEE undergo several pre-processing steps, which 

Fig. 2  Location of the major soybean-producing region in (a) Northeast China, (b) Huang-Huai-Hai Plain and 
the Middle-Lower Yangtze Plain, and (c) Sichuan Basin.
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Table 1.  Formulas of nine spectral indices used in the study. *ρblue, ρgreen, ρred, ρRE1, ρRE2, ρRE3, ρNIR and ρSWIR1, 
is surface reflectance of Band 2 (blue, 496.6 nm (S2A)/492.1 nm (S2B)), Band 4 (red, 664.5 nm (S2A)/665 nm 
(S2B)), Band 5 (Red Edge 1, 703.9 nm (S2A)/703.8 nm (S2B)), Band 6 (Red Edge 2, 740.2 nm (S2A)/739.1 nm 
(S2B)), Band 7 (Red Edge 3, 782.5 nm (S2A)/779.7 nm (S2B)), Band 8 A (NIR, 864.8 nm (S2A)/864 nm (S2B)), 
Band 11 (SWIR1, 1613.7 nm (S2A)/1610.4 nm (S2B)) in the Sentinel-2 MSI sensor.
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include: 1) removal of thermal noise, 2) radiometric calibration, 3) terrain correction using SRTM or ASTER 
DEM data, and 4) conversion of terrain-corrected backscattering coefficients to decibel values. Given the poten-
tial adverse effects of SAR active microwave imaging on image quality, this study applied Refine Lee filtering and 
straightforward incidence angle normalization into the processing of Sentinel-1 images.

The present study employs Sentinel-1 VV/VH dual-polarization imagery to distinguish five SAR parameters 
for extracting soybean features. These parameters comprise the backscattering ratio for VV and VH, denoted as 
σVH

0  and σVV
0  respectively, in addition to three combinations of polarization channels: the cross-polarization ratio 

( /VH
0

VV
0σ σ ), the cross-polarization sum (σ +σVH

0
VV
0 ), and the Radar Vegetation Index (RVI). These parameters are 

itemized in Table 2.

Training and validation data.  Ground survey samples, include those we collected from various provinces 
across different years, are denoted as yellow points in Fig. 2 and list in Table 3. The sample locations and crop 
types were recorded during fieldwork using mobile Geographic Information System (GIS) devices. Post-field sur-
veys, we conducted a visual inspection of all ground samples utilizing high-resolution images from Google Earth 
and Sentinel-2 RGB composite images. Any samples displaying evident errors, such as the misclassification of 
natural vegetation as crops, were discarded. Samples located close to roads or field boundaries were also excluded. 
In addition, the sample data was enhanced by using existing data products53.

Sample generation and migration.  This paper introduces a method for generating samples that employs 
existing samples to facilitate the spatiotemporal migration of soybean samples, even amidst constraints in sample 
sizes and temporal coverage (Fig. 3). The strategy used in this study for generating samples involves sifting out 
soybean and non-soybean specimens from randomly collected cropland samples. In our study area, the primary 

Features Proxies Description

backscattering ratio σ σ,VH
0

VV
0 Throughout the soybean growth period, alterations in the growth status and density of 

soybean leaves, stems, and pods can have substantial effects on the backscattering ratio67.

cross-polarization ratio /VH
0

VV
0σ σ

Fluctuations over time in this index reflect changes in moisture content and structure that are 
associated with phenological development68.

cross-polarization sum σ +σVH
0

VV
0 Cross-polarization is highly correlated with crop Leaf Area Index (LAI) and crop height69.

RVI RVI
4 VH

0

VH
0

VV
0 =

× σ

σ +σ
RVI can characterize both crop biomass and the LAI70.

Table 2.  The five SAR-based features used in the study.

Province 2019 2020 2021 2022

Heilongjiang 1737 500 — 226

Jilin 141 3694 — —

Liaoning 183 422 — —

Inner Mongolia 825 — 1393 —

Henan — 1967 — —

Anhui 919 341 — —

Chongqing — — — 564

Table 3.  The number of soybean samples collected by ground survey in different provinces and years.

Fig. 3  Sample generation process. SOS, start of growing season; POS, peak of growing season; EOS, end of 
growing season; CCI, Concave-Convexity Index.
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crops grown encompass soybeans, corn, rice, wheat, and other staple crops, the planting area of which comprises 
up to 62% of the total cultivated land area3. Peanuts, rapeseed, cotton, potatoes, sunflowers, and other cash crops 
are also cultivated. The production of winter wheat and winter rapeseed in China accounts for more than 90% of 
the total wheat and rapeseed production, respectively54. As the growth periods of these two do not overlap with 
that of soybeans, they are not considered when filtering sample. To distinguish soybeans from the aforemen-
tioned non-soybean samples, our method of generating samples is categorized into three parts. Initially, the ESA 
WorldCover55 is used to generate random cropland samples with unspecified crop types. Subsequently, based on the 
findings of Huang et al.25, we devised the Concave-Convexity Index (CCI), which segregates random crop samples 
into potential soybeans and non-soybeans based on the chlorophyll content change in the crop canopy. By charting 
the time series curves of band reflectivity and crop vegetation indexes, it is possible to discern accurate and reliable 
samples from potential ones, achieved through the analysis of the typical distribution of the area under the curve .

	 a)	 Generate crop samples. Different forms of land cover, including tree cover, grassland, water bodies, and 
buildings, are often proximate to agricultural areas. These elements may influence the integrity of the crop 
sample, as illustrated in Fig. 4. In our approach, a hexagonal automated sampling technique is utilized 
to generate random crop points56, which involves scattering a substantial number of points randomly 
within a hexagonal grid and determine the point’s classification by appraising the proportion of land cover 
categories within a 50-meter buffer. If a single land cover type comprises more than 90% of the area within 
this buffer, it is assigned as the type for that point. To verify the accuracy of samples for uncultivated area, 
we performed visual analysis using high-resolution Google Earth images and Sentinel-2 data from the 
corresponding year.

	 b)	 Filter potential soybean samples. We initiated a preliminary filtering process of random crop points, 
aimed at identifying potential soybeans and non-soybeans. Crops’ OSAVI is highly correlated with 
their canopy chlorophyll content, showing significant variations as the crops grow51. In crops with high 
chlorophyll content, such as soybeans, corn, and rice, TCARI changes relatively gradually52. As a result, 
the TCARI/OSAVI trend typically displays a concave pattern in these crops25. Conversely, crops with low 
chlorophyll content, such as peanuts, cotton, potatoes and sunflowers exhibit an inverse pattern, marked 
by noteworthy alterations in TCARI and culminating in a convex temporal curve, as illustrated in Fig. 5. 
This study leverages the TCARI/OSAVI association to evaluate the concavity or convexity of the temporal 
growth curves of crops by establishing the CCI for the start of growing season (SOS), peak of growing 
season (POS), and end of growing season (EOS)25. Points exhibiting a CCI ≥ 0 are marked as potential 
non-soybean points, while those with CCI < 0 are earmarked as possible soybean points. These points are 
subsequently employed in the sample selection process. The dates when the EVI temporal curve attains its 
peak are deemed as the POS of the crop, while the SOS and EOS are calculated using the median method57. 
The formulation for CCI calculation (Eq. 1) is provided below:

= ×
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2
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	 c)	 Confirm soybean samples. Several time series curves of band reflectivity and vegetation indexes, accu-
rately exhibiting the growth characteristics of soybeans, as presented in Fig. 6. The curve integration of a 
specific parameter represents its cumulative value throughout the entire crop growing season. Soybeans, 

Fig. 4  Grid-based random sample point generation with ESA WorldCover on the base map, green checkmarks 
indicate that a sample point of that feature type is retained, red fork markers indicate that the sample is 
discarded, and blue star markers indicate that cropland samples are retained for subsequent sample generation.
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during their peak growth phase, manifest increased dryness and greener foliage, distinguishing them 
from other crops27. Consequently, soybeans tend to exhibit elevated values for EVI and SWIR2, while 
their LSWI values are comparatively lower. During the peak growing season, the REPI and RENDVI for 
corn distinctly surpass those of soybeans20. Conversely, soybeans demonstrate a relatively high red edge 
reflectance. Accordingly, we formulated two parameter sets for soybean samples screening, which includes 
a high-value group (EVI, RE2, and SWIR2; see Fig. 6a–c), and a low-value group (LSWI, RENDVI, and 
REPI; see in Fig. 6d,e). As a result, soybeans can be clearly distinguished from other crops through curve 
integration. The integration limits align with the crop’s SOS and EOS.

Fig. 5  Temporal profile of TCARI/OSAVI for (a,b) soybeans and (c,d) other crops (including peanuts, cotton, 
and potatoes).

Fig. 6  Time-series vegetation index curves for soybeans and other major crops.
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The band reflectivity or vegetation index of a certain crop in the peak growing season follows a 
one-dimensional Gaussian distribution 32. The integral values of the aforementioned two sets of time series 
curves of soybeans are assumed to follow a multivariate Gaussian distribution that is connected to their dimen-
sions. The probability density function (Eq. 2) is given by:

PDF x x x( ) 1

( 2 )
exp 1

2
( ) ( )

(2)

T
3 1

2

1

∣ ∣π
μ μ=

Σ



− − Σ − 




−

Where x is the integral vector of time series curve from ether the high-value or low-value group, μ is the mean 
vector of the verified soybean points, and Σ is the covariance matrix. To quantify the resemblance between ran-
dom crop points and verified soybean points, we employed the Mahalanobis distance measurement. This com-
putation is performed between the randomly selected points and a multivariate Gaussian distribution, which 
is composed of verified soybean points. The Mahalanobis distance gauges the deviation between data points 
and distributions, factoring in the correlation among different dimensions. This method mitigates the effects of 
varying dimensions and variances, thereby yielding a more accurate representation of the correlation between 
two sets of data. The Mahalanobis distance (Eq. 3) for a multivariate vector, with a mean of μ and a covariance 
matrix Σ is defined as follows:

D x x x( , ) ( ) ( ) (3)M
T 1μ μ μ= − Σ −−

Figure 7 depicts the scatter distributions of soybeans, corn, and rice in three-dimensional spaces for 
high-value and low-value groups. Three crops clearly form distinct groups. The soybean samples are clustered 
in the upper-right and lower-left corners of two feature spaces. This highlights the excellent ability of the area 
under the curve employed in this study to distinguish soybeans from other crops. In the previous sections, we 
computed two sets of Mahalanobis distances between filtered points and points representing soybeans from 
ground survey. We hypothesize that shorter distances are indicative of soybeans, therefore emphasising the need 
to determine the categorization threshold. The threshold is determined by analysing the multivariate Gaussian 
distributions using soybean samples as the basis. Points with a high probability density are indicative of the most 
salient features of soybeans, and these points are concentrated at the centre of the distribution. To identify these 
robust soybean points, we employed the Monte Carlo method to calculate the probability density p50 at which 
the cumulative probability of the multivariate Gaussian distribution (which is symmetric around the centre) hits 
50%. The sought-after points are those soybean points with a probability density higher than p50. The formula 
(Eqs. 4, 5) for p50 is given as:

PDF x dx( ) 50%
(4)t

t

∫ =
µ

µ

−

+

μ= −p PDF t( ) (5)50

Subsequently, we computed the Mahalanobis distances from robust soybean points to the multivariate 
Gaussian distributions of high-value group and low-value group. The 90th percentile of these distances was 
selected as the threshold for confirming reliable soybean points from potential soybean, namely − −DSoy Thresh High 
and DSoy Thresh Low− − . For non-soybean points, we determined the 95th percentile of Mahalanobis distances from 
all ground survey soybean samples to the distributions, establishing DNonSoy Thresh High− −  and as filtering thresh-
olds. The filtering targets include potential soybean and non-soybean. Ultimately, the criteria (Eqs. 6, 7) for 
selecting soybean and non-soybean points from random points are as follows:

if CCI and D D and D D
Soybean else Soybean

( 0) ( ) ( ) ,
1; , 0 (6)

High Soy Thresh High low Soy Thresh Low< < <

= =
− − − −

Fig. 7  Spatial Distribution of Soybean Features, (a) High-Value Group, (b) Low-Value Group.
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if D D and D D
Non Soybean else Non Soybean

( ) ( ) ,
1; , 0 (7)

High NonSoy Thresh High low NonSoy Thresh Low> >

− = − =
− − − −

Where DHigh and DLow denote the Mahalanobis distances between arbitrary points and the high-value and 
low-value classes of soybean ground surveys, respectively. Figure 7 depicts the ellipsoidal clustering pattern 
of soybean points within a three-dimensional feature space. This study shows that the robust soybean points 
extracted through probability density occupy the central region of the ellipsoid. The percentiles of Mahalanobis 
distance from these points to the distribution guarantee that the filtered soybean points are also located 
within the ellipsoid, thereby assuring their accuracy and reliability. It is noteworthy that the computation of 
Mahalanobis distance involves dimension independence and standardization, which convert the ellipsoid into a 
sphere in the Mahalanobis distance space, thereby expanding the precision of the point filtering process.

In terms of migration strategy, we categorized the strategy into three types based on the spatiotemporal 
relationship between ground survey samples and migrated ones. These categories include: (1) Migrating sam-
ples from different regions in the same year to the target area (spatial migration); (2) Migrating samples from 
different years in the same region to the target year (temporal migration); (3) Migrating samples from different 
years and regions to the target year in the intended region (spatiotemporal migration). We give priority to using 
ground survey samples from the same region for migration (temporal migration), because soybean in the same 
area have relatively little inter-annual changes in planting habits, varieties, and soil texture58. Therefore, we think 
the temporal heterogeneity of soybeans in spectral parameters is smaller than the spatial heterogeneity. If there 
are no ground surveys in a certain area, samples from similar climate zones will be used for migration, with 
priority given to those from the same years, then adjacent years. Figure 8 describes the provinces and years to 
which the ground survey samples used for sample migration belong.

To evaluate the effectiveness of sample generation, we employed the GLAD maize and soybean map 
(GLAD)13 to assess the accuracy of the generated soybean and non-soybean samples. Since the timeline of 
GLAD is constrained to 2019, we performed experiments and computed accuracies only for the sample points 
generated in 2019, implying all target years are set as 2019.

Features selection and classification.  We utilized soybean phenological characteristics and spectral 
indexes to differentiate between soybean and non-soybean crops, as these are efficient in capturing the seasonal 
fluctuations in surface spectra. To compile these indicators, we annually selected data from April 1st to November 
15th, considering the crop calendars of various regions. Table 4 presents the candidate features we employed. 
Statistical features of five reflectance bands - RE1-3, SWIR1, and SWIR2 - were analysed during the growing 
season (DOY: 90–318). These encompass the minimum, maximum, and standard deviation, as well as the 15th, 
50th, and 90th percentiles. Phenological parameters obtained from the EVI time series, harmonic fitting param-
eters20,59, and accumulative biomass attributes60,61 are also taken into account. We utilized harmonic fitting (dis-
crete Fourier transform, Eq. 8) analysis to the original effective observational data to extract time-series curves, 
as demonstrated in the following formula:

∑ πω πω= + × + + +
=

f t a b t C t D t e( ) ( cos(2 ) sin(2 ))
(8)m

M

M M
1

Where f(t) represents fitted vegetation index value at the time instance t. The constant term is represented as a, 
while b corresponds to the coefficient of the first-order term. M signifies the quantity of harmonic components, 

Fig. 8  Ground survey samples used for samples migration in each province and year.
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and C and D stand for the coefficients of cosine and sine functions, respectively. The variable ω is the reciprocal 
of the number of days in a year (1/365), t represents a specific day within a year as denoted by the DOY, and 
e corresponds to the residual value. For temporal feature extraction, phase and amplitude are utilized with 
amplitude defined as the magnitude of a two-dimensional vector [CM,DM], and phase as the angle of the same 
two-dimensional vector [CM,DM].

In assessing biomass using EVI, the EVI is systematically calculated for every time series data point through-
out the growth season. The subsequent step involves aggregating the EVI values over unique time intervals to 
derive the cumulative biomass features, a crucial factor for soybean classification. To accommodate potential 
inconsistencies stemming from diverse pixel observation frequencies in regions with incomplete image data, 
a trilinear interpolation approach is incorporated in this study. This method effectively corrects missing data 
points, thereby ensuring a uniform computation of cumulative biomass features. The formula for trilinear inter-
polation (Eq. 9) is provided below:

= +
− + − −

− −

+
− + − −

− −

y y
f x x x x x f x x x x x x x

x x x x
f x x x x x f x x x x x x x

x x x x

[ , , ] ( ) [ , , ] ( ) ( )
( ) ( )

[ , , ] ( ) [ , , ] ( ) ( )
( ) ( ) (9)

0 2
2 2 3 0 2

2
1 2 3 0 2 0 3

2 1 2 3

1 2 2 0 2
2

1 2 3 0 1 0 2

3 2 2 1

Within this context, y0 denotes the sought-after interpolation outcome, with y2 denoting known function 
values. Here, x0 designates the point slated for interpolation, whereas x1, x2, and x3 stand as the abscissas for three 
established reference points. The notation f[x1,x2,x3] represents the third-order divided difference calculated at 
positions x1, x2, and x3.

In addressing the five SAR feature parameters (Table 5), we harnessed SAR image time series to extract piv-
otal phenological characteristics of crops. This process comprised both statistical features and principal compo-
nent features. The statistical features mirrored the approach adopt for optical data, incorporating the maximum, 
minimum, and variance, along with the 15th, 50th, and 90th percentiles of the five SAR parameters. These sta-
tistical attributes are instrumental in conveying the average levels and temporal fluctuations within time series 
curves for diverse crops. Furthermore, we carried out a Principal Component Analysis (PCA) on the Sentinel-1 
image time series in the temporal domain, selecting the initial three principal components as the principal com-
ponent features of SAR data62.

Considering the ‘Hughes’ Phenomenon, the current number of features is copious. Consequently, in each 
classification process, we incorporate feature selection, choosing to maintain the top 50% of features. This deci-
sion is influenced by the ranking provided by the random forest model for the final classification.

We employed local random forest classifiers for soybean planting areas identification in each province. This 
non-parametric machine learning classifier exhibits a higher error tolerance compared to certain parametric 
classifiers and has been extensively utilized in classification and recognition research. In terms of dividing train-
ing set and testing set, half of the samples within each province were randomly selected for training the classifier 
and mapping soybean cropland, while the remainder were utilized for validation. In this study, we implement 
the random forest classification model within the GEE. On the GEE platform, we vary the number of decision 
trees from 50 to 500 at 50-unit intervals. The chosen number of decision trees as the parameter for ensuring 
classification is the one that surpasses 100 and achieves the initial local maximum in classification accuracy. To 
counteract minor result variations in each experimental repetition due to the inherent randomness in random 
forest sampling, we set a random seed of 999. All additional parameters are left at their default values.

To assess the precision of soybean distribution mapping, we take two approaches: (1) on-site validation 
through the collection of ground truth samples, which involves conducting ground surveys and generating 
samples, and (2) comparing the results with agricultural statistical data obtained from administrative units. 

Feature Type Feature Name Processing Method Quantity

Vegetation Indices Time Series EVI, GCVI, LSWI, REPI, NDPI

min, max, std, and 15/50/90th percentile

5 × 6

Red-Edge Band Time Series B5, B6, B7 nm nm(704 782 )− 3 × 6

Shortwave Infrared Band Time Series B11, B12 −nm nm(1610 2200 ) 2 × 6

Phenological Features SOS EOS LOS Median method 3 × 1

EVI Time Series Features (EVI) Phase and Amplitude Harmonic fitting 2 × 2

Accumulated Biomass Features EVI Accumulation 2 × 1

Table 4.  Summary of Optical Feature Parameters and Feature Extraction Methods.

Feature Type Feature Name Processing Method Quantity

Statistical Features σ σ σ + σ
σ

σ
, , , , RVIVH

0
VV
0

VH
0

VV
0 VH

0

VV
0 max, min, mean, stdv, 15/50/90th percentile 7 × 5

Principal Component Features σ σ σ + σ
σ

σ
, , , , RVIVH

0
VV
0

VH
0

VV
0 VH

0

VV
0 Principal Component Analysis 3 × 5

Table 5.  Summary of SAR Feature Parameters and Feature Extraction Methods.
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Confusion matrices were generated using both soybean samples and non-soybean samples for each provincial 
soybean map. These matrices were employed to calculate the producer’s accuracy (PA), user’s accuracy (UA) and 
F1-score (F1) for soybean samples (Eqs. 10–12), assessing the precision of the approaches. The overall success 
of this strategy was assessed by calculating the overall accuracy (OA). The Kappa coefficient was used to assess 
the level of agreement between the classification results and sample labels. In addition, we assessed the soybean 
planting area identified in this study by comparing it to agricultural statistical data at the provincial and pre-
fectural levels. This comparison was done using the coefficient of determination (R2), root mean square error 
(RMSE), and mean absolute error (MAE).

PA TP
TP FP (10)

=
+

=
+

UA TP
TP FN (11)

= × ×
+

F PA UA
PA UA

1 2
(12)

Post-processing.  For large-scale and high-resolution crop mapping, the speckle noise is inevitable, and the 
same goes for soybean mapping63. Errors may arise during sensor imaging, soybean sample generation, image 
preprocessing, and feature classification, etc., resulting in soybean patches composed of just one or two pixels in 
the mapping results. In most cases, they are considered speckle noise and should be eliminated. We performed 
post-processing on the results using eight-neighborhood majority filtering. This processing can filter independ-
ent, unconnected soybean pixels, and non-soybean pixels in soybean plots will also be filled, making the mapping 
results more accurate and reasonable.

Data Records
Between 2019 and 2022, we generated four soybean cropland maps encompassing China’s key soybean-producing 
regions, all at a 10-meter spatial resolution (ChinaSoybean10). The datasets, formatted to Geotiff, are available 
for access at the Zenodo repository (https://doi.org/10.5281/zenodo.10068402)64. Structured under the ESPG: 
4326 (WGS_1984) spatial reference system, the maps incorporate only one values: 1 to denote soybean planting 
areas, and null value to indicate non-soybean planting areas (inclusive of other landcover). These maps can be 
scrutinized and visualized using software such as ArcGIS, QGIS, or their alternatives.

Technical Validation
Precision Assessment of Sample Spatiotemporal Migration.  Employing GLAD maize and soybean 
map13, we evaluated the sample generation accuracy for both soybeans and non-soybeans. GLAD maize and 
soybean map (https://glad.earthengine.app/view/china-crop-map) is a 2019 national maize and soybean map 
produced using field survey samples and binary random forest, in which the R2 between soybean mapping area 
and statistical yearbook area can reach 0.93. It is considered to be a reliable reference for accuracy validation. 
Using the actual samples from 2019 to 2021, we generated soybean and non-soybean samples for different regions 
in 2019 via three different methods. Subsequently, we calculated the sample generation accuracy for each region, 
as delineated in Fig. 9. Broadly speaking, with the exception of Liaoning and Jiangsu, the generation accuracy 
exceeds 80% for soybean samples and 95% for non-soybean samples, indicating the efficacy of the method used. 

Fig. 9  2019 generated sample precision evaluation, (a) Soybeans, (b) Non-Soybeans, I-III represents different 
methods for sample migration: I-temporal migration, II-Spatial migration, III-Spatiotemporal migration.
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Among the three-generation methods applied for soybean samples–temporal migration, spatial migration, and 
spatiotemporal migration–the average accuracies were 87.32%, 86.49%, and 83.44%, respectively. Temporal 
migration within the same region proved to be superior, followed by spatial migration. The least accuracy occurs 
in spatiotemporal migration. We postulated that minor annual variations in climatic factors, such as temperature 
and precipitation, contribute less to negative effects on sample migration compared to spatial heterogeneity due 
to regional differences. Among all provinces, Heilongjiang demonstrated the best results with an average accuracy 
of 92.72%. Inner Mongolia, Anhui, and Henan, three major soybean-producing provinces, also reached approx-
imately 90%. In these provinces, soybeans are extensively cultivated, leading to relatively continuous and dense 
area, resulting in high accuracy. In contrast, Liaoning and Jiangsu, characterized by complex planting structures 
and fragmented soybean planting areas, had an accuracy below 80%. This lower accuracy can be attributed to 
these agricultural complexities and the adverse impact of rainfall on image quality. Conversely, the generation of 
non-soybean samples illustrated commendable accuracy and robustness across various regions. In summary, our 
sample generation method demonstrated exceptional proficiency across diverse regions, delivering commendable 
outcomes in both temporal and spatial sample generation.

Soybean map and accuracy assessment.  By harnessing Sentinel-2 remote sensing imagery, selected 
Sentinel-1 SAR image data, ground surveys and generated samples, we mapped soybean planting areas for ten 
provinces nationwide (Fig. 10), denoted as ChinaSoybean10. We conducted accuracy assessments of the mapping 
results using both ground surveys and generated samples. The result indicates that in the northeastern region, the 
average overall accuracy for soybean planting areas mapping was 93.70%, with a prevailing Kappa coefficient of 
0.8624. In crucial soybean cultivation areas of the Huang-Huai-Hai Plain, the middle-lower reaches of Yangtze 
River Plain, and Sichuan, the average overall mapping accuracy was 93.16%, accompanied by a Kappa coefficient 
of 0.7980 (Table 6). Moreover, we calculated both the producer’s accuracy and the user’s accuracy for each prov-
ince. In the prominent soybean planting areas of the Northeast, the average producer’s accuracy, user’s accuracy, 
and F1-score were 92.23%, 88.70%, and 90.06%, respectively. For the Huang-Huai-Hai Plain, the Middle-Lower 
Yangtze Plain, and Sichuan, the average of these indicators were 80.15%, 89.59%, and 0.8434, respectively.

Fig. 10  The crop maps in the main soybean producing area of China in (a) 2019, (b) 2020, (c) 2021, and (d) 2022.
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We compared the mapped soybean cropland areas of various prefecture-level cities with the officially reported 
planting areas, and quantitatively analyzed the accuracy of our soybean map by calculating R-squared (R2), 
root-mean-square-error (RMSE), and mean-absolute-error (MAE). The results demonstrate a high level of con-
sistency between our annual soybean maps and official statistical data (R2 > 0.85), with values of 0.91, 0.92, 0.87, 
and 0.88 for the years 2019 to 2022, respectively (Fig. 11). R2 for 2019 and 2020 were both above 0.9, while there 
was a slight decrease in 2021 and 2022, likely due to the increased use of generated soybean samples in those years. 
In Fig. 11, we plotted the 1:1 line, and some prefecture-level cities with higher soybean production, such as Heihe, 
Qiqihar, and Hulunbuir, tended to cluster around this line. However, certain cities in the Huang-Huai-Hai and 
Yangtze River regions exhibited slight discrepancies compared to the statistical yearbook, possibly due to the more 
complex planting structures and the presence of numerous smallholders65,66, resulting in significant field-level 
heterogeneity. Nevertheless, our method consistently produces highly reliable estimates of planting area.

Visual comparison with other products and methods.  Compared with some existing soybean dis-
tribution products, ChinaSoybean10 has wider spatial and temporal coverage. It also merges multi-source 
remote sensing data to achieve superior classification accuracy. We rank ChinaSoybean10 alongside GLAD 

Region Year OA Kappa PA UA F1

Northeast

2019* 0.9457 0.8937 0.9753 0.8539 0.9045

2020* 0.9464 0.8733 0.9225 0.9047 0.9112

2021* 0.9227 0.8493 0.8898 0.9175 0.9022

2022* 0.9333 0.8337 0.9017 0.8718 0.8845

HHH-MLY

2019* 0.9525 0.8268 0.8474 0.8724 0.8561

2020* 0.9361 0.7834 0.8123 0.8418 0.8227

2021 0.9345 0.7580 0.7549 0.8434 0.7940

2022 0.9452 0.7515 0.7632 0.8132 0.7835

Sichuan

2019 0.9399 0.8605 0.8468 0.9691 0.9038

2020 0.9309 0.8384 0.8198 0.9681 0.8878

2021 0.9219 0.8142 0.7748 0.9885 0.8687

2022 0.8919 0.7512 0.7928 0.8713 0.8302

Table 6.  Soybean Classification Mapping Overall Accuracy, Kappa, PA & UA. *Includes ground survey samples 
and generated samples, and the rest only have generated samples; HHH-MLY represents the Huang-Huai-Hai 
Plain and the Middle-Lower Yangtze Plain.

Fig. 11  Comparison of mapped soybean area and planted soybean area reported by statistics at prefectural 
levels in (a) 2019, (b) 2020, (c) 2021, (d) 2022.

https://doi.org/10.1038/s41597-024-03273-5


1 4Scientific Data | (2024) 11:439 | https://doi.org/10.1038/s41597-024-03273-5

www.nature.com/scientificdatawww.nature.com/scientificdata/

maize-soybean map13, CDL (Crop Data Layer)20 and soybean map produced by GWCCI27. Among them, GLAD 
covers the soybean planting areas across the country in 2019, CDL covers the Northeast region, and GWCCI uses 
a common threshold of 0.17 for soybean mapping in all regions across the country. As a demonstration reference 
in 2019, we selected examples from Heilongjiang (Fig. 12a,b), and Anhui (Fig. 12c) to illustrate the comparison 
between our soybean mapping results and those of state-of-the-art methods. For the first example (Fig. 12a), 
our soybean mapping results are in good agreement with CDL and GLAD, reflecting the accuracy of our results. 
In the second example (Fig. 12b), our results are very similar to GLAD, while CDL has redundant soybean rec-
ognition results in the red-boxed area. The third example is in Anhui Province (Fig. 12c). CDL does not cover 
this area, so the GWCCI generated results are compared with our results. The soybean mapping effectiveness of 
GWCCI relies heavily on image quality and threshold selection. It can be found that the overall result contains 
more salt and pepper noise, as well as misclassified pixels in the red-boxed area (Fig. 12c3), which do not exist in 
our results and GLAD. The above comparison verifies the accuracy of our results.

Advantages of the sample migration method.  The paper presents a soybean sample migration 
method, optimizing the acquisition of crop samples for soybean area mapping. The method is less financially 
demanding, automated, and provides accurate soybean and non-soybean samples using minimal pre-existing 
ones. Figure 13 displays samples taken in 10 provinces during 2019. The spatiotemporal migration is based on the 
disparity in crop’s band reflectivity and vegetation indexes. Using the integration of this curve during the growing 
season improves migration accuracy. The method’s potential lies in reducing the spatiotemporal heterogeneity of 
soybean phenology by using automatically determined growth season intervals.

Currently, there has been considerable research on no sample crop mapping based on crop knowledge and 
rule thresholds25,27,32. However, the effectiveness of these methods is severely hampered by threshold selection and 
are susceptible to clouds and fog, thus posing difficulties for large-scale crop mapping. The method presented in 
this paper selects random crop points based on the feature distribution of soybean samples, automatically deter-
mining filtering thresholds through the distribution characteristics of ground survey samples, thus enhancing its 
generality. Additionally, the mapping strategy in this paper combines generated samples with supervised classifica-
tion. The thresholds mainly restrict the quality and quantity of samples, rather than directly affecting the mapping 
results. Therefore, threshold calculation parameters can be more “extreme” to obtain a purer set of soybean samples. 

Fig. 12  Comparison with Existing Methods and Results, the first column is a median-synthesized RGB 
image from Sentinel-2 after cloud removal (from DOY 200 to DOY 240); the second column represents 
ChinaSoybean10; The second column shows the results of CDL and the results extracted by GWCCI, where  
(c1-c2) are from CDL and (c3) is the extraction result of GWCCI.; the fourth column is the soybean map of 
GLAD, with (a–c) indicating different regions: (a,b) 2019 soybean map in Heilongjiang province; (c) 2019 
soybean map in Anhui province.
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Compared to the sample migration method based on DTW distance developed by Zhang et al.33, our method 
eliminates the need to obtain samples of other major crops in the target area, hence offering a more versatile and 
convenient solution. Some researchers use crop samples generated by existing products for mapping13,56. Although 
this method is convenient and efficient, it is subject to considerable limitations in terms of both time and space.

In conclusion, the soybean sample migration methodology elucidated in this paper adeptly and efficiently 
procures both soybean and non-soybean samples for regions devoid of such samples. This significantly aids in 
the creation of comprehensive crop mapping products and offers myriad possibilities for crop mapping.

Usage Notes
China is the fourth largest soybean producer and the largest soybean importer in the world, and its soybean 
consumption relies heavily on imports. Mapping the distribution of soybean growing areas at the national scale 
is critical for food and energy security in the context of growing population and consumption. In this paper, 
we collected soybean field survey samples for many years and proposed a sample spatiotemporal migration 
method based on the temporal characteristics of vegetation index. Using field survey and generated samples, we 
create national 10 m soybean maps in China from 2019 to 2022. Through experiments, we found that the areas 
calculated by our soybean maps area consistent highly with the official statistical area at the prefecture-level. 
Therefore, our soybean mapping results can be used to support large-scale soybean yield estimates and quantita-
tive analyzes of multi-year soybean-cultivated area changes. Furthermore, our datasets can serve as a reference 
and support uncertainty analysis for comparable products.

Uncertainty.  Despite our stringent data processing measures, certain sources of uncertainty remain inher-
ent. Though we employed time-series Sentinel-2 data for soybean planting area mapping, the length of the soy-
bean growing season is geographically variable. The 5-day revisit cycle might not consistently yield complete 
time-series spectral curves due to obstacles such as cloudy conditions and rainfall. While we successfully inte-
grated Sentinel-1 data in certain regions and years, completely eradicating the speckle noise remains a complex 
task. Further, the widespread practice of soybean intercropping with crops such as corn and sorghum presents 
a substantial challenge in accurately mapping soybean’s spatial distribution within the Huang-Huai-Hai and 
Yangtze River regions. The potential mixed pixel effect arising from the 10-meter spatial resolution of Sentinel-2 
data inevitably weakens the identification signal of specific crops, introducing uncertainty. Lastly, despite the val-
idation of our sample generation method using ground-truth samples and existing products by achieving approx-
imately 90% sample accuracy, potential deviations may still affect our results. Additionally, our methodology still 
relies upon terrestrial survey soybean samples. Ensuring minor phenological differences between these field sur-
vey samples, and generated samples is critical to the accuracy of sample generation. Looking forward, leveraging 
crop-specific maps, and highly resolved remote sensing products could offer solutions for the mixed pixel issue 
and enhance sample generation methods for optimal differentiation between soybean and non-soybean areas. 
Consequently, this could simplify the soybean extraction process.

Fig. 13  2019 generated soybean sample and ground surveys in 10 provinces. (a) Heilongjiang, (b) Inner 
Mongolia, (c) Jilin, (d) Liaoning, (e) Anhui, (f) Henan, (g) Shandong, (h) Hubei, (i) Jiangsu, (j) Sichuan.
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Code availability
The programs used to generate the datasets and all the results were ESRI ArcGIS (10.6), Python (3.7 or 3.8) and 
Google Earth Engine (GEE). The scripts utilized for ChinaSoybean10 described in this paper can be accessed at 
https://github.com/ZihangLou/ChinaSoybean10.
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