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A city-level dataset of heavy metal 
emissions into the atmosphere 
across China from 2015–2020
Qi Dong1,2,4, Yue Li3,4, Xinhua Wei3, Le Jiao1, Lina Wu1, Zexin Dong1 & Yi An1,2 ✉

The absence of nationwide distribution data regarding heavy metal emissions into the atmosphere 
poses a significant constraint in environmental research and public health assessment. In response to 
the critical data deficiency, we have established a dataset covering Cr, Cd, As, and Pb emissions into 
the atmosphere (HMEAs, unit: ton) across 367 municipalities in China. Initially, we collected HMEAs 
data and covariates such as industrial emissions, vehicle emissions, meteorological variables, among 
other ten indicators. Following this, nine machine learning models, including Linear Regression (LR), 
Ridge, Bayesian Ridge (Bayesian), K-Neighbors Regressor (KNN), MLP Regressor (MLP), Random 
Forest Regressor (RF), LGBM Regressor (LGBM), Lasso, and ElasticNet, were assessed using coefficient 
of determination (R2), root-mean-square error (RMSE) and Mean Absolute Error (MAE) on the testing 
dataset. RF and LGBM models were chosen, due to their favorable predictive performance (R2: 0.58–
0.84, lower RMSE/MAE), confirming their robustness in modelling. This dataset serves as a valuable 
resource for informing environmental policies, monitoring air quality, conducting environmental 
assessments, and facilitating academic research.

Background & Summary
Currently, heavy metal pollution poses a significant threat to both ecological systems and human health. The 
main sources of heavy metals encompass industrial activities, mining operations, wastewater discharge, and the 
use of agrochemicals1–3. According to Ni et al.4, 86% of Cr, 77% of Cd, 80% of As, and 94% of Pb in farmland are 
derived from atmospheric deposition in China, specifically PM10 and PM2.5, characterized by their small size 
and higher bioavailability5. These particles have an increased capacity for dispersion and long-range transport6,7, 
making them prone to transfer to other carriers such as soil, water, and even plant leaves, subsequently leading 
to the indirect contamination of crops and water bodies. Moreover, PM2.5 and PM10 particles carrying heavy 
metals, with high toxicity, concealment, persistence, and biological accumulation8,9, can penetrate deep into the 
respiratory system of humans, giving rise to a spectrum of deleterious health effects10,11.

However, despite the daily tracking of PM2.5 and PM10 concentration in most of major cities in China since 
2013 and various efforts made to generate HMEAs data12–17, an assessment of heavy metal emissions into the 
atmosphere (HMEAs) across the entire country is still infant.

Creating a nationwide dataset for HMEAs is vital for several reasons. First of all, such dataset ensures the 
assessment on if air quality meets standards and understand its impact on human health, encouraging the 
implementation of appropriate preventive measures. Secondly, such dataset can be applied to identify pollution 
sources, therefore benefiting the formulation of effective pollution management strategies14,18. For instance, high 
levels of Pb in the atmosphere normally indicate highly-possibility of the presence of nearby industrial facilities 
causing Pb pollution19,20. This identification can be discerned by investigating the distribution and emissions of 
these nearby industrial facilities. Crucially, the HMEAs dataset can also be used for scientific research in areas 
like atmospheric chemistry, meteorology, and environmental science, aiding in the prediction of future air qual-
ity and environmental pollution trends18.

Nonetheless, the development of such a dataset poses formidable challenges, primarily due to the significant 
methodological complexities involved in interpolating limited and sparse point data to produce comprehensive 
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large-scale regional datasets21. Machine learning (ML), as a powerful tool for uncovering underlying patterns 
from both voluminous data and limited sample sizes22–24, has been increasingly applied to solve such prob-
lems because of its cost-efficiency, predictive accuracy, and robustness22,25. For example, Lyu et al. employed an 
enhanced Land-Use Regression model to predict the concentration of PM2.5-bound heavy metals in the eastern 
region of China21.

Therefore, this paper aims to complete the city-level national HMEAs dataset from 2015 to 2020 using a 
non-interpolation-based, machine learning approach. The decision to focus solely on these six years is due to 
the limited availability of input variable data. To the best of our knowledge, this is the first dataset of its kind at 
the city-level for China, covering data from 367 cities.

This city-level national HMEAs dataset can be valuable to a wide audience, including researchers, policy-
makers, and those interested in the subject. It can help evaluate the health risks associated with exposure to 
toxic metals, establish reference values for regulations, and track changes in pollution levels over time, which is 
vital for assessing the effectiveness of pollution control efforts and changes in air quality management practices.

Methods
An overview of our methods is shown in Fig. 1.

HMEAs data.  To further curb the escalating emissions of heavy metals from fuel combustion and industrial 
processes, the State Council of the Chinese government officially approved a specific comprehensive prevention 
plan targeting the five most heavily polluted and toxic HMs (Hg, As, Pb, Cd, and Cr) for the 12th Five-Year Plan 
(2011–2015). Despite the considerable research on mercury emissions into the atmosphere26–28, our study focuses 
on the other atmospheric heavy metals mentioned above due to the highly volatile and unstable nature of mercury.  
A comprehensive literature search addressing chromium (Cr), cadmium (Cd), arsenic (As) and lead (Pb) emis-
sions into the atmosphere (abbreviated as CrEA, CdEA, AsEA, and PbEA) from 2000 to 2021 was conducted 

Fig. 1  Flowchart diagram of methods to create HMEAs.
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using Web of science and China National Knowledge Infrastructure (Website: https://www.cnki.net/) to obtain 
data using the following search terms, where “TS” represents the article theme:

TS = [(PM2.5 OR atmosphere) AND (metal OR metals OR heavy metals OR heavy metal OR Cr OR Cd OR 
As OR Pb OR chromium OR cadmium OR arsenic OR lead) AND (address: China)] AND (From 2000 to 2021)].

A total of 118175 publications were initially identified. These publications were ranked based on their 
relevance, with the top 1753 most relevant publications retained. Subsequently, a screening process was 
implemented by examining the sections of materials and methods to determine the suitability, in total, 208 
publications of studies were selected based on the following criteria: (1) clear specification of the sampled partic-
ulate matter type, (2) explicit documentation of the sampling site locations, and (3) proper labelling of units for 
HMEAs data. Because some regions had multiple studies available, spanning different years, we selected those 
studies that provided comprehensive data for all four target heavy metals. This selection process resulted in a 
final set of 74 studies. Subsequently, we extracted data from tables and figures using the Web GetData Software 
(https://getdata.com/). This process yielded a dataset comprising 103 data points for Cr, 98 data points for Cd, 
92 data points for As, and 108 data points for Pb.

To calculate the HMEAs (Cr, Cd, As and Pb), the following heuristic formula was employed:

HMEAs k (Industrial particulate emissions) (HMEAs concentration)
/(particulate matter concentration) (1)

= ∗ ∗

Where the parameter “Industrial Particulate Emissions” is obtained from the National Statistical Yearbook, and 
the parameter k represents the unit conversion factor, ensuring that the resulting HMEAs is reported in ton (t). 
This formula is based on the following rationale: The majority of the HMEAs data found in literatures represent 
the concentration of heavy metals within particulate matter. Dividing these values by the particulate matter 
concentration yields the concentration of heavy metals in the atmosphere. Considering that particulate mat-
ter is the primary carrier of heavy metals in the atmosphere, and industrial sources contribute approximately 
75.4% of the total atmospheric particulate matter emissions (based on the Second National Pollution Source 
Census Bulletin), we approximately consider industrial particulate matter emissions as atmospheric content. 
Multiplying this by the concentration of heavy metals in the air results in the heavy metals emissions into the 
atmosphere.

Particularly noteworthy is that the HMEAs concentration data collected covers the years 2000 to 2021, span-
ning 22 years. However, the HMEAs dataset constructed in this study is limited to the six years from 2015 to 
2020. On one hand, the original HMEAs concentration data is obtained from literature, and its limited volume 
for the years 2015–2020 raises concerns about the adequacy for subsequent modeling, making it challenging 
to ensure the generalization capability of the models. On the other hand, the input variables for prediction, 
such as industrial pollutant emissions and vehicular emissions, are primarily sourced from national statistical 
yearbooks, with data available for only a few provinces before 2015, and most cities lack data. For these reasons, 
we utilized data from 2000 to 2021 for modeling and testing model performance, and employed the established 
model to predict HMEAs data for the years 2015 to 2020.

Environmental covariates.  In this study, environmental covariates, such as industrial emission and 
Meteorological factors, were chosen based on existing literatures21,29, these covariates play crucial roles in shaping 
air quality cand, consequently, the presence of heavy metals in particulate matter. Considering data integrity 
concerns, the covariate data utilized for modeling are all based on the data from the year 2015. Here, the detailed 
rationale for selecting these covariates and their data source are presented as follows:

Industrial Pollutants.  Industrial emissions, including sulfur dioxide (indSO2) and nitrogen oxides (indNOx), 
are significant contributors to HMEAs9,30. These emissions can serve as oxidizing agents in the atmosphere, 
reacting with heavy metal compounds and likely transforming them into more mobile and readily dispersi-
ble forms31, which remarkably influence HMEAs. The data representing industrial pollutants emissions, were 
acquired from the National Statistical Yearbook.

In the absence of city-level data for indNOx in 2015 and 2016, available only at the provincial level, we 
employed an estimation method based on the data from 2017 to 2020. The estimation procedure is as follows: 
To complete the data for the years 2017–2020, we applied linear temporal interpolation to fill in missing values 
for cities with incomplete data for specific years. At this point, it’s worth mentioning that the missing value fill-
ing method used here involves linear interpolation, but the subsequent prediction processes utilize non-linear 
machine learning methods. We observed that the proportion of indNOx emissions from each city to the cor-
responding provincial emissions in different years was relatively consistent, with most fluctuations hovering 
around 10%. Therefore, we calculated the indNOx emission data for the years 2015–2016 based on the provincial 
emissions and the average city-to-province ratio of emissions from 2017 to 2020.

The emission sources of heavy metals vary significantly across different regions. The uniform adoption of 
industrial sulfur dioxide and industrial nitrogen oxides as emission sources in this study is justified for the fol-
lowing reasons: First, the study covers a broad scope, spanning the national and municipal levels. Unlike smaller 
regions where pollution sources and emissions are well-defined, the industrial categories for each municipality 
are highly complex, making it challenging to ascertain emission quantities for the industrial sources across all 
367 municipalities in China. Second, currently available data from Chinese government departments such as 
the Ministry of Ecology and Environment and the Ministry of Energy only provide total emissions of industrial 
sulfur dioxide and nitrogen oxides without industry-specific breakdowns.
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Vehicle Emissions.  Vehicle emissions are a major source of nitrogen oxides (carNOx) and particulate matter 
(carSmoke). These emissions can interact with heavy metals in the atmosphere, potentially increasing the overall 
load of heavy metals32. For example, during the operation of vehicles, brake and tire wear can cause the release 
of heavy metals like Cr and Pb19, which can contribute to HMEAs, especially in urban areas with high vehicu-
lar traffic. Additionally, the combustion of fuel in vehicles can release emissions containing heavy metals such 
as As and Pb33,34, which may subsequently be absorbed by airborne particulate matter. Data on vehicle emis-
sions, including nitrogen oxides (NOx) and particulate matter, was obtained from both the National Statistical 
Yearbook and the National City Statistical Yearbook, but only provincial data on vehicle emissions was available. 
Considering the city-level vehicle emissions were strongly correlated with the number of motor vehicles, the  
following formula Considering the city-level vehicle emissions were strongly correlated with the number of 
motor vehicles, the following formula was utilized:

= ∗City vehicle emissions (Provincial vehicle emissions)
(City vehicle count/Provincial vehicle count) (2)

Since the period from 2015 to 2020 marked the initial stages of the development of new energy vehicles, 
accounting for a relatively small proportion, ranging from 1.3% to 1.75% of the total number of motor vehicles 
(data derived from Ministry of Public Security), this study did not take into account the emissions of heavy 
metals from new energy vehicles.

Population.  Human activities, including industrial processes and transportation, exhibit a connection with 
the heavy metals emissions into the atmosphere35. The size and density of the population in a given area can 
affect the local concentration of heavy metals in the atmosphere, consequently affecting the HMEAs, as regions 
such as Henan, Shandong, and Anhui, with more extensive human activity often experience higher emissions21. 
Population data were retrieved from the National Statistical Yearbook.

Meteorological covariates.  Meteorological factors can influence the dispersion, transport, and deposition of 
particulate matter36,37, have a strong effect of HMEAs. For instance, due to the scavenging effects on partic-
ulate matter by wet deposition, precipitation was negatively correlated with particulate matter concentration, 
evidently impacting HMEAs38. This is attributed to the varying characteristics of heavy metals in the atmos-
phere, including size distributions, temporal variations, and their relationships with meteorological parameters, 
these variations contribute to their complex health risks39. Meteorological data, including temperature, humid-
ity, sunlight duration, wind speed, and precipitation, were obtained from the China National Environmental 
Monitoring Center (http://www.cnemc.cn/).

Data preprocessing.  The existing dataset encountered certain challenges characterized by a limited sample 
size, substantial differences in magnitude between various parameters, and the presence of outliers—extremely 
large and small values that can significantly contribute to high errors. To address these challenges, data preproc-
essing was conducted, involving the utilization of the Synthetic Minority Over-sampling Technique (SMOTE) 
method, which has proven effective in balancing and augmenting data when dealing with limited samples Table 1.

Data augmentation.  In this study, we applied SMOTE to expand the dataset, resulting in increased data points 
for HMEAs, specifically 264 for CrEA, 199 for CdEA, 217 for AsEA, and 285 for PbEA. As demonstrated in 
Fig. 2, the augmentation process effectively rectified the data distribution, particularly by supplementing the 

count mean std min 25% 50% 75% max unit

CrEA 97 30.35 98.68 0.04 2.33 5.05 18.98 692.98 ton

CdEA 90 8.13 32.38 0.01 0.54 1.55 3.23 288.59 ton

AsEA 89 24.84 92.74 0.25 2.57 7.12 15.56 865.77 ton

PbEA 103 162.61 787.37 0.07 12.05 35.31 79.44 7787.34 ton

indSO2 367 41204.61 41303.03 1.36 12852.41 32204 57563.5 426800 ton

indNOx 367 30898.21 32357.35 3.73 9165.49 21750.44 41659.84 263378.75 ton

carNOx 367 18531.42 20697.94 10 5745.03 11866.86 23275.12 178819.36 ton

carSmoke 367 1745.56 1835.67 1.23 531.27 1106.64 2305.74 12601.5 ton

pop 367 374.92 345.16 0.13 148.12 295 489.95 3070 10,000 people

temp 367 14.51 5.81 −0.54 10.15 15.24 17.77 26.62 °C

rh 367 69.09 11.42 35.08 60.76 71.56 79.26 82.84 %

sd 367 2009.18 549.8 883.91 1571 2030.53 2418.73 3277.38 hour

wsp 367 4.87 1.01 2.88 4.22 4.81 5.45 8.33 m/s

preci 367 1146.93 665.02 45.48 573.3 1085.83 1682.51 2836.31 mm

Table 1.  Descriptive Statistics of CrEA, CdEA, AsEA, PbEA, indSO2 (industrial sulfur dioxide), indNOx 
(industrial nitrogen oxides), carNOx (vehicle emissions of nitrogen oxides), carSmoke (vehicle emissions of 
particulate matter), pop (population), temp (temperature), rh (humidity), sd (sunlight duration), wsp (wind 
speed) and preci (precipitation).
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initial dataset with additional data points for the rare, extremely high values, thereby enhancing data balance. A 
t-test was conducted on the synthetic data generated by SMOTE and the real data (results in Table 2), revealing 
non-significant differences between the synthetic and real data. This suggests the credibility of the synthetic data.

Data Transformation.  With the purpose of achieving a more favorable approximation to a normal distribu-
tion, a natural logarithm transformation was applied to CrEA, CdEA, AsEA, PbEA, indSO2, indNOx, carNOx, 
carSmoke, sd, wsp, and preci. Subsequently, outliers were removed from each column using a 3-fold standard 
deviation criterion.

Fig. 2  Distribution charts of original data (left) for CrEA/CdEA/AsEA/PbEA, augmented data (center) by 
SMOTE, and the combined dataset (right).
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Machine learning modeling.  Dataset Splitting.  In our data partitioning strategy, we employed 10-fold 
cross-validation to rigorously assess the performance of the ML models. The dataset comprises both real data and 
synthetic data generated using SMOTE. For the training set, 50% of the real data was thoughtfully combined with 
50% of the synthetically generated data, while the remaining 50% of the real data was reserved for the test set.  
This process was repeated ten times, with each iteration using a distinct data partition. To emphasize, the test eval-
uations were conducted exclusively on the entirely real data subset. This approach mitigates the risk of overfitting 
to the training data, and allows us to evaluate the model based on real data’s characteristics, as the synthetic data 
was deemed unsuitable for testing.

Model Selection.  To identify the most suitable model for predicting HMEAs, we evaluated nine machine learn-
ing models. Including a variety of machine learning models serves the purpose of exploring different approaches 
and capturing the diverse patterns present in the data. Among the chosen models, some are linear, while others 
are non-linear.

Linear Models: including Linear Regression (LR), Ridge, BayesianRidge (Bayesian), Lasso, ElasticNet, these 
models assume a linear relationship between input features and the target variable. Despite their simplicity, 
using multiple linear models allows for capturing different aspects of the linear relationship and accounting for 
potential collinearity issues.

Non-linear Models: including KNeighborsRegressor (KNN), MLPRegressor (MLP), RandomForestRegressor 
(RF), LGBMRegressor (LGBM), these models are capable of capturing non-linear relationships in the data. KNN 
relies on local patterns, MLP is a neural network capable of handling complex non-linearities, and RF and 
LGBM are ensemble methods effective in capturing intricate relationships and feature importance.

The application of multiple linear models is motivated by the desire to investigate different facets of linear 
relationships and potential collinearity challenges. Additionally, this approach provides a comparison against 
non-linear models to assess whether the data exhibits significant non-linearities that the linear models may 
not capture effectively. Parameter design can be provided upon request. The coefficient of determination (R2), 
root-mean-square error (RMSE) and Mean Absolute Error (MAE) on the testing dataset were utilized to com-
pare the prediction performance. R2, RMSE and MAE values were calculated using Eqs. 3, 4 and 5, respectively.
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Where �yi, yi and y represent the predicted values, observations and average observations, respectively. Models 
with high R2 values and low RMSE and MAE will be selected.

Model uncertainty.  We calculated the probability of coverage for prediction intervals (PICP). This prob-
ability represents the percentage of samples falling within the boundaries of a prediction interval, given a 
specific level of confidence. If the uncertainty estimates are appropriately determined, the PICP values should 
approximate 0.90.

HMEAs prediction creation.  Once the models were trained on the training dataset, we utilized the trained 
models to predict HMEAs for the test dataset. The predictions, initially provided in logarithmic form, were trans-
formed into their original content values. We then assessed the model’s performance by calculating R2, RMSE, 
and MAE between the predicted and actual values. Subsequently, this approach provides a more accurate assess-
ment of the model’s performance, helping to prevent overly optimistic results and ensuring that the model’s pre-
dictions are in closer agreement with real observations.

Data Records
The dataset of HMEAs is available on figshare with a doi of https://doi.org/10.6084/m9.figshare.24762513.v440.

HMEAs P values CI 95%

CrEA 0.106 −9.49, 0.93

CdEA 0.176 −5.52, 1.02

AsEA 0.159 −11.37, 1.88

PbEA 0.442 −74.6, 32.74

Table 2.  The t-test results for synthetic data generated using SMOTE and real data.
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Specifically, the dataset encompasses HMEAs data spanning the time window from 2000 to 2021 at the 
city level. The files comprise six distinct datasets: CrEA_predictions, CdEA_predictions, AsEA_predictions, 
PbEA_predictions, HMEAs_data, and Environmental_covariates_data. Each of the first four tables contains 
eight columns. The first and second columns denote the province and the city, respectively, while columns 3–8 
correspond to data for the years 2000–2021, measured in tons.

The HMEAs_data file specifies the sources and references for all original data in the manuscript, providing a 
comprehensive list of detailed original HMEAs data.

The Environmental_covariates_data table consists of 15 sheets (Table 3), each dedicated to the raw data 
used in calculating 10 environmental covariates based on the Methods above. These data were obtained from 
publicly available statistical yearbooks, meteorological monitoring stations, and other sources on the Chinese 
government website. The raw data, sourced from these platforms, underwent necessary conversions before being 
incorporated as input data into the model.

On Github is available the code in Python language to reproduce the HMEAs computation starting from the 
raw data. In the main folder “Code” there are four sub-folders named “CrEA_code”, “CdEA_code”, “AsEA_code”, 
and “PbEA_code”, containing the scripts used for the HMEAs computation.

Technical Validation
Model performance.  The results, averaged over 10-fold cross-validation on the training and testing dataset 
for R2, RMSE, and MAE, are presented in Table 4. All models exhibit lower performance metrics on the excluded 
testing dataset compared to their training counterparts (10-fold CV). This difference is primarily due to the 
testing data not being involved in model development and the inherent variability introduced by the random 
assignment of monitoring sites to the testing set. Among these models, both RF and LGBM consistently exhibited 
significantly higher R2 values and lower RMSE and MAE scores than other models. Specifically, for CrEA, the 
LGBM model demonstrated superior performance with an R2 value of 0.84 (compared to 0.76 for RF), accom-
panied by lower RMSE and MAE, showing a reduction of 15%-20%. However, a different trend was observed for 
CdEA, AsEA, and PbEA, where the RF model exhibited top performance, yielding the highest R2 values: 0.58 
for CdEA (0.41, the second-best result from LGBM), 0.73 for AsEA (0.68, the second-best result from LGBM), 
and 0.70 for PbEA (0.61, the second-best result from LGBM). Furthermore, the RF model achieved lower RMSE 
and MAE values by 7%-65% for these three HMEAs. Consequently, based on a comprehensive evaluation and 
superior performance, the LGBM model was chosen for CrEA, while the RF model was selected for CdEA, AsEA, 
and PbEA.

The scatter plots depicted values predicted by RF and LGBM versus observed values in Fig. 3. It’s noteworthy 
that the PbEA dataset exhibits an exceptionally wide numerical range, spanning from 0 to 1800, while the data 
spans for the other three HMEAs reach a maximum of only 90. Additionally, there are very few values in the 
PbEA dataset exceeding 700t (only 2), and these two values may be outliers. The models perform well on lower 
numerical values, encompassing both the training and testing sets, with AsEA standing out. Specifically, the fit-
ted R2 for AsEA predictions versus actual values in the testing sets reaches as high as 0.87, with the R2 remaining 
at 0.8 when AsEA values are below 20t. Additionally, CrEA, CdEA, and PbEA demonstrate satisfactory perfor-
mance in the testing set within the ranges of 0-10t, 0-10t, and 0-100t, respectively, with R2 values ranging from 

sheet explanation column_name columns_number

indSmoke Industrial emissions of particulate matter at 
the city level province,city, 2015, 2016, 2017, 2018, 2019, 2020, unit 368

indNOx Industrial nitrogen oxides emission at the 
city level province,city, 2015, 2016, 2017, 2018, 2019, 2020, unit 368

carNOx_province Vehicle nitrogen oxides emission at the 
province level province,2015, 2016, 2017, 2018, 2019, 2020, unit 32

carSmoke_province Vehicle emissions of particulate matter at 
the province level province,2015, 2016, 2017, 2018, 2019, 2020, unit 32

Motor_vehicle_quantity_province Number of motor vehicles at the province 
level province,2015, 2016, 2017, 2018, 2019, 2020, unit 32

Motor_vehicle_quantity_city Number of motor vehicles at the city level province,city, 2015, 2016, 2017, 2018, 2019, 2020, unit 368

indNOx_province Industrial nitrogen oxides emission at the 
province level province,2015, 2016, 2017, 2018, 2019, 2020, unit 32

indSO2 Industrial sulfur dioxide emission at the 
city level province,city, 2015, 2016, 2017, 2018, 2019, 2020, unit 368

indSO2_province Industrial sulfur dioxide emission at the 
province level province,2015, 2016, 2017, 2018, 2019, 2020, unit 32

pop Population province,city, 2015, 2016, 2017, 2018, 2019, 2020, unit 368

temp Temperature province,city, 2015, 2016, 2017, 2018, 2019, 2020, unit 368

rh Humidity province,city, 2015, 2016, 2017, 2018, 2019, 2020, unit 368

sd Sunlight duration province,city, 2015, 2016, 2017, 2018, 2019, 2020, unit 368

wsp Wind speed province,city, 2015, 2016, 2017, 2018, 2019, 2020, unit 368

preci Precipitation province,city, 2015, 2016, 2017, 2018, 2019, 2020, unit 368

Table 3.  Sheets included in the Environmental_covariates_data.xlsx table.
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0.44 to 0.72. A consistent trend is observed across all models, indicating an inclination to underestimate HMEAs 
values beyond the specified numerical ranges. This tendency probably partly stems from the scarcity of high 
values in the training set compared to low values, suggesting a potential limitation in capturing extreme values 
during model training. Other factors, such as hyperparameter settings or the unique distribution of data within 
the context of modeling, may also contribute.

Predictions assessment.  Comparative analysis of point data.  After predicting HMEAs data for 367 cities 
nationwide from 2015 to 2020 using the selected model, we compared these predictions with the actual data 
found in literatures, as shown in Table 5. In comparison, the fitting R2 is higher for AsEA, CdEA, and PbEA than 
that for CrEA, particularly for PbEA, with an average R2 value as high as 0.83, and the R2 remains consistently 
above 0.7 for all years, despite the high RMSE and MAE in 2017 and 2018. In general, according to the RMSE and 
MAE, the order of errors from smallest to largest is: CdEA, CrEA, AsEA, and PbEA, indicating that CdEA values 
are likely the most accurate. Due to the larger data volume for the four HMEAs and the model being trained based 
on covariate data from 2015, the fitting R2 is relatively higher in this year. Some individual years have R2 values 
exceeding 0.8, such as the 2016 (1.00) and 2020 (0.98) for AsEA, possibly due to the small data size for these two, 
with only 5 and 3 data points, respectively. Transferring the model trained on 2015 data to other years resulted in 
a decrease in performance, but overall, it remains acceptable.

Comparative analysis of annual totals.  To further validate the data quality, we compared the predicted data 
with the reported annual emissions of four HMEAs by Cheng et al.41, as shown in Fig. 4. We performed linear 
regression between the 2010 data and our predicted data for the years 2015–2020, revealing a good fit with R2 
values all exceeding 0.8. The R2 values for AsEA and PbEA were exceptionally high, exceeding 0.95. Due to the 
scale setting, CrEA and AsEA from 2015 to 2020 appear to overlap on the graph. This is because of the close 
proximity of their emission levels during these years. Detailed data can be found in the table below, with differ-
ences ranging between 4.7% and 15.5%, except for the year 2020, where the difference is 27.4%, resulting in the 
appearance of overlapping data points. However, in 2010, there is a substantial difference between the values of 
CrEA and AsEA (13715t and 4196t, respectively), leading to significant variations in the fitting R2. Notably, the 
data for the years 2011–2014 is currently unavailable. However, based on the graph, it is evident that after the 
implementation of China’s Action Plan for the Prevention and Control of Air Pollution in 2013, and following a 
year or two of preparation, there was a significant decrease in HMEAs by the year 2015. The policy’s effectiveness 
in implementation appears to be highly favorable.

HMEAs metrics RF LGBM LR Ridge KNN BR Lasso ElasticNet MLP

CrEA

R2_train 0.859 0.886 −0.06 −0.063 0.121 −0.087 −0.209 −0.209 −4.70E + 18

RMSE_train 8.107 7.297 22.177 22.023 20.335 22.535 23.601 23.581 1.50E + 10

MAE_train 3.784 3.498 13.397 13.15 11.607 13.314 14.146 14.08 4.80E + 09

R2_test 0.763 0.842 −0.075 −0.069 0.022 −0.051 −0.104 −0.067 −1.30E + 19

RMSE_test 8.304 6.92 18.715 19.846 16.534 17.714 19.403 18.957 1.60E + 10

MAE_test 4.084 3.562 10.874 11.769 9.724 10.546 11.265 11.108 5.20E + 09

CdEA

R2_train 0.776 0.71 −0.018 −0.022 0.08 −0.035 −0.124 −0.118 −4.20E + 27

RMSE_train 5.673 6.23 11.691 11.736 10.894 11.273 12.273 11.908 2.60E + 14

MAE_train 1.824 2.049 5.032 5.027 4.625 4.879 5.2 5.112 3.20E + 13

R2_test 0.584 0.411 −0.696 −0.06 −0.026 −0.072 −0.078 −0.055 −3.10E + 25

RMSE_test 4.392 7.272 9.978 9.707 11.151 12.758 9.884 11.614 1.90E + 13

MAE_test 1.384 2.066 3.85 3.603 4.249 4.19 3.476 3.927 3.70E + 12

AsEA

R2_train 0.898 0.856 0.103 0.091 0.242 0.079 −0.076 −0.064 −6.30E + 48

RMSE_train 8.341 9.856 24.435 25.054 22.622 24.989 27.219 27.043 2.40E + 25

MAE_train 3.8 4.131 13.641 13.879 12.186 13.867 14.941 14.923 2.50E + 24

R2_test 0.726 0.68 −0.027 0.072 0.083 0.031 −0.035 −0.038 −2.60E + 44

RMSE_test 10.665 11.877 23.108 18.969 20.354 20.763 19.637 19.6 9.50E + 22

MAE_test 4.704 5.039 12.702 10.977 11.19 11.137 10.679 10.729 2.50E + 22

PbEA

R2_train 0.815 0.873 −0.002 −0.008 0.256 −0.022 −0.119 −0.105 −3.50E + 00

RMSE_train 89.402 72.968 201.37 205.059 171.416 197.746 209.119 209.425 3.20E + 02

MAE_train 28.219 22.549 93.281 92.812 76.367 90.64 95.742 95.275 1.60E + 02

R2_test 0.696 0.613 −0.414 −0.531 −0.251 −0.229 −0.061 −0.096 −4.80E + 00

RMSE_test 92.416 106.504 191.131 186.071 189.138 232.47 221.016 198.945 2.80E + 02

MAE_test 28.879 34.582 75.582 76.165 73.984 86.106 79.895 76.943 1.30E + 02

Table 4.  R2, RMSE and MAE values for the 10-fold cross-validation testing set (50% of the real data), the units 
of RMSE and MAE were tons.
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Model uncertainty.  Regarding uncertainty, for a 95% confidence interval, the PICP values were 0.93, 0.94, 
0.9, and 0.93 for CrEA, CdEA, AsEA, and PbEA, respectively. All four HMEAs’ PICP values are above 0.9, indi-
cating that the data estimates are reasonable.

Fig. 3  Scatter plot of predicted values versus actual values in training (gray) and testing set (blue). Red circles 
indicate magnified regions.

HMEAs Metrics 2015 2016 2017 2018 2019 2020 Average

CrEA

n 25 6 7 13 11 4

R2 0.94 0.33 0.74 0.52 0.35 0.76 0.61

RMSE 3.49 5.34 1.54 1.87 2.15 6.14 3.42

MAE 1.91 3.33 1.36 1.47 1.61 4.01 2.28

CdEA

n 15 6 12 16 8 4

R2 0.9 0.88 0.51 0.92 0.39 0.82 0.74

RMSE 1.36 4.68 1.1 13.93 0.43 0.18 3.61

MAE 0.63 2.64 0.77 5.47 0.38 0.15 1.67

AsEA

n 14 5 9 16 9 3

R2 0.77 1 0.46 0.64 0.36 0.98 0.7

RMSE 6.22 11.39 3.15 26.51 2.53 0.68 8.41

MAE 3.55 5.54 2.64 14.73 2.22 0.5 4.86

PbEA

n 12 6 14 18 8 3

R2 0.98 0.72 0.75 0.74 0.94 0.84 0.83

RMSE 8.8 12.86 53.92 68.17 7.21 5.03 26

MAE 5.75 10.09 34.04 36.87 5.83 4.66 16.21

Table 5.  Comparative analysis of model predictions and experimentally measured values recorded in 
literatures, the units of RMSE and MAE were tons.
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Usage Notes
The results of this study have certain limitations due to the quality and quantity of data collected from published 
papers. The data distribution of some input features and output targets was inconsistent due to multiple varia-
tions in research objectives, methodologies, and experimental conditions. For instance, the HMEAs values were 
determined based on a wide range of features, including, but not limited to, emissions of household pollutants, 
vegetation coverage, municipal solid waste incineration, etc. Additionally, in this study, the dataset for HMEAs 
covers a 20-year span, while covariate data used for modeling are from 2015. This time difference may intro-
duce errors. Future research should consider a time series approach to better capture the temporal variations in 
HMEAs.

Another significant concern involves the considerable disparities in the sources of different heavy metals 
across diverse regions. Employing a uniform contribution ratio for industrial sources could introduce uncer-
tainty in estimation results. While acknowledging the validity of this concern, obtaining pollution source emis-
sion data categorized by industry for all 367 municipalities poses a formidable challenge. Addressing this issue is 
crucial for enhancing the model’s accuracy. In the event that detailed emission data by industry become available 
in the future, refining the model would be beneficial, presenting a potential focal point for subsequent research.

These constraints may cause uncertainties in some of the prediction results and may not precisely reflect 
real-world scenarios. Therefore, future research should focus on improving the ML model using a database that 
includes studies with well-defined scientific objectives and similar methodologies under uniform experimental 
conditions.

In addition, it is crucial to note that further research on the atmospheric emissions of other heavy metals, 
including mercury, copper, zinc, nickel, and so on, is essential. This extension of our study aims to contribute to 
a comprehensive understanding of the broader spectrum of atmospheric heavy metal pollutants and to support 
ongoing environmental research efforts.

Code availability
Data processing was performed in Python 3.10, and data used for the computation of HMEAs at city level are 
available can be accessed at Github repository located at https://github.com/Olivia-2012/HMEAs_DataSet. We 
implemented the procedure described in the Methods section.

Received: 5 January 2024; Accepted: 21 February 2024;
Published: xx xx xxxx

References
	 1.	 Jayakumar, M., Surendran, U., Raja, P., Kumar, A. & Senapathi, V. A review of heavy metals accumulation pathways, sources and 

management in soils. Arab. J. Geosci 14, 2156 (2021).
	 2.	 Liu, F. et al. Impact of different industrial activities on heavy metals in floodplain soil and ecological risk assessment based on 

bioavailability: A case study from the Middle Yellow River Basin, northern China. Environ. Res. 235, 116695 (2023).
	 3.	 Jing, F., Chen, X., Yang, Z. & Guo, B. Heavy metals status, transport mechanisms, sources, and factors affecting their mobility in 

Chinese agricultural soils. Environ. Earth Sci. 77, 104 (2018).
	 4.	 Ni, R. & Ma, Y. Current inventory and changes of the input/output balance of trace elements in farmland across China. PLoS ONE 

13, e0199460 (2018).
	 5.	 Liu, P., Zhang, Y., Wu, T., Shen, Z. & Xu, H. Acid-extractable heavy metals in PM2.5 over Xi’an, China: seasonal distribution and 

meteorological influence. Environ. Sci. Pollut. Res. 26, 34357–34367 (2019).
	 6.	 Kim, E., Kim, B.-U., Kang, Y.-H., Kim, H. C. & Kim, S. Role of vertical advection and diffusion in long-range PM2. 5 transport in 

Northeast Asia. Environ. Pollut. 320, 120997 (2023).

Fig. 4  HMEAs emissions compared with other literature report. The red dashed vertical line represents the year 
2013 when China’s Action Plan for the Prevention and Control of Air Pollution was implemented.

https://doi.org/10.1038/s41597-024-03089-3
https://github.com/Olivia-2012/HMEAs_DataSet


1 1Scientific Data |          (2024) 11:258  | https://doi.org/10.1038/s41597-024-03089-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

	 7.	 He, B. et al. Contributions of Regional Transport Versus Local Emissions and Their Retention Effects During PM2. 5 Pollution 
Under Various Stable Weather in Shanghai. Front. Environ. Sci. 10, 219 (2022).

	 8.	 Ahmad, H. R. et al. Integrated risk assessment of potentially toxic elements and particle pollution in urban road dust of megacity of 
Pakistan. Human Ecological Risk Assessment: An International Journal (2019).

	 9.	 Li, F. et al. PM2.5-bound heavy metals from the major cities in China: Spatiotemporal distribution, fuzzy exposure assessment and 
health risk management. J. Clean. Prod. 286, 124967 (2021).

	10.	 Moreno, T. et al. Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. Atmos. 
Chem. Phys. 11, 9415–9430 (2011).

	11.	 Yan, J. et al. Industrial PM2. 5 cause pulmonary adverse effect through RhoA/ROCK pathway. Sci. Total Environ. 599, 1658–1666 (2017).
	12.	 Zhu, W. K., Yang, Y. K., Li, P. Y. & Liu, J. Distribution characteristics of PM2.5/PM10 and heavy metals in autumn and winter in 

Haikou. Environ Sci Manage 43, 49–52 (2018). in Chinese.
	13.	 Shan, H. et al. Heavy metals in PM2.5 in four metropolitan cities in Northwest China: pollution characteristics and health risk 

assessment. Chin J Public Health 38, 476–480 (2022). in Chinese.
	14.	 Chen, R., J, L. Y. & Lliu, X. Y. Analysis on health risks of ten elements in ambient PM 2.5 in Lanzhou during 2015-2017. J. Environ. 

Health 36, 419–422 (2019). in Chinese.
	15.	 Chen, J. et al. Characteristics of trace elements and lead isotope ratios in PM(2.5) from four sites in Shanghai. J. Hazard. Mater. 156, 

36–43 (2008).
	16.	 Ma, Y. et al. Comparison of inorganic chemical compositions of atmospheric TSP, PM(10) and PM(2.5) in northern and southern 

Chinese coastal cities. J. Environ. Sci. (China) 55, 339–353 (2017).
	17.	 Liu, Y., Zhu, P. & Geng, Y. C. Lead pollution in air particles in Zhenjiang city. Environmental Protection and Technology 24, 31–33 

(2018). in Chinese.
	18.	 Liu, S. et al. Significant but Spatiotemporal-Heterogeneous Health Risks Caused by Airborne Exposure to Multiple Toxic Trace 

Elements in China. Environ. Sci. Technol. 55, 12818–12830 (2021).
	19.	 Luo, H. et al. Heavy metal pollution levels, source apportionment and risk assessment in dust storms in key cities in Northwest 

China. J. Hazard. Mater. 422, 126878 (2022).
	20.	 Wang, F. et al. A hybrid framework for delineating the migration route of soil heavy metal pollution by heavy metal similarity 

calculation and machine learning method. Sci. Total Environ. 858, 160065 (2023).
	21.	 Lyu, T. et al. Estimating the geographical patterns and health risks associated with PM2.5-bound heavy metals to guide PM2.5 

control targets in China based on machine-learning algorithms. Environ. Pollut. 337, 122558 (2023).
	22.	 Zhong, S. et al. Machine Learning: New Ideas and Tools in Environmental Science and Engineering. Environ. Sci. Technol. 55, 

12741–12754 (2021).
	23.	 Costa-Climent, R., Haftor, D. M. & Staniewski, M. W. Using machine learning to create and capture value in the business models of 

small and medium-sized enterprises. Int. J. Inf. Manage. 73, 102637 (2023).
	24.	 Mohammadiun, S. et al. Evaluation of machine learning techniques to select marine oil spill response methods under small-sized 

dataset conditions. J. Hazard. Mater. 436, 129282 (2022).
	25.	 Chen, K. et al. Comparative analysis of surface water quality prediction performance and identification of key water parameters 

using different machine learning models based on big data. Water Res. 171, 115454 (2020).
	26.	 Wu, Q. et al. Temporal Trend and Spatial Distribution of Speciated Atmospheric Mercury Emissions in China During 1978–2014. 

Environ. Sci. Technol. 50, 13428–13435 (2016).
	27.	 Liu, K. et al. Measure-Specific Effectiveness of Air Pollution Control on China’s Atmospheric Mercury Concentration and 

Deposition during 2013–2017. Environ. Sci. Technol. 53, 8938–8946 (2019).
	28.	 Zhang, Y. et al. Improved Anthropogenic Mercury Emission Inventories for China from 1980 to 2020: Toward More Accurate 

Effectiveness Evaluation for the Minamata Convention. Environ. Sci. Technol. 57, 8660–8670 (2023).
	29.	 Reid, C. E., Considine, E. M., Maestas, M. M. & Li, G. Daily PM2.5 concentration estimates by county, ZIP code, and census tract in 

11 western states 2008–2018. Scientific Data 8, 112 (2021).
	30.	 Cheng, K. et al. Atmospheric Emission Characteristics and Control Policies of Five Precedent-Controlled Toxic Heavy Metals from 

Anthropogenic Sources in China. Environ. Sci. Technol. 49, 1206–1214 (2015).
	31.	 Xie, J.-J. et al. Speciation and bioaccessibility of heavy metals in PM2.5 in Baoding city, China. Environ. Pollut. 252, 336–343 (2019).
	32.	 Bi, C. et al. Characteristics, sources and health risks of toxic species (PCDD/Fs, PAHs and heavy metals) in PM2.5 during fall and 

winter in an industrial area. Chemosphere 238, 124620 (2020).
	33.	 Bonfiglio, R., Scimeca, M. & Mauriello, A. The impact of environmental pollution on cancer: Risk mitigation strategies to consider. 

Sci. Total Environ. 902, 166219 (2023).
	34.	 Nachana’a Timothy, E. T. W. Environmental pollution by heavy metal: an overview. Chemistry 3, 72–82 (2019).
	35.	 Vareda, J. P., Valente, A. J. & Durães, L. Assessment of heavy metal pollution from anthropogenic activities and remediation 

strategies: A review. J. Environ. Manag. 246, 101–118 (2019).
	36.	 Sharma, P. et al. Seasonal dynamics of particulate matter pollution and its dispersion in the city of Delhi, India. Meteorology 

Atmospheric Physics 134, 28 (2022).
	37.	 Li, X. et al. Particulate matter pollution in Chinese cities: Areal-temporal variations and their relationships with meteorological 

conditions (2015–2017). Environ. Pollut. 246, 11–18 (2019).
	38.	 Lai, S. et al. Characterization of PM2.5 and the major chemical components during a 1-year campaign in rural Guangzhou, Southern 

China. Atmos. Res. 167, 208–215 (2016).
	39.	 Tian, Y. et al. Size distribution, meteorological influence and uncertainty for source-specific risks: PM2.5 and PM10-bound PAHs 

and heavy metals in a Chinese megacity during 2011–2021. Environ. Pollut. 312, 120004 (2022).
	40.	 Dong, Q. et al. A city-level dataset of heavy metal emissions into the atmosphere across China from 2015-2020. figshare https://doi.

org/10.6084/m9.figshare.24762513.v4 (2024).
	41.	 Cheng, K. et al. Atmospheric emission characteristics and control policies of five precedent-controlled toxic heavy metals from 

anthropogenic sources in China. Environ. Sci. Technol. 49, 1206–1214 (2015).

Acknowledgements
Financial supports in this study were from the Science and Technology Innovation Project of Chinese 
Academy of Agricultural Sciences, and The Central Public-interest Scientific Institution Basal Research Fund 
(1102021500170022301).

Author contributions
All authors contributed to the study. Qi Dong and Yue Li contributed equally to this paper. Qi Dong and Yue 
Li—investigation and data collection; methodology; modelling; validation; visualization; writing—original 
draft; Xinhua Wei, Le Jiao, Lina Wu, Zexin Dong—data collection; methodology; proofreading; Yi An—
conceptualization; formal analysis; methodology; supervision; visualization; writing—review & editing. The 
authors have read and approved the final draft of the manuscript.

https://doi.org/10.1038/s41597-024-03089-3
https://doi.org/10.6084/m9.figshare.24762513.v4
https://doi.org/10.6084/m9.figshare.24762513.v4


1 2Scientific Data |          (2024) 11:258  | https://doi.org/10.1038/s41597-024-03089-3

www.nature.com/scientificdatawww.nature.com/scientificdata/

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Y.A.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2024

https://doi.org/10.1038/s41597-024-03089-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A city-level dataset of heavy metal emissions into the atmosphere across China from 2015–2020

	Background & Summary

	Methods

	HMEAs data. 
	Environmental covariates. 
	Industrial Pollutants. 
	Vehicle Emissions. 
	Population. 
	Meteorological covariates. 

	Data preprocessing. 
	Data augmentation. 
	Data Transformation. 

	Machine learning modeling. 
	Dataset Splitting. 
	Model Selection. 
	Model uncertainty. 

	HMEAs prediction creation. 

	Data Records

	Technical Validation

	Model performance. 
	Predictions assessment. 
	Comparative analysis of point data. 
	Comparative analysis of annual totals. 

	Model uncertainty. 

	Usage Notes

	Acknowledgements

	Fig. 1 Flowchart diagram of methods to create HMEAs.
	Fig. 2 Distribution charts of original data (left) for CrEA/CdEA/AsEA/PbEA, augmented data (center) by SMOTE, and the combined dataset (right).
	Fig. 3 Scatter plot of predicted values versus actual values in training (gray) and testing set (blue).
	Fig. 4 HMEAs emissions compared with other literature report.
	Table 1 Descriptive Statistics of CrEA, CdEA, AsEA, PbEA, indSO2 (industrial sulfur dioxide), indNOx (industrial nitrogen oxides), carNOx (vehicle emissions of nitrogen oxides), carSmoke (vehicle emissions of particulate matter), pop (population), temp (t
	Table 2 The t-test results for synthetic data generated using SMOTE and real data.
	Table 3 Sheets included in the Environmental_covariates_data.
	Table 4 R2, RMSE and MAE values for the 10-fold cross-validation testing set (50% of the real data), the units of RMSE and MAE were tons.
	Table 5 Comparative analysis of model predictions and experimentally measured values recorded in literatures, the units of RMSE and MAE were tons.




