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an open dataset for human SSVEPs 
in the frequency range of 1-60 Hz
Meng Gu1,2, Weihua Pei  1,3, Xiaorong Gao4 & Yijun Wang  1,3,5 ✉

A steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) system relies 
on the photic driving response to effectively elicit characteristic electroencephalogram (EEG) signals. 
However, traditional visual stimuli mainly adopt high-contrast black-and-white flickering stimulations, 
which are easy to cause visual fatigue. This paper presents an SSVEP dataset acquired at a wide 
frequency range from 1 to 60 Hz with an interval of 1 Hz using flickering stimuli under two different 
modulation depths. This dataset contains 64-channel EEG data from 30 healthy subjects when they 
fixated on a single flickering stimulus. The stimulus was rendered on an LCD display with a refresh 
rate of 240 Hz. Initially, the dataset was rigorously validated through comprehensive data analysis to 
investigate SSVEP responses and user experiences. Subsequently, BCI performance was evaluated 
through offline simulations of frequency-coded and phase-coded BCI paradigms. This dataset provides 
comprehensive and high-quality data for studying and developing SSVEP-based BCI systems.

Background & Summary
Brain-computer interfaces (BCIs) provide a new medium for communication between humans and computers, 
which can convert signals of brain activities into commands to control external devices without the participa-
tion of peripheral nerves and muscles1–3. Among many BCI paradigms, the steady-state visual evoked potential 
(SSVEP)4-based BCI has attracted widespread attention because of its non-invasiveness, high signal-to-noise 
ratio (SNR) and high information transfer rate (ITR)5,6.

SSVEPs are the sustained cortical responses to periodic visual stimuli. SSVEP has frequency following char-
acteristics, that is, it contains a series of frequency components that are integer multiples of the stimulation 
frequency, of which the fundamental frequency and double frequency components are the most significant7. 
Depending on the range of the stimulation frequency, SSVEP responses can generally be divided into three 
bands: low frequency band (less than 12 Hz), medium frequency band (12–30 Hz), and high frequency band 
(higher than 30 Hz)7,8.

Different stimulation frequencies elicit different SSVEP amplitudes, which affect the system performance 
of SSVEP-BCIs. Historically, research on the relationship between stimulus frequency and response amplitude 
adopted light emitting diodes9 (LED) as visual stimulators10. For example, Herrmann et al. used a flickering light 
with a stimulus frequency of 1–100 Hz (with an interval of 1 Hz) to measure SSVEPs, and the results showed 
that the highest amplitude of SSVEP appeared at 10 Hz, and local peaks appeared around 20 Hz, 40 Hz, and 80 
Hz11. Pastor et al. used strobe lamps to generate a total of 14 sampling frequencies in the range of 5–60 Hz, and 
found that the occipital region of the brain responded most strongly to the stimulation of 15 Hz, and the brain 
regions activated were different at different stimulation frequencies12. Ferreira et al. explored the SSVEP in the 
frequency range of 5.5–86 Hz using green LED emitters and found that the peak of fundamental frequency 
response appeared at 10 Hz, 16 Hz, and 31 Hz, respectively13.

With the continuous development of computer display technology in recent years, the use of liquid crystal 
display (LCD) monitors can change stimulation parameters (such as size, shape, etc.) more flexibly, resulting 
in an upward trend of the SSVEP-BCIs based on the refresh rate of the display14. Nakanishi et al. constructed 
a 40-target SSVEP-BCI speller with a frequency range of 8–15.8 Hz (interval 0.2 Hz) and obtained an ITR of 
up to 325.33 bits/min15. Chen et al. built an online high frequency (31–34.5 Hz, with an interval of 0.25 Hz) 
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SSVEP-BCI system with 16 targets, which reached an average ITR of 153.79 bits/min16. Jiang et al. developed a 
four-target phase-coded SSVEP-BCI system with a frequency of 60 Hz based on an LCD monitor with a 240 Hz 
refresh rate, which took advantage of the characteristics of low flickering perception of high-frequency stimuli 
but obtained a low ITR (29.8 bits/min) due to weak response17. Compared with high-frequency visual stimuli, 
the low-frequency and medium-frequency visual stimuli can evoke more robust responses but are easier to cause 
visual fatigue.

In the design of high-performance and user-friendly SSVEP-BCI systems, in addition to the stimulus fre-
quency, stimulus luminance18 is also an important parameter. Rahimi-Nasrabadi et al. showed that the sensitiv-
ity of light and dark contrast in the visual cortex is affected by changes in luminance19. Duszyk et al. found that 
the primary visual cortex is more sensitive to high luminance stimuli, but the reduction of stimulus luminance 
will effectively improve the user experience20. Ladouce et al. also demonstrated the effectiveness of lowering the 
stimulation amplitude depth in the 13–24 Hz frequency band to improve user experience21, and achieved high 
classification performance using the task-related component analysis15 (TRCA) algorithm. Ming et al. built a 
40-target speller at 8–15.8 Hz (interval 0.2 Hz) frequency band using a grid stimulus with a spatial contrast ratio 
of 50% and obtained an online ITR of 57 bits/min using the unsupervised canonical correlation analysis22 (CCA) 
algorithm. Compared with the traditional high-luminance (i.e., black and white) flickering stimulation, this 
low-contrast stimulation paradigm achieved comparable performance and improved user experience23.

At present, only a few studies have investigated the relationship between SSVEP and stimulus when using 
computer monitor-based visual stimulators. The characteristics of different modulation depths (the ratio 
between the maximum and minimum luminance) as a function of stimulus frequency remain unknown. Due to 
the different methods and devices of stimulus presentation, it is difficult to reveal the common effect of stimulus 
luminance. To develop an efficient and comfortable BCI system, choosing an appropriate stimulation frequency 
and stimulus luminance is essential.

In recent years, the establishment of public SSVEP database is of great significance for paradigm design and 
algorithm optimization in the SSVEP-BCI field. Wang et al. provided a 40-target SSVEP benchmark dataset 
involving a total of 35 subjects, which used joint frequency and phase coding in the frequency range of 8–15.8 Hz 
(interval 0.2 Hz)14. Lee et al. provided a BCI dataset comprising 54 participants with three primary paradigms 
(i.e., motor imagery (MI), event-related potential (ERP), and SSVEP) and conducted a comprehensive com-
parison24. Lee et al. also collected a mobile BCI dataset comprising 24 participants and evaluated the quality of 
SSVEP signals in various motion environments25. Choi et al. presented a multi-day and multi-band SSVEP data-
set based on measurements from 30 participants, which spanned three different frequency bands (low: 5.0, 5.5, 
6.0, and 6.5 Hz; medium: 21.0, 21.5, 22.0, and 22.5 Hz; high: 40.0, 40.5, 41.0, and 41.5 Hz) during 2 days26. Zhu 
et al. provided an open dataset based on a wearable SSVEP-BCI system, and this dataset consisted of 8-channel 
EEG data from 102 subjects performing a 12-target (frequencies spanning 9.25–14.75 Hz) SSVEP-BCI task27. 
Liu et al. published a benchmark database for BCI application (BETA), which contained 64-channel EEG data 
from 70 subjects performing a 40-target (frequencies spanning 8–15.8 Hz) spelling task28. Furthermore, Liu et al. 
developed a 9-target eldercare-oriented benchmark database of SSVEP-BCI for the aging population (eldBETA). 
This dataset involved 100 subjects, and the stimulus frequency was set to 8–12 Hz (interval 0.5 Hz)29. However, 
an open SSVEP dataset with higher frequency resolution over a wide frequency range for classical stimulus 
paradigms is still missing for the field. Especially for the unpopular ultra-low frequency band and ultra-high 
frequency band, there is still a lot of room for exploration in the optimization of the stimulation paradigm.

This study presents an SSVEP open dataset with a wide frequency range of 1–60 Hz (interval 1 Hz). We sys-
tematically explored the influence of stimulus frequency and modulation depth on SSVEP response and user 
experience. Two different modulation depths were designed for comparison. The dataset contains 64 channels 
of EEG signals from 30 subjects. Data analysis on SSVEP characters and user experience illustrated the impact 
of frequency on SSVEP response and user experience under two different modulation depths. Offline simulation 
analysis further demonstrated the efficacy of the dataset for developing SSVEP-BCIs. This dataset aims to pro-
vide a comprehensive and high-quality database for studying and developing user-friendly SSVEP-BCI systems.

Methods
Participants. A total of 30 healthy subjects (16 females) were recruited for the experiment, ranging in age 
from 21 to 35 years, with a mean age of 26.5 years. All participants had normal or corrected-to-normal vision. 
Before the experiment, the participants were instructed to be familiar with the experimental protocol, stated that 
they were aware of their right to withdraw at any point during the process, and agreed to open publication of their 
data after the experiment was completed. Every participant signed an informed consent form approved by the 
institution review board of Tsinghua University (NO. 20230058).

Stimulus Presentation. Figure 1 shows two flickering stimuli with different modulation depths used 
in the experiment, where the stimulus with the low modulation depth is denoted as Low-Depth (luminance: 
26.31–78.64 cd/m2; grayscale value: 0.315–0.613) and the stimulus with the high modulation depth is denoted 
as High-Depth (luminance: 0.2–207.3 cd/m2; grayscale value: 0-1). According to Ming et al.’s description of the 
spatial contrast of the ON-OFF grid stimulus23, the flicker luminance range of the Low-Depth stimulus is the 
same as that of ON-OFF grid stimulus with a Weber contrast ratio of 50%, and the flicker luminance range of the 
High-Depth stimulus is the same as that of ON-OFF grid stimulus with a Weber contrast ratio of 300% (back-
ground luminance: 52.3 cd/m2; background grayscale value: 0.5). Weber contrast is calculated as follows:30
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where Lc is the highest or the lowest luminance, and Lb is background luminance.
The experiment used a 24.5-inch LCD monitor (Alienware AW2521H) with a screen refresh rate of 240 Hz 

and a resolution of 1920 × 1080 pixels to present stimulation. Each flickering stimulus was represented by a sine 
wave inside a 310 × 310 pixels square, and the viewing angle of the entire stimulus was 7.10°. To make the par-
ticipant better concentrate during the stimulation, a 0.55° red cross fixation point was added in the centre of the 
stimulation pattern. The stimulus frequency was set to 1, 2, 3, 4… 60 Hz with a 1 Hz interval.

The sampled sinusoidal stimulation method31 was implemented by the Psychophysics Toolbox Version 3 
(PTB-3) toolbox32 under MATLAB R2015b. The grayscale value of the stimulus sequence is calculated as follows:
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where fr represents the refresh rate of the screen, i represents the frame index of the sequence, and f indicates 
the stimulus frequency.

Experimental Design. The experiment included a total of 120 different stimuli (60 stimulation frequen-
cies × 2 modulation depths). During the experiment, the participant sat in a chair in a bright room at a viewing 
distance of 70 cm from the monitor. Due to the large amount of stimulation patterns, the experiment was sepa-
rated into four sessions on different days for each participant, and the 15 stimulus frequencies (with an interval 
of 4 Hz) in each session were listed in Table 1. Each participant completed four sessions in the order specified in 
Table 1. For each session, the workflow is shown in Fig. 2, with 12 blocks, each containing 30 trials, corresponding 
to 30 different stimulus patterns (i.e., 15 frequencies × 2 modulation depths). In each block, 30 distinct stim-
ulation conditions randomly appeared. This allowed for the repeated collection of each stimulation condition 
12 times. The total duration of each trial was 7 s. In the first second, a red cross at the target centre appeared to 
remind the participant to focus their eyes on the target center33. The stimulus then began to flash for 5 s, during 
which the participant was required to focus on the target and avoid blinking. The red cross disappeared after the 
flickering stimulus stopped, and the participant took a short break for 1 s. The selected stimulus duration aimed 
to meet the requirements for offline simulation of the phase-coding BCI. After the completion of each block, 
participants had a rest for a certain period (1–10 minutes) to avoid visual fatigue.

After collecting all sessions of EEG data, participants were asked to score the user experience of each stim-
ulus pattern. Due to the large number of stimulus patterns, a Samsung LC49G95T display monitor (resolu-
tion of 5120 × 1440 pixels and refresh rate of 240 Hz) was used to simultaneously present 60 visual stimuli, 
which were arranged in random order, on the screen. The questionnaire assessment included the following 
three dimensions: (a) Score each stimulus pattern according to comfort level based on a five-point scale (scales 
1–5 correspond to very uncomfortable, uncomfortable, slightly uncomfortable, comfortable, very comfortable, 
respectively), (b) Score each stimulus pattern according to flicker perception based on a five-point scale (scales 
1–5 correspond to very annoying, annoying, slightly annoying, perceptible, imperceptible, respectively), and 

Fig. 1 Visual stimuli with two different modulation depths.

Session Stimulus frequency

1 1, 5, 9, …, 57 Hz

2 2, 6, 10, …, 58 Hz

3 3, 7, 11, …, 59 Hz

4 4, 8, 12, …, 60 Hz

Table 1. Stimulus frequencies in each session.
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(c) Score each stimulus pattern according to preference (scales 1–5 correspond to very disgusting, disgusting, 
neutral, likeable, very likeable, respectively).

Data Acquisition. During the experiment, a Neuroscan Synamps2 system was used to record 64 channels 
of EEG data at a sampling rate of 1000 Hz (according to the international 10/20 system), with the reference elec-
trode at the vertex and the electrode impedance always kept below 20 kΩ. Two computers were used for EEG 
acquisition and stimulus presentation, respectively. The stimulator generated event triggers (stimulus onset) 
and sent them to the amplifier through a parallel port. Finally, EEG data and synchronous trigger signals were 
recorded and saved for offline analysis. A built-in 50 Hz notch filter was used to eliminate power line noise, and 
the band-pass filter was set from 0.1 Hz to 100 Hz to preserve wideband spectral characteristics. These filtering 
procedures were already incorporated during the data acquisition process.

Data Preprocessing. The recorded data were pre-processed to facilitate the subsequent data analysis. 
Continuous EEG data were extracted as stimulus-related epochs, including 5 s responses of SSVEP from the stim-
ulus onset and 0.14 s recordings after the stimulus offset. 0.14 s was set according to the latency delay of the visual 
system14. All data epochs were downsampled from 1000 Hz to 250 Hz.

Performance evaluation. Signal-to-noise ratio (SNR). The SNR of SSVEP is defined as the ratio of the 
amplitude of SSVEP at the stimulus frequency to the average amplitude of background EEG activities in adjacent 
frequency bands. The SNR of SSVEP (in decibels, dB) is calculated as follows:
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where y(f) is the amplitude at the stimulus frequency f, Δf is the frequency resolution of the amplitude spectrum, 
and K is the number of adjacent frequencies that are included in the noise. In this study, Δf is 0.2 Hz, and K is 
set to 8.

Information transfer rate (ITR). ITR is a key indicator widely used to evaluate BCI performance, which is 
related to the number of targets (M), the average target selection time (T in seconds), and the classification accu-
racy (P). The definition of ITR (in bits per min, bpm) is as follows:2
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Data records
The dataset is freely available from the Figshare34. The experimental records include EEG data from 30 subjects 
indexed as s1-s30, questionnaire results on subjective feelings, and experiment information related to the data-
set. Continuous EEG data are stored in the EEG Brain Imaging Data Structure (BIDS35) format, and for each 
participant, segmented epoch data are provided in MATLAB MAT format. Questionnaire results are stored 
in both MATLAB MAT and CSV file formats for convenient downloading and usage. Additional information 
about the experiment, including participant details and electrode channel information, is separately stored in 
CSV file format within the repository34.

EEG data. Two types of EEG data are provided: continuous EEG recordings and epochs of raw data that have 
been segmented based on stimulus labels.

Following the EEG-BIDS35 standard, the raw EEG data for each participant are organized within a designated 
folder (e.g., “sub-001”). The EEG data are stored in “.edf ” file, while the “.tsv” and “.json” files contain relevant 
information about the experiment. A preview of the data structure can be seen in Fig. 3.

Another type of segmented epoch data related to stimuli is captured, with each participant’s data forming an 
independent MATLAB MAT file. Each file is named following the convention “data_Subject index_Number of 
channels” (e.g., data_s1_64.mat, data_s2_64.mat,…, data_s30_64.mat). For each subject, the data are structured 
as a 5-dimensional matrix (condition × channel × time point × frequency × block). Specifically, the condition 
dimension has a size of 2, corresponding to two distinct modulation depths (Low-Depth and High-Depth). 
The number of channels is 64, and the names and locations of these channels can be found in the experiment 

Fig. 2 The workflow in each session for each participant.
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information files. The time point duration is 5.14 s, representing a stimulation time of 5 s and a post-stimulation 
duration of 0.14 s. The stimulus frequency dimension consists of 60 levels, corresponding to stimulation fre-
quencies ranging from 1 to 60 Hz. There are 12 blocks, indicating 12 repeated stimuli for each stimulus pattern.

Questionnaire scoring. The results of the user experience questionnaires completed by all participants are 
stored in a MATLAB MAT file and a CSV file, both named “Sub_score.” In the MATLAB MAT file, the scores 
for all participants are stored in the form of a 4-dimensional matrix (subject × condition × frequency × evalua-
tion dimension). Specifically, there are 30 participants, 2 conditions (corresponding to two distinct modulation 
depths), 60 stimulus frequencies (ranging from 1 to 60 Hz), and 3 evaluation dimensions (representing comfort 
level, flicker perception, and preference). In the CSV file, each column represents a participant’s scores for 60 
stimulus frequency conditions under a specific evaluation dimension. The rows correspond to the stimulus fre-
quencies, ranging from 1 to 60 Hz, with a step increment of 1 Hz from top to bottom. The column vector names 
represent specific experimental conditions, where “Sub1_Low_Depth _Comfort_level” indicates the comfort 
level rating of the first participant for Low-Depth stimuli.

Experiment information. Participant information is stored in a “Participants_information.csv” file, which 
specifically includes the label, gender, and age of each participant. The names and locations of the electrode chan-
nels can be found in the “Electrode_channels_information.csv” file. This file contains the name, index, angle in 
polar coordinates, and radius in polar coordinates for each channel. The two files are stored in the repository34 
together with the dataset.

Technical Validation
Stimulus and SSVEP Signal characteristic analysis. Before the experiment, the refresh rate of the 
monitor was tested using a photodiode to ensure the stability of the stimulus presentation36. In Fig. 4(a), the wave-
forms of the 60 Hz stimulus signal recorded in 30 trials are depicted. The mean temporal deviation within one 
block of 30 trials remained 1.1 ms, as shown in the magnified view. Figure 4(b) illustrates that the peak response 
signal aligns with the stimulus frequency. These results demonstrate the stability of stimulus presentation using 
a 240 Hz refresh rate.

The subsequent comprehensive analysis of temporal, spectral, and spatial features of SSVEPs validated the 
reliability of the EEG recordings. EEG topographic analysis employed 64 channels, while the remaining analysis 
focused on only 9 channels (Pz, PO3/4, PO5/6, POz, Oz, and O1/2) located in the parietal and occipital regions.

Fig. 3 A preview of raw EEG data recordings of the dataset34. The data records were created according to the 
EEG-BIDS35. The raw EEG were stored in the European data format (“.edf ”). The prefix “sub” denotes the 
participant and “ses” denotes the session.
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Figure 5 illustrates the waveforms of the stimulation signals and the characteristics of averaged SSVEP 
responses at example frequencies (low frequency: 8 Hz, medium frequency: 24 Hz, and high frequency: 40 Hz) 
across 30 subjects. In Fig. 5(b), the periodicity of SSVEPs is pronounced at these three frequencies. The response 
amplitude of the Low-Depth stimulus is lower than that of the High-Depth stimulus. Figure 5(c) reveals distinct 
peaks not only at the fundamental frequency but also at harmonic frequencies. Notably, for the response to the 
Low-Depth stimulus at 8 Hz, the amplitude of the second harmonic is higher than that of the fundamental fre-
quency. This phenomenon is commonly observed in responses to stimuli in the low frequency band. In Fig. 5(d), 

Fig. 4 Stimulus signals recorded with a photodiode at a stimulus frequency of 60 Hz. (a) Superimposed waveforms 
of 30 trials with data segments ranging from 2.2 to 2.6 s, including enlarged data segments. (b) Amplitude spectrum 
of stimulus waveforms recorded by the photodiode.

Fig. 5 Stimulus signals and the corresponding average SSVEP signals at 8 Hz, 24 Hz, and 40 Hz across all 
subjects. (a) Sampled sinusoidal stimulation signals. (b) Averaged SSVEP signals across 9 channels with a 
duration of 0.5 s. (c) Averaged SSVEP amplitude spectra across 9 channels. (d) Topographic maps on the 
amplitude of SSVEPs at the fundamental frequency for all channels on the scalp. The Chebyshev Type I band-
pass filters in (b) and (d) were configured with the parameters [f-0.2, f + 5] Hz, while the band-pass filters in  
(c) were set to [f-0.2, 90] Hz to preserve harmonic responses, where f represents the stimulus frequency.
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areas with strong SSVEP responses are predominantly concentrated in the occipital region of the brain. These 
findings highlight robust and reliable temporal, spectral, and spatial characteristics for the SSVEP recordings 
in the dataset.

To further investigate individual differences across different stimulation paradigms, Fig. 6 presents analyses 
of SSVEP characters from two distinct participants. Despite robust periodic responses at different stimulation 
frequencies (Fig. 6(b)), both participants exhibit distinct phase differences (Fig. 6(a)), possibly due to variations 
in the modulation depth of the two stimulation paradigms. In terms of spatial response analysis, under low 
frequency stimulations (e.g., 8 Hz), a significant portion of the occipital region is activated for both participants. 
However, under medium frequency stimulations, the second participant (the second row of Fig. 6(c)) activates 
a noticeably smaller region compared to the first participant (the first row of Fig. 6(c)). When exposed to high 
frequency visual stimulations, the second participant shows heightened sensitivity to the modulation depth of 
the stimulus compared to the first participant. These results underscore the significant individual difference 
within the dataset.

Figure 7 depicts the scalp response distribution of the averaged SNR across all participants as a function of 
stimulus frequency. Regions with high SNR and strong SSVEP response are mainly concentrated in the occipital 
area of the brain. With the increase in stimulus frequency, the size of the activation area first increases and then 
decreases. As shown in the enlarged figure on the right, the stimulus paradigm with a high modulation depth 

Fig. 6 Stimulus signals and the corresponding SSVEP signals at 8 Hz, 24 Hz, and 40 Hz from two subjects. 
(a) Averaged SSVEP signals across 9 channels with a duration of 0.5 s. (b) Averaged SSVEP amplitude spectra 
across 9 channels. (c) Topographic maps on the amplitude of SSVEPs at the fundamental frequency for all 
channels on the scalp. The results in the first row of (a), (b) and (c) corresponds to the same participant, while 
the results in the second row corresponds to another participant. The filter parameters are consistent with those 
in Fig. 5.
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achieves a higher activation intensity. Across the two different modulation depth stimuli, the response at the 
fundamental frequency is strongest in the medium frequency band (e.g., 24 Hz), followed by either the low fre-
quency band (e.g., 8 Hz) or the high frequency band (e.g., 40 Hz).

The amplitude and SNR of SSVEPs at each stimulus frequency from 1 to 60 Hz under the two modulation 
depths are shown in Fig. 8(a). The stimulation with high modulation depth can evoke stronger SSVEP signals. 
Specifically, the two stimulation paradigms show significant differences in SNR across all frequencies from 1 
to 60 Hz (p < 0.05). With the increase in stimulus frequency, the amplitude and SNR show a general trend of 
increasing and then decreasing. Amplitude response peaks occur at 12 Hz and 22 Hz, while the SNR reaches the 
highest around 20–25 Hz. Figure 8(b) and (c) illustrate the relationship between the stimulus frequency and 
response frequency in the spectrum for the two modulation depths, respectively. The frequency-following effect 
is evident at both the fundamental and harmonic frequencies, where the SSVEP response frequency linearly 
corresponds to the stimulus frequency across all harmonics. The SNR response at the harmonic peaks reaches 
up to 80 Hz. The difference between the Low-Depth and High-Depth conditions in Fig. 8(d) reveals that the high 
luminance stimuli induce a stronger fundamental response. However, the SNR of the second harmonic at certain 
stimulation frequencies (8–18 Hz) is inversely related to the stimulus luminance.

Subjective evaluation analysis. The average subjective evaluation results of each stimulus pattern across 
30 subjects are shown in Fig. 9. The stimulus paradigm with a low modulation depth achieves a better user 

Fig. 7 Averaged topographic map of SNR at 60 different stimulation frequencies for (a) low modulation depth 
stimulus and (b) high modulation depth stimulus across all participants. Enlarged images for 8 Hz, 24 Hz, and 
40 Hz are on the right. The epoch data were all passed through a Chebyshev Type I band-pass filter with the 
range [f-0.2, f + 5] Hz, where f represents the stimulus frequency.
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experience in terms of comfort level, flicker perception, and degree of preference. As the stimulus frequency 
increases, the user experience first deteriorates and then improves and tends to stabilize after 40 Hz. Among them, 

Fig. 8 Averaged amplitude and SNR of SSVEPs for the two modulation depths across all participants.  
(a) The relationship between SSVEP amplitude and SNR with stimulation frequencies. The shaded area 
indicates the standard error. The asterisks indicate the significance level calculated by paired t-tests comparing 
the two stimulation paradigms at the same frequency (*p < 0.05). (b) The relationship between stimulus 
frequency and response frequency in the amplitude and SNR of SSVEPs for the low modulation depth 
paradigm. (c) The relationship between stimulus frequency and response frequency in the amplitude and SNR 
of SSVEPs for the high modulation depth paradigm. (d) The difference in the response amplitude and SNR 
between the two modulation depth conditions. The colour in (b), (c), and (d) represents the amplitude value 
or SNR at distinct response frequencies. The epoch data were all passed through a Chebyshev Type I band-pass 
filter with the range [0.8, 90] Hz.
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the user experience of the medium frequency band stimulation (10–20 Hz) is the worst. Although the ultra-low 
frequency band stimulation (1 Hz as an example) gives users a stronger flicker perception than the high frequency 
band stimulation (35 Hz as an example), they have a comparable level of comfort and preference. It is clearly 
shown that the user experience at 60 Hz is the best across the entire frequency band.

Simulated BCI performance. The time-locked and phase-locked characteristics between the stimulus 
signal and the response EEG signals allow SSVEP to encode different targets with phase encoding37, frequency 
encoding38, or hybrid encoding39. This study simulated two types of four-target BCI systems by frequency cod-
ing and phase coding methods, respectively. Simulated classification validation on the dataset provides valuable 
insights for the design of SSVEP-BCI applications. The classification performance of SSVEP and user experience 
under different frequencies and modulation depths were quantitatively compared with the dataset.

Frequency coding. For frequency coding, four frequencies were selected in each group of low, medium, 
and high frequency bands for classification (low: 2–5 Hz, medium: 12–15 Hz, high: 40–43 Hz). With frequency 
coding, the four-target BCI system for each frequency band was simulated offline, and the filter bank canonical 
correlation analysis40 (FBCCA) algorithm was used to calculate the classification accuracy. CCA22 is a commonly 
used algorithm for classifying SSVEP signals without training data, and FBCCA further improves CCA by com-
bining SSVEP components at the fundamental and harmonic frequencies to detect SSVEPs. The advantage of the 
training-free algorithm lies in its ability to operate without prior model training, making it easy to use in practical 
applications. In this study, the harmonic number Nh for the sine-cosine template was set to 10, and the parameters 
of the filter bank (weight vectors ω and the number of sub-bands N) were optimized by a grid search method 
towards the highest classification accuracy. The weight vector ω is calculated as follows:40

n n b n N( ) , [1, ] (6)
aω = + ∈−

where a, b, and N are limited to [0:0.25:2], [0:0.25:1], and [1:1:10], respectively. The optimal filter bank param-
eters obtained by the grid search method were listed as follows: Low-Depth: a = 0, b = 0, n = 10; High-Depth: 
a = 0, b = 0, n = 10 (in the low frequency band); Low-Depth: a = 0, b = 0, n = 2; High-Depth: a = 0, b = 0, n = 3 
(in the medium frequency band); Low-Depth: a = 0, b = 0, n = 1; High-Depth: a = 0, b = 0, n=1(in the high 
frequency band).

Classification accuracy and ITR at different data lengths from 0.1 s to 5 s (interval 0.1 s) are shown in 
Fig. 10. For the low frequency band, the average classification accuracy across all subjects increases rapidly 
with the increase of data length before 0.5 s and then increases slowly to 5 s for both modulation depths (0.1 s: 
24.93%/25.07%, 0.5 s: 66.74%/74.51%, 5 s: 81.81%/95.56%). For the medium frequency band, the classifi-
cation accuracy of the High-Depth condition tends to saturate earlier than that of the Low-Depth condition 
(High-Depth: 98.54% at 0.8 s; Low-Depth: 97.50% at 1.2 s). The ITR reached its highest point in less than 1 s 
(Low-Depth: 59.83 bits/min at 0.7 s; High-Depth: 66.93 bits/min at 0.6 s). For the high frequency band, the 
classification accuracy increases with longer data length, like the low frequency band. The classification accu-
racy of the high frequency band is the lowest among the three bands, and the performance of the medium 
frequency band is the best. In addition, in both low frequency and high frequency bands, the High-Depth con-
dition achieves significantly better classification performance than the Low-Depth condition.

When designing a BCI system for practical applications, it is necessary to jointly consider system per-
formance and user experience41. Therefore, this study proposes to weight classification accuracy and user 
experience to choose the optimal stimulus frequency band and modulation depth. The subsequent analysis 
involved a validation conducted with two illustrative weighting methods. Figure 11(a) shows the combined 
score at different data lengths, which is calculated using a 7:3 ratio between normalized classification accu-
racy and subjective score. At all data lengths, the composite score for the medium frequency band stimuli is 
the highest due to the highest classification accuracy among the three frequency bands. As the length of the 
data increases, the difference between the three bands decreases, mainly due to the improvement of the accu-
racy of low and high frequency bands. For different data lengths (except for a data length of 4 s), the overall 

Fig. 9 Mean subjective evaluation of (a) comfort level, (b) flicker perception, and (c) preference level for all 
stimulation frequencies. The shaded area indicates the standard error. The asterisks indicate the significance 
level calculated by paired t-tests comparing the two stimulation paradigms at the same frequency (*p < 0.05). 
The dashed line represents the real data, and the solid line is the result of using Savitzky-Golay filtering on the 
dashed line.
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Fig. 10 Averaged (a) classification accuracy and (b) ITR for low, medium, and high frequency bands with 
different data lengths. The asterisks indicate the significance level calculated by paired t-tests comparing the  
two stimulation paradigms at the same frequency (*p < 0.05). The shaded area indicates the standard error.  
The epoch data were all passed through a Chebyshev Type I band-pass filter with the range [m, 90] Hz, where 
the values of parameter “m” for the three frequency bands were set to 1.8, 5.8, and 32.8 (Low-Depth); 1.8, 8.8, 
and 35.8 (High-Depth).

Fig. 11 Composite scores that weight classification performance and user experience at different data lengths 
for the frequency coding BCI paradigms. (a) The weight ratio of classification accuracy to user experience is 
7:3. (b) When the classification accuracy is less than 70%, the weight ratio of classification accuracy to user 
experience is 1:0, otherwise, the weight ratio is 0:1. The asterisks indicate the significance level calculated by 
paired t-tests comparing the two stimulation paradigms (*p < 0.05).
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performance of the High-Depth condition is significantly better than that of the Low-Depth condition in both 
low and high-frequency bands (p < 0.05). However, the phenomenon is opposite in the medium frequency band 
due to the better user experience for the Low-Depth condition and similar classification accuracy between the 
two modulation depths. Figure 11(b) adopts a conditional weighting scheme. Specifically, if the classification 
accuracy is less than 70%, the weight ratio of classification accuracy to user experience is 1:0. Otherwise, the 
weight ratio is 0:1. For both the two modulation depths, the combined score of the medium frequency band is 
the lowest, because the subjective evaluation of this band is the worst. What’s more, the combined scores of the 
Low-Depth at the low and medium frequency bands are significantly higher than that of the High-Depth con-
dition (p < 0.05), and the result is opposite at the high frequency band. The second weighting scheme presents a 
different result because it emphasizes user experience when the BCI system can normally work.

Phase coding. For phase coding, data epochs extracted with different time shifts were used to evaluate classi-
fication performance for each stimulus frequency. According to the stimulus onset, the classification of four-class 
SSVEPs with initial phase values of 0°, 90°, 180°, and 270° was conducted for each stimulus frequency. Data for the 
first 140 ms of each trial were excluded from the analysis to avoid the interference of the transient event-related 
potential. The remaining data were divided into four 1-second-long SSVEP segments coded by four phases. For 
example, when the stimulus frequency is 25 Hz, there are 40 data points per cycle, therefore the time shift of the 
four different phases is 0 s, 0.01 s, 0.02 s, 0.03 s, and the corresponding number of time-shifted data points is 0, 10, 
20, and 30 respectively. In this way, four-class SSVEP segments (12 trials for each class) with the same stimulus 
frequency but different phases can be obtained for each modulation depth of each stimulus frequency. The filter 
bank40 TRCA15 algorithm and the leave-one-out cross validation were used to estimate the offline classification 
accuracy. The supervised algorithm capable of learning from individual data can generate personalized templates, 
enhancing the ability to capture individual differences and variability. This approach contributes to improving 
the classification accuracy and overall performance of SSVEP-BCIs. The number of filter bank sub-bands and the 
weight vector parameters for each sub-band were also determined using the grid search method, and the scan-
ning ranges were the same as those in the frequency coding method.

The accuracy and ITR of offline classification at a data length of 1 s are shown in Fig. 12. At most frequen-
cies, a significant difference in accuracy and ITR between two modulation depths was obtained. In the range 
of 1–60 Hz, with the increase of stimulus frequency, both accuracy and ITR curves show a trend of first rising 
to saturation and then decreasing, and the accuracy of the High-Depth stimulation is higher than that of the 
Low-Depth stimulation. In the range of 9–15 Hz (except for 13 Hz), the difference between the two curves is 
not significant (p > 0.05), where the offline accuracy reaches more than 95% and the corresponding ITR value 
exceeds 49 bits/min. After 30 Hz, the accuracy of the Low-Depth stimulation decreases sharply, with a difference 
between the two modulation depths up to 34% (81.11% vs 46.88% at 48 Hz), and the High-Depth stimulation 
shows a slower decline. The High-Depth stimulations have an accuracy rate of more than 65% across the entire 
frequency band, while the Low-Depth stimulations only maintain this level in the 3–40 Hz band.

Furthermore, this study assessed the overall performance by incorporating a blend of classification accu-
racy and subjective scores in the weighting scheme. Figure 13 shows the results of using the same weighting 
scheme for frequency coding. When the ratio between classification performance and user experience is 7:3, the 
Low-Depth stimulus in the 8–34 Hz frequency band has higher scores than the High-Depth stimulus. However, 
it should be noted that the paired t-tests show that there is a significant difference in the comprehensive score 
of stimulation between the two modulation depths at most stimulus frequencies. In the ultra-low frequency 
(<6 Hz) and high frequency band (>35 Hz), the High-Depth stimulations show higher scores. As shown in 
Fig. 12(b), when adopting a conditional weighting scheme, the comprehensive scores show that the Low-Depth 
stimulus in the 1–38 Hz band is preferable. The difference between the two weighting schemes is mainly reflected 
in the ultra-low frequency band (<6 Hz).

Fig. 12 Averaged (a) classification accuracy and (b) ITR for each stimulus frequency of two modulation 
depths. The asterisks indicate the significance level calculated by paired t-tests comparing the two stimulation 
paradigms (*p < 0.05). The shaded area indicates the standard error. The epoch data were all passed through 
a Chebyshev Type I band-pass filter with the range [m, 90] Hz, where the values of parameter “m” were 
determined towards the highest classification performance.
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Usage Notes
We provide continuous EEG recordings and data epochs time-locked to the stimuli in this study. For routine 
offline analyses, such as screening frequency subsets when designing a BCI system or the topology analysis of 
the brain associated with visual stimuli, data epochs can be downloaded for free for analysis.

Code availability
Custom codes for processing the data and the figures can be obtained for free from Figshare42 (https://doi.
org/10.6084/m9.figshare.23641092). The data processing and technical validations were conducted in MATLAB 
R2015b. A “README.txt” file was used for a brief description of the code in the code repository.
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