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miR-Blood – a small RNA atlas of 
human blood components
Julia Jehn1,6, Franziska Trudzinski2,6, Rastislav Horos1, Judith Schenz3, Florian Uhle3, 
Markus A. Weigand3, Maurice Frank1, Mustafa Kahraman1, Marco Heuvelman1, 
Tobias Sikosek1, Timothy Rajakumar   1, Jennifer Gerwing1, Jasmin Skottke1, Alberto Daniel-
Moreno1, Christina Rudolf1, Franziska Hinkfoth1, Kaja Tikk1, Petros Christopoulos4, 
Laura V. Klotz5, Hauke Winter5, Michael Kreuter2 & Bruno R. Steinkraus   1 ✉

miR-Blood is a high-quality, small RNA expression atlas for the major components of human peripheral 
blood (plasma, erythrocytes, thrombocytes, monocytes, neutrophils, eosinophils, basophils, natural 
killer cells, CD4+ T cells, CD8+ T cells, and B cells). Based on the purified blood components from 52 
individuals, the dataset provides a comprehensive repository for the expression of 4971 small RNAs 
from eight non-coding RNA classes.

Background & Summary
Small non-coding RNAs (sRNAs) are often tissue or even cell type specific and their expression profiles can 
change under pathologic conditions. sRNAs that are secreted or released into the extracellular space are stable in 
blood and other body fluids. This has opened exciting opportunities for their diagnostic use through minimally 
invasive ‘liquid biopsies’ which can be analyzed by PCR or NGS. Several sRNA biomarkers are in clinical devel-
opment offering the potential to improve patient management from early cancer detection to immuno-oncology 
response prediction1–7.

To chaperone the translation of sRNA-based diagnostics from bench to bedside, cell-specific expression data 
is required to elucidate biomarker origin and generate mechanism of action hypotheses. sRNA analyses are typ-
ically performed on (i) plasma/serum, (ii) extracellular vesicles or (iii) unfractionated whole blood collected via 
stabilization tubes, and only rarely on purified cell populations. In the case of whole blood collection, blood cells 
are immediately lysed upon contact with the stabilization reagent and the post hoc attribution of sRNA signal 
to its respective sources is no longer possible. However, pinpointing the cellular compartment which underlies 
the differential expression of the sRNA of interest will offer additional insights into the biology of the biomarker  
(e.g. implicated in innate or adaptive immunity?) and is important to guide downstream functional studies.

To this end, several expression datasets have been generated that offer sRNA profiles of tissue and cell 
types8,9. However, the currently available studies on human peripheral blood are typically siloed (e.g. one cell 
type only), and dedicated resources are either microRNA (miRNA) focused10, omit important blood cell types 
(e.g. myeloid cells), or are not interactively explorable11. We here present a comprehensive sRNA expression 
resource with matched blood count and cell sorting metrics (Fig. 1) for the eleven dominant blood components 
(plasma, erythrocytes, thrombocytes, monocytes, neutrophils, eosinophils, basophils, natural killer cells, CD4+ 
T cells, CD8+ T cells, and B cells). The processed dataset contains expression data for 4971 sRNAs from eight 
non-coding RNA families: miRNAs, transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), long non-coding RNAs 
(lncRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), Y RNAs, and PIWI-interacting 
RNAs (piRNAs).

Generated based on donated blood from 52 individuals in a mixed cohort (healthy and lung diseased individuals)  
with a stringent quality filter regime applied at all stages of sample processing and data preparation, the dataset is 
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a robust resource with low sample-to-sample variability per blood component (Fig. 2b). In comparison to the pre-
vious benchmark10, our human sRNA blood component atlas includes sRNAs mapping to longer RNA transcripts 
or precursors of seven RNA classes in addition to miRNAs and covers three additional blood components (throm-
bocytes, basophils, and eosinophils). It therefore represents the most comprehensive collection of human sRNA 

Fig. 1  Overview of the study cohort and samples. From 52 human individuals of a mixed cohort (healthy and 
lung diseases), the eleven major components of blood were purified. For each purified blood component and a 
whole blood sample of the same donor, the sRNA population was isolated and subjected to sRNA sequencing 
for expression analysis. For the individual purified blood fractions of each donor, we additionally obtained 
the cell counts, elution volume and sRNA concentration to determine the sRNA content of each sample. 
Furthermore, the relative blood counts of 18 subpopulations of monocytes, NK cells, CD4+ T cells, and CD8+ 
T cells were determined. Images of the blood cell types were modified from Häggström22.

Fig. 2  t-SNE plot of normalized expression data. The samples were coloured by its blood component group. 
(a) t-SNE plot of the 514 blood component specific samples with adequate purity (purity > 70% as determined 
by flow cytometry) shows that four samples do not cluster with the samples of the same blood component. For 
further analyses these samples were removed. (b) The t-SNE plot of the 510 blood component specific samples 
passing the quality control filters shows clearly defined clusters per blood component.

https://doi.org/10.1038/s41597-024-02976-z


3Scientific Data |          (2024) 11:164  | https://doi.org/10.1038/s41597-024-02976-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

expression data for isolated blood components to date. To facilitate querying the dataset, we developed miR-Blood, 
an interactive and user-friendly dashboard. The dashboard is available at http://mir-blood.com/.

Methods
Ethics declaration.  The two studies on which the data are based were approved by the Heidelberg University 
ethics committee of the medical faculty (S-916/2019 and S-551/2020) and registered in the German Clinical Trials 
Register (DRKS) under DRKS00022300 on 2020/06/29 and DRKS00023138 on 2020/09/25. All patients provided 
written informed consent, including for data sharing. We hereby confirm that we have complied with all relevant 
ethical regulations.

Blood donor cohort and study samples.  Approximately 100 ml whole blood was drawn into EDTA 
tubes from 52 donors. 12 of them were healthy donors, 19 were diagnosed with lung cancer and 21 with a 
non-malignant lung disease. An overview on the age and gender distribution of the study participants is listed 
in Table 1. The blood was directly used for cell sorting and plasma purification, resulting in eleven fractional 
derivatives per sample (Fig. 1, middle part). For each blood donor the sRNA population was additionally ana-
lysed directly from unfractionated whole blood collected in S Monovette EDTA K3 tubes (Sarstedt AG & Co. KG, 
Nümbrecht, Germany).

Blood count data.  Absolute erythrocyte, thrombocyte, neutrophil, eosinophil, and basophil counts were 
obtained from clinical differential blood counts. Absolute cell counts of CD4+ T cells, CD8+ T cells, B cells, NK 
cells, and monocytes, were determined by flow cytometry analysis. For this purpose, 50 µl of the whole blood 
samples were stained with the BD Multitest 6-color TBNK reagent in combination with anti-Human CD14-V450 
(clone: MφP9) in BD Trucount tubes and measured on a either FACSVerse or a FACSLyric flow cytometer. 
Absolute cell counts were quantified on basis of the Trucount beads using the BD FACSuite software (all BD 
Biosciences, Franklin Lakes, NJ, USA). A representative gating strategy is shown in Fig. 3. To further quan-
tify multiple leukocyte subpopulations, 100 µl of the same whole blood samples were stained with 17 antibodies 
(CD16, CD3, CD197 (CCR7), CD57, CD25, CD194 (CCR4), CD127, CD8, CD196 (CCR6), CD56, CD45RA, 
CD4, CD45, CD19, CCR10, CD14, CD183 (CXCR3)) from the BD 27-colour broad phenotyping panel (BD 
Biosciences, Franklin Lakes, NJ, USA) and measured on a FACSymphony flow cytometer. A representative gating 
strategy is shown in Fig. 4. Relative quantification was performed using the BD FlowJo software. The relative 
frequencies obtained for these sub cell type populations were turned into absolute cell counts per blood volume 
by multiplying the absolute cell counts of the respective parent cell population. The blood counts of the ten major 
blood cell types and the 18 leukocyte subpopulations are listed in Supplementary Table 1.

Cell sorting of blood cells.  Cell sorting was performed immediately after drawing of human whole blood. 
CD4+ T cells, monocytes, and B cells were isolated and separated from whole blood. Therefore, 350 µl from the 
MicroBeads of the corresponding whole blood isolation kit were added to 7 ml whole blood and incubated 15 min 
at 4 °C. Afterwards the cells were washed with 43 ml isolation buffer (0.5% w/v albumin [Carl Roth GmbH & Co 
KG; Karlsruhe Germany], 2 mM ethylenediaminetetraacetic acid in PBS) and centrifuged 10 min at 445 g and 
room temperature (RT). The pellet was resuspended in 1 ml isolation buffer and separated using positive selection 
on autoMACS Pro Separator (Miltenyi Biotec GmbH, Bergisch Gladbach, Germany). For the isolation of CD8+ 
T cells, neutrophils, and natural killer (NK) cells, the corresponding MACSxpress whole blood isolation reagent 
(see Table 2) was added in a ratio of 1:2 to the whole blood. Next, the tubes were positioned in a MACSmix 
Tube Rotator (Miltenyi Biotec GmbH) for 5 minutes at room temperature. Unwanted cell populations were 
labelled with the respective kits (see Table 2). After 15 minutes at RT on a MACSxpress Separator (Miltenyi Biotec 
GmbH), the CD8+ T cells were purified through a second negative selection on the MACSxpress Separator. To 
purify neutrophils and NK cells, lysis of erythrocytes was performed by adding 20 ml 0.2% sodium chloride solu-
tion (Merck KGaA, Darmstadt, Germany) for 20 seconds and 20 ml 1.6% sodium chloride solution sequentially. 
Next, the cell suspensions were centrifugated for 5 minutes at 300 g and 4 °C, and the supernatant was discarded.

To isolate human thrombocytes, basophils, and eosinophils, the whole blood was diluted in a ratio of 2:3 
with phosphate-buffered saline (PBS) (Thermo Fisher Scientific) and layered over the density gradient medium 
Histopaque 1077 (Merck KGaA) in a ratio of 3:5. After a centrifugation for 20 minutes at 600 g and RT, the dif-
ferent layers were isolated immediately.

The uppermost layer was used to isolate thrombocytes. After an additional centrifugation step for 15 minutes at 
500 g and RT, the supernatant was discarded, and the pellet was resuspended in 600 μl isolation buffer, and 150 μl 
CD61 beads were added (see Table 2). After an incubation time of 15 minutes at 4 °C, the pellet was washed and 
then resuspended in 500 μl isolation buffer, and the thrombocytes were isolated with the autoMACS Pro Separator.

N

Gender, n (%) Age, mean 
(SD)Female Male

Overall 52 30 (58%) 22 (42%) 63 (8)

Healthy 12 6 (50%) 6 (50%) 55 (3)

Lung Cancer 19 11 (58%) 8 (42%) 67 (8)

Non-malignant Lung Disease 21 13 (62%) 8 (38%) 63 (7)

Table 1.  Donor overview showing the age and gender distribution for each disease group.
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The ring-like sediment at the interface between the uppermost and the Histopaque 1077 layer was washed 
three times with the isolation buffer. The isolation of basophils was performed in a two-step procedure with the 
Diamond Basophil Isolation Kit (see Table 2). First, the cell pellet was resuspended in 300 μl isolation buffer, 
100 μl FcR Blocking Reagent, and 100 μl Basophil Biotin-Antibody Cocktail. After incubating for 10 minutes at 
4 °C, 300 μl isolation buffer and 200 μl Anti Biotin MicroBeads were added. After incubating again for 10 min-
utes at 4 °C, cell suspension was washed. Then, the washed cell pellet was resuspended in 500 μl isolation buffer, 
and basophils were isolated with the autoMACS Pro Separator (negative selection). Afterward, the enriched 
basophils were washed. The resulting cell pellet was resuspended in 100 μl CD123 MicroBeads and incubated 
for 15 minutes at 4 °C. Then, the cell suspension was washed, and the resulting cell pellet was resuspended in 
500 μl isolation buffer. Last, magnetic labelled basophils were isolated with the autoMACS Pro Separator (pos-
itive selection).

The bottom layer was purified by performing several erythrocyte lysis steps. Next, the cell suspension was 
centrifugated for 5 minutes at 300 g and 4 °C. The pellet was then resuspended in 40 μl isolation buffer per 107 
cells and in 10 μl eosinophil biotin-antibody cocktail per 107 cells (see Table 2). After an incubation time of 
10 minutes at 4 °C, 30 μl isolation buffer per 107 cells and 20 μl Anti Biotin MicroBeads per 107 cells were added 
to the cell suspension, incubated 15 minutes at 4 °C, washed, and finally resuspended in 500 μl isolation buffer. 
Eosinophils were isolated with the autoMACS Pro Separator (negative selection).

To separate the erythrocytes from human whole blood, 5 ml whole blood was centrifuged for 10 minutes 
at 2500 g and RT. The plasma was centrifuged again to remove residual erythrocytes for 2 minutes at 13,000 g 
and RT, and 1 ml aliquots were frozen at −80 °C. The remaining pellet of the first centrifugation was resus-
pended in isolation buffer. The cell suspension was filtered with a 40 μm cell strainer (Greiner Bio-One GmbH, 
Frickenhausen, Germany). The filtered cell suspension was diluted in a ratio of 1:3 with the isolation buffer. After 
cell counting, approximately 3 × 107 erythrocytes were used for further processing. Next, this cell suspension 
was centrifuged for 10 minutes at 300 g and 4 °C. Afterward, the cell pellet was resuspended in 240 μl isolation 
buffer and in 60 μl CD235a MicroBeads (see Table 2) and incubated for 15 minutes at 4 °C. After washing, the 
cell pellet was resuspended in 150 μl isolation buffer. Last, magnetically labelled erythrocytes were isolated with 
the autoMACS Pro Separator (positive selection).

In cases where the provided blood volume was too little, the purification of lymphocytes was prioritized over 
thrombocytes, eosinophils, and basophils resulting in 539 fractional blood derivatives overall.

Quality control of sorted cells.  For each purification, yield and purity of isolated cells was determined 
by flow cytometry using a small aliquot of the sample. Approximately 0.5 × 105 cells of each population were 
diluted in 2 ml isolation buffer and centrifuged afterward for 5 minutes at 300 × g and RT. Next, the supernatants 
were decanted, and the cell pellets were resuspended in 100 μl isolation buffer. After adding 5 μl Human TruStain 
FcX (Fc Receptor Blocking Solution) (BioLegend; San Diego, CA), the cell homogenates were incubated for 

Fig. 3  Representative gating strategy absolute counts of lymphocyte subsets and monocytes. Quantification of 
lymphocyte subsets and monocytes using BD Multitest 6-color TBNK reagent and anti-Human CD14-V450. 
Trucount beads were used to determine absolute counts.
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10 minutes at RT. To stain the different cell populations, the corresponding antibodies were added (see Table 3). 
After incubating for 20 minutes at 4 °C in the dark, 2 ml isolation buffer was added, and the cell homogenates 
were centrifugated for 5 minutes at 300 g and RT. Then, the cell pellets were resuspended in 300 μl isolation buffer.  
A FACSLyric flow cytometer was used for all measurements. Results were analysed using BD FACSuite software 
(both from BD Biosciences, Franklin Lakes, NJ). Representative gating strategies are shown in Figs. 5, 6. Purity of 
erythrocytes and thrombocyte preparations was evaluated by unwanted presence of CD45+ cells. For 25 cellular 
fractions (4.6% of derivatives, 25/539) the purification process did not meet the prespecified quality standard 
(purity >70% as determined by flow cytometry). These samples were excluded from further analyses. The meas-
ured cell sorting metrics of the purified blood component samples are listed in Supplementary Table 2.

RNA isolation and generation of sRNA libraries.  The cell and plasma fractions were directly lysed in 
Qiazol, as were the whole blood samples. For RNA isolation the miRNeasy Serum/Plasma kit with minElute col-
umns (Qiagen, Venlo, Netherlands) was used. From the obtained total RNA, the “sRNA concentration” of the 10 
to 200 nucleotide region and the “microRNA concentration” of the 10 to 40 nucleotide region was determined on 

Fig. 4  Representative gating strategy relative counts of 18 leukocyte subpopulations. Relative cell counts were 
turned into absolute values by multiplying the absolute cell counts of the respective parent cell population.
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a Fragment Analyzer (Agilent, Santa Clara, USA) and is listed in Supplementary Table 2. (Dual) unique indexed 
sRNA libraries with unique molecular identifiers (UMIs) adaptors were generated using the QIAseq® miRNA 
Library Kit (Qiagen, Venlo, Netherlands). The library prep were performed according manufacturer’s instruc-
tions. For ligation, 100 ng of total RNA, or maximal 5 μl of RNA if concentration was not sufficient, was used. 
When this caused less input of only 50 ng or 10 ng, adapter and RT primer were prediluted 1:2.5 or 1:5, respec-
tively. Mag-Bind beads (Omega Bio-Tek, Norcross, GA) were used for RT clean-up using 2.5x ratio to sample 
according to manufacturer’s protocol. Library polymerase chain reaction (PCR) was performed using custom 
dual index primers or QIAseq miRNA 96 Index IL (MIHT1-96). PCR was cleaned-up with Mag-bind beads 
using 0.9 × and 1.8 × ratios. DNA concentration was determined using QuantIT kit (ThermoFisher Scientific, 
Waltham, MA) on VictorNivo plate reader (PerkinElmer, Waltham, MA) or KAPA Library Quantification 
kit (Roche Holding AG, Basel, Switzerland) on QuantStudio 6Flex (ThermoFisher Scientific, Waltham, MA). 
After controlling the library quality on a Fragment Analyzer (Agilent, Santa Clara, USA), samples with high 
adapter-dimer concentration were loaded on a Novex 8% TBE gel (ThermoFisher Scientific, Waltham, MA) and 
the area above 180 base pair was excised. These libraries were eluted from gel overnight at 37 °C and gel particles 
were removed with Corning™ Costar™ spin-X centrifuge tubes (Corning, New York, US). Libraries were puri-
fied using DNA Clean and Concentrator kit (Zymo Research, Freiburg, Germany), or NEXTflex clean-up beads 
(PerkinElmer, Waltham, US). Finally, equimolar library pools with up to 192 samples were prepared.

sRNA sequencing and data processing.  For sequencing, multiplexed library pools were adjusted to 
0.5 nM with resuspension buffer (10 mM Tris-HCl, pH 8.5 with 0.1% Tween 20) in 24 µl containing 0.5 nM PhiX 
and loaded on Illumina NextSeq. 2000 (Illumina, San Diego USA). For index2 a custom primer was used in a 
concentration of 0.6 µM in 500 µl HT1 buffer (Illumina, San Diego USA) and added to the custom well in the 
reagent cartridge. The NextSeq. 2000 P3 Reagent Cartridge (88 cycles) were used with 71 Read1 cycles and 8 
cycles for index1 and 2. For sequencing with Illumina NextSeq. 500 library pools were adjusted to 15–60 nM. Raw 
sequence reads were adapter trimmed and depleted of PCR duplicates based on the UMIs using a customized 
R-based pre-processing pipeline. Only sequences that had at least one read in at least three samples per blood 
component type and that were longer than 17 nucleotides were included in the count matrix. To annotate the 
pre-processed sRNA sequences, the annotation pipelines unitas based on SeqMap and SPORTS based on Bowtie 
were used12–15. With each tool the respective pre-compiled reference databases were used together with the snoDB 
resource v2.0 as additional snoRNA reference. The used mapping reference per sRNA class is listed in Table 4. 
With unitas, miRNA mapping was restricted to human hairpin sequences allowing for two non-templated 3’ 
nucleotide additions and one internal modification. Mapping to other non-miRNA references was restricted to 
a maximum of one mismatch and did not allow for insertions or deletions. With SPORTS, only one mismatch in 
the entire alignment was allowed. For the sRNA classes rRNA and Y RNA we used the annotation labels provided 
by SPORTS. For the other six sRNA classes (miRNA, tRNA, snoRNA, lncRNA, snRNA, piRNA) the annotation 
labels provided by unitas were used. In case of multi-assignments, the annotation was prioritized in the following 
manner: miRNA > tRNA > rRNA > Y RNA > snoRNA > lncRNA > snRNA > piRNA. To subcategorize rRNA- 
and Y RNA-derived sRNAs further, their parental RNA sequences were binned to ~ 25 nucleotide bins. The 
annotation label is then issued as a combination of the gene symbol of the parental RNA to which the sequence 
maps and the number of the bin which contains the starting position of the sRNA sequence. Finally, the reads are 
collapsed based on the annotation labels of the eight non-coding RNA classes and normalized for library size as 
reads per million (RPM). For visualization purposes the RPM values were log2-transformed (log2(RPM + 1)). 
Low expressed sRNAs (RPM values < 2) were discarded from the dataset.

Quality filtering of sequencing data.  As quality control, the normalized data was converted to a 
two-dimensional T-distributed Stochastic Neighbor Embedding (t-SNE) space using the SCANPY toolkit16. When 
plotting the two embedding vectors against each other, four samples did not cluster with the samples of the same 
blood component type (0.8% of derivatives, 4/514) and were excluded from further analysis (Fig. 2). An overview 
on the age and gender distribution for the remaining 510 samples passing quality filtering is listed in Table 5.

Cell type Kit name (Miltenyi Biotec, Bergisch Gladbach, Germany)

Monocytes StraightFrom® Whole Blood CD14 MicroBeads

B cells StraightFrom® Whole Blood CD19 MicroBeads

CD8+ T cells StraightFrom® Whole Blood CD8 MicroBeads or 
MACSxpress® Whole Blood CD8 T cell Isolation Kit

CD4+ T cells StraightFrom® Whole Blood CD4 MicroBeads

Erythrocytes CD235a (Glycophorin A) MicroBeads

Thrombocytes CD61 MicroBeads

Basophils Diamond Basophil Isolation Kit

Eosinophils Eosinophil Isolation Kit

Neutrophils MACSxpress® Whole Blood Neutrophil Isolation Kit

NK cells MACSxpress® Whole Blood NK Cell Isolation Kit

Table 2.  List of kits used to purify the major blood cell types.
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Relative contribution of blood components to sRNA profile of whole blood.  To estimate the con-
tribution of the major peripheral blood cell types and plasma to the global sRNA profile of whole blood, we deter-
mined for each purified blood component fraction its sRNA content per microliter blood.

The sRNA content of the purified fraction of cell type c from donor d (αc,d) was calculated (Eq. (1)) as the 
product of the sRNA concentration (csRNA; 10 to 200 nucleotide region of the Fragment Analyzer), the elution 
volume of the sorted cells (Velution) and the donor-specific blood count (nblood_count) divided by the number of 
sorted cells (nsorted_count):

c V n
n (1)

_
_

c d
sRNA elution blood count

sorted count
,α =

∗ ∗

The sRNA content of the plasma fraction from donor d (αd) was calculated (Eq. (2)) as the product of the 
sRNA concentration (csRNA) and the elution volume (Velution) of the isolated plasma RNA divided by the plasma 
volume used for RNA isolation (Vinput), which was then adjusted for the volume fraction of plasma in blood (0.5 
was assumed):

α =
∗

∗ .
c V

V
0 5

(2)
d

sRNA elution

input

The calculated sRNA content values per sample can be found in Supplementary Table 3. For 15 of the 510 
QC-filtered blood component specific samples (3%), the sRNA content could not be determined. For the 
remaining samples the sRNA expression (RPM values) of each sRNA s in each blood component b (xb,s,d) was 
scaled by multiplying the sample-specific sRNA content to account for the different cell counts and sRNA con-
tent per blood component. For each blood component b, the mean of these scaled RPM values per sRNA s is 
calculated (Eq. (3)) over all donors D:
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
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Finally, the proportion of the scaled mean expression values (Pb,s) of each blood component b was calculated 
(Eq. (4)) per sRNA s:
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Figure 7 summarizes the deconvolution calculations graphically.

Correlation analysis of whole blood sRNA expression and (sub-)cell type blood count.  Whole 
blood sRNA expression can either be an indirect measure of the abundance of a certain blood component that is 
predominantly expressing this sRNA, indicate a regulation change of a cellular pathway that involves that sRNA 
or reflect both a combination of cell count changes and pathway regulation. To check whether the expression of a 
sRNA in whole blood correlates with the abundance of a certain cell type, we calculated Pearson correlation coef-
ficients for RPM values of each sRNA and the blood counts of the major peripheral blood cell types and multiple 
leukocyte subpopulations.

sRNA profile of blood components.  To obtain relative sRNA profiles per blood component, for each 
sRNA the mean of the RPM values was calculated per blood component and divided by the sum of all mean RPM 

Cell type Reagent Reference number Supplier

Basophils FITC Mouse Anti-Human CD123 558663 Becton, Dickinson and Company; Franklin Lakes (New Jersey), USA

B cells
V500 Mouse Anti-Human CD19 561121 Becton, Dickinson and Company; Franklin Lakes (New Jersey), USA

V450 Mouse Anti-Human CD20 561164 Becton, Dickinson and Company; Franklin Lakes (New Jersey), USA

CD8+ T cells
FITC Mouse Anti-Human CD3 555332 Becton, Dickinson and Company; Franklin Lakes (New Jersey), USA

PerCP-CyTM5.5 Mouse Anti-Human CD8 565310 Becton, Dickinson and Company; Franklin Lakes (New Jersey), USA

Eosinophils FITC Mouse Anti-Human CD16 561308 Becton, Dickinson and Company; Franklin Lakes (New Jersey), USA

Erythrocytes FITC Mouse Anti-Human CD45 555482 Becton, Dickinson and Company; Franklin Lakes (New Jersey), USA

Monocytes V450 Mouse Anti-Human CD14 560349 Becton, Dickinson and Company; Franklin Lakes (New Jersey), USA

Neutrophils
APC/Cy7 Anti-Human CD15 323048 BioLegend; San Diego, USA

FITC Mouse Anti-Human CD16 561308 Becton, Dickinson and Company; Franklin Lakes (New Jersey), USA

NK cells FITC Mouse anti-Human CD56 562794 Becton, Dickinson and Company; Franklin Lakes (New Jersey), USA

CD4+ T cells
FITC Mouse Anti-Human CD3 555332 Becton, Dickinson and Company; Franklin Lakes (New Jersey), USA

V500 Mouse Anti-Human CD4 560768 Becton, Dickinson and Company; Franklin Lakes (New Jersey), USA

Thrombocytes FITC Mouse Anti-Human CD45 555482 Becton, Dickinson and Company; Franklin Lakes (New Jersey), USA

Table 3.  List of antibodies used for quality control flow cytometry.
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values per blood component. sRNAs that make up less than 2% of the sRNA profile were combined as ‘others’. To 
obtain blood component specific sRNA profiles aggregated per sRNA class, the RPM values of all sRNAs belong-
ing to the same sRNA class were summed up per sample before calculating the mean per blood component.

Identification of overrepresented sRNAs for blood components.  To identify sRNAs that are over-
represented in a specific blood component, we used the differential expression testing method ‘rank_genes_
groups’ from the SCANPY toolkit16. For each group of blood components, the expression distribution of a sRNA 
is compared against the expression distribution in all other blood components using the Wilcoxon rank-sum test. 
Only sRNAs with an increased fold change and adjusted p-value < 0.05 that are expressed in all samples of the 
respective blood component are considered as overrepresented.

Comparison to previous benchmark.  The raw sequencing data from the IKMB catalogue10 was down-
loaded from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO)17 
and subjected to the same raw data processing and annotation as the miR-Blood dataset. For each sRNA name, 
the fraction of samples per blood component type with non-zero expression was checked. Only sRNAs that were 
detected in all samples of a blood component type were considered as detected in the respective dataset and used 
for the intersection analysis visualized by UpSet plots. To compare the expression correlation for matching blood 
component types, the mean log-transformed expression of each sRNA name was calculated per dataset. These 

Fig. 5  Representative gating strategy flow cytometry quality control measured on a FACSVerse machine. 
Cellular events were gated from all events. B cells were identified as CD20+. CD8+ T cells were identified as 
CD3+ CD8+. CD4+ T cells were identified as CD3+ CD4+. NK cells were identified as CD56+. Monocytes 
were identified as CD14+. Basophils were identified as CD123+. Eosinophils were identified as CD16-. 
Neutrophils were identified as CD15+ CD16+. Erythrocytes were identified as CD45-. Thrombocytes were 
identified as CD45−.
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means were then visualized as scatter plots and used to calculate the Pearson correlation coefficient r for each 
blood component type.

Dashboard implementation.  The dashboard was implemented as a Python-based Dash app using the 
Dash libraries Core Components, HTML Components, DAQ and Bio in addition to the Python graphing library 
Plotly with the module Plotly Express. The dashboard is accessible via this link http://mir-blood.com/.

Fig. 6  Representative gating strategy flow cytometry quality control measured on a FACSLyric machine 
Cellular events were gated from all events. B cells were identified as CD20+. CD8+ T cells were identified as 
CD3+ CD8+. CD4+ T cells were identified as CD3+ CD4+. NK cells were identified as CD56+. Monocytes 
were identified as CD14+. Basophils were identified as CD123+. Eosinophils were identified as CD16-. 
Neutrophils were identified as CD15+ CD16+. Erythrocytes were identified as CD45−. Thrombocytes were 
identified as CD45−.

sRNA classes Database (Release); Reference

miRNAs miRBase database (Release 22)19;

rRNAs, Y RNAs precompiled data from NCBI provided by SPORTS (version 1.1)14;

tRNAs Genomic tRNA database (date: 25.05.2021)23;

tRNAs tRF-1 and tRNA-leader sequence data (date: 09.04.2019)12;

piRNAs piRNA cluster database (date: 25.05.2021)24;

lncRNAs, sRNAs, snoRNAs Ensembl (Release 104)25;

snoRNAs snoDB (version 2.0)26;

Table 4.  Used reference databases for mapping of sRNA sequencing reads.
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Data Records
Raw sequencing data as well as the processed expression matrices per sRNA name have been uploaded to the 
GEO database under the accession number GSE22587218.

N

Gender, n (%)

Age, mean (SD)Female Male

Overall 510 300 (59%) 210 (41%) 62 (8)

B cells 51 29 (57%) 22 (43%) 63 (8)

Basophils 36 21 (58%) 15 (42%) 62 (8)

CD4+ T cells 50 30 (60%) 20 (40%) 63 (8)

CD8+ T cells 49 30 (61%) 19 (39%) 63 (8)

Eosinophils 46 28 (61%) 18 (39%) 63 (8)

Erythrocytes 49 29 (59%) 20 (41%) 63 (8)

Monocytes 47 28 (60%) 19 (40%) 62 (8)

NK cells 48 27 (56%) 21 (44%) 62 (8)

Neutrophils 51 29 (57%) 22 (43%) 63 (8)

Plasma 39 23 (59%) 16 (41%) 62 (8)

Thrombocytes 44 26 (59%) 18 (41%) 62 (8)

Table 5.  Sample overview showing the age and gender distribution for each blood component type after quality 
filtering.

Fig. 7  Outline of the calculations behind the deconvolution analysis to estimate the relative contribution of 
blood components to the sRNA profiles of whole blood. For each purified blood component specific sample, 
the eluted sRNA mass was calculated as the product of the sRNA concentration with the elution volume of the 
sample after purification. The eluted sRNA mass was then divided by the number of sorted cells to obtain the 
average sRNA mass per cell. For plasma samples, the volume inserted to extract the sRNAs was used to calculate 
the sRNA mass per plasma fraction. The sRNA mass per blood component sample was further multiplied by the 
blood count of the respective cell type to obtain for each cellular fraction the sRNA mass per blood volume. For 
plasma samples it was assumed that they make up half of the blood volume. The small RNA content was then 
used to scale the RPM values of the blood component specific samples obtained by sRNA sequencing. As a next 
step, the average scaled RPM values was calculated for each blood component type. Per sRNA these mean values 
per blood derivative were finally normalized to sum up to 1. These values reflect the proportional contribution 
of the distinct blood components to the global expression profile of a specific sRNA in a whole blood sample.
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Technical Validation
Quality control of cell purification.  For each purified cellular fraction, the purity of isolated cells was 
determined by flow cytometry using a small aliquot of the sample. For 25 cellular fractions (4.6% of derivatives, 
25/539) the purification process did not meet the prespecified quality standard (purity > 70% as determined by 
flow cytometry). These samples were excluded from the dataset. Representative gating strategies for the flow 
cytometry quality control are shown in Figs. 5, 6.

Quality control of sRNA sequencing.  The quality of generated sRNA libraries was checked on a 
Fragment Analyzer (Agilent, Santa Clara, USA). Moreover, the normalized sequencing data was converted to a 
two-dimensional t-SNE space to identify samples that do not cluster with the samples of the same blood compo-
nent type. Four samples (0.8% of derivatives, 4/514) were therefore excluded from further analysis (Fig. 2).

Comparison of the expression data to the previous benchmark.  A comparison with the previous 
benchmark dataset, the IKMB catalogue10, showed a robust correlation (r ~ 0.9) of the mean expression of shared 
sRNAs per matched blood component group (Fig. 8c–j). This suggests a general comparability of the expression 

Fig. 8  Comparison to previous benchmark. Total read counts after pre-processing for blood component-
specific samples of (a) the miR-Blood dataset presented here and (b) the previous benchmark dataset10. (c–j) 
Direct comparison of samples per matching blood component type. The scatter plots show the mean expression 
of sRNAs that were detected in both datasets. Correlation coefficients are given. The outlier sRNA miR-16-5p is 
highlighted as a red dot. The UpSet plots below show the intersection of the subclass names of sRNAs with non-
zero expression for all samples of a group (100% detection per group and dataset).
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data. Discrepancies observed can be attributed to variations in sample processing (direct purification vs. pooled 
processing), library preparation methods (QIAseq vs. TruSeq), and sequencing depth (Fig. 8a,b). Due to the 
considerably higher sequencing depth in the miR-Blood dataset, normalized expression values tend to be lower 
compared to the IKMB catalogue.

As depicted in the UpSet plots (Fig. 8c–j), the miR-Blood dataset encompasses a significantly larger number 
of sRNA species compared to the previous benchmark. This is particularly pronounced in neutrophils, where 
1214, as opposed to only 40, sRNAs are consistently detectable across all samples.

As noted previously6, the sequence of miR-16-5p can form an extremely stable stem loop with the sequencing 
library adapters used here, making it a preferred substrate for ligation and thus lead to an artificial overrep-
resentation (“jackpotting”) in the sequenced sRNA pool. Consequently, the abundance of reads mapping to 
miR-16-5p is increased throughout all blood component libraries. Compared to the benchmark dataset miR-
16-5p remains to be the only detectable artefact (highlighted as red dot in Fig. 8c–j).

Potential limitation.  It should be noted that compared to the other blood cell types it was more challenging 
to purify sRNAs from basophiles, thrombocytes, and plasma. Consequently, much lower total read counts after 
pre-processing were obtained for the samples of these three blood components (Fig. 8a). The higher ratios of 
rRNA-derived sRNAs in these samples must therefore be considered at least partially caused by non-optimal RNA 
inputs during library preparation. As described above for miR-16-5p, library artefacts can distort the number of 
reads of a certain sRNA. We thus recommend orthogonal validation of expression via alternative methods such as 
quantitative PCR or northern blot analysis. In general, it should be noted that the addition of stabilization agents 
and different extraction and library preparation methods can lead to shifts in the detected expression. This should 
be considered when extrapolating from this dataset to differentially obtained whole blood expression profiles.

As a limitation of the deconvolution analysis, it must be noted that the contribution of plasma might be over-
estimated. In contrast to the blood cell types, where we experimentally determined the blood counts and sRNA 
content per cell, the relative blood fraction of plasma could only be estimated.

The processed expression matrices uploaded to GEO under accession number GSE22587218, which are also 
interactively browsable on the dashboard (http://mir-blood.com/), are based on miRBase19 for miRNAs, as this 
is still the reference used by most resources. Please note that the annotation as a true miRNA has been chal-
lenged for many of the sequences listed in miRBase in the last years20. Therefore, we strongly encourage users to 
check the miRBase identifiers for evaluation by the MirGeneDB team21.

Code availability
The code used for data pre-processing has been deposited on https://github.com/gitHBDX/mirblood-code. The 
following software versions were used: unitas v1.7.7, SeqMap v1.0.13, SPORTS v1.1, Bowtie v1.3, SCANPY v1.8.2, 
Python v3.10.6, Plotly v5.10.0, Plotly Express v0.4.1, SciPy v1.9.1, Seaborn v0.12.2, and UpSetPlot v0.8.0.

Received: 29 June 2023; Accepted: 16 January 2024;
Published: xx xx xxxx

References
	 1.	 Anfossi, S., Babayan, A., Pantel, K. & Calin, G. A. Clinical utility of circulating non-coding RNAs - an update. Nature Reviews 

Clinical Oncology 15, 541–563 (2018).
	 2.	 Shukuya, T. et al. Circulating miRNAs and extracellular vesicle containing miRNAs as response biomarkers of anti PD-1/PD-L1 

therapy in non-small-cell lung cancer. J Thorac Oncol 15, 1773–1781 (2020).
	 3.	 Sikosek, T. et al. Early Detection of Lung Cancer Using Small RNAs. J. Thorac. Oncol. 18, 1504–1523 (2023).
	 4.	 Montani, F. et al. miR-Test: A Blood Test for Lung Cancer Early Detection. JNCI: Journal of the National Cancer Institute 107, 1763–5 

(2015).
	 5.	 Pastorino, U. et al. Baseline computed tomography screening and blood microRNA predict lung cancer risk and define adequate 

intervals in the BioMILD trial. Ann Oncol 33, 395–405 (2022).
	 6.	 Rajakumar, T. et al. A blood-based miRNA signature with prognostic value for overall survival in advanced stage non-small cell lung 

cancer treated with immunotherapy. Npj Precis Oncol 6, 19 (2022).
	 7.	 Rajakumar, T. et al. Brief Report: A blood-based miRNA complementary diagnostic predicts immunotherapy efficacy in advanced 

stage NSCLC with PD-L1 TPS ≥50%. Jto Clin Res Reports 3, 100369 (2022).
	 8.	 Aparicio-Puerta, E. et al. liqDB: a small-RNAseq knowledge discovery database for liquid biopsy studies. Nucleic Acids Research 47, 

D113–D120 (2018).
	 9.	 Keller, A. et al. miRNATissueAtlas2: an update to the human miRNA tissue atlas. Nucleic Acids Research 50, D211–D221 (2021).
	10.	 Juzenas, S. et al. A comprehensive, cell specific microRNA catalogue of human peripheral blood. Nucleic Acids Res 45, gkx706 

(2017).
	11.	 Teruel-Montoya, R. et al. MicroRNA Expression Differences in Human Hematopoietic Cell Lineages Enable Regulated Transgene 

Expression. PLoS ONE 9, e102259–12 (2014).
	12.	 Gebert, D., Hewel, C. & Rosenkranz, D. unitas: the universal tool for annotation of small RNAs. Bmc Genomics 18, 644 (2017).
	13.	 Jiang, H. & Wong, W. H. SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics 24, 2395–2396 

(2008).
	14.	 Shi, J., Ko, E.-A., Sanders, K. M., Chen, Q. & Zhou, T. SPORTS1.0: A Tool for Annotating and Profiling Non-coding RNAs Optimized 

for rRNA- and tRNA-derived Small RNAs. Genom Proteom Bioinform 16, 144–151 (2018).
	15.	 Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the 

human genome. Genome Biol 10, R25 (2009).
	16.	 Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol 19, 15 (2018).
	17.	 Gene Expression Omnibus (GEO). https://identifiers.org/geo/GSE100467 (2017).
	18.	 Gene Expression Omnibus (GEO). https://identifiers.org/geo/GSE225872 (2023).
	19.	 Griffiths-Jones, S., Grocock, R. J., Dongen, S., van, Bateman, A. & Enright, A. J. miRBase: microRNA sequences, targets and gene 

nomenclature. Nucleic Acids Res 34, D140–D144 (2006).
	20.	 Fromm, B., Zhong, X., Tarbier, M., Friedländer, M. R. & Hackenberg, M. The limits of human microRNA annotation have been met. 

RNA 28, 781–785 (2022).

https://doi.org/10.1038/s41597-024-02976-z
http://mir-blood.com/
https://github.com/gitHBDX/mirblood-code
https://identifiers.org/geo/GSE100467
https://identifiers.org/geo/GSE225872


13Scientific Data |          (2024) 11:164  | https://doi.org/10.1038/s41597-024-02976-z

www.nature.com/scientificdatawww.nature.com/scientificdata/

	21.	 Fromm, B. et al. A Uniform System for the Annotation of Vertebrate microRNA Genes and the Evolution of the Human 
microRNAome. Annual Review of Genetics 49, 213–242 (2015).

	22.	 Häggström, M. Simplified hematopoiesis. Wikimedia Commons.
	23.	 Chan, P. P. & Lowe, T. M. GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37, D93–7 

(2008).
	24.	 Rosenkranz, D. piRNA cluster database: a web resource for piRNA producing loci. Nucleic Acids Res 44, D223–D230 (2016).
	25.	 Yates, A. et al. Ensembl 2016. Nucleic Acids Res 44, D710–D716 (2016).
	26.	 Bouchard-Bourelle, P. et al. snoDB: an interactive database of human snoRNA sequences, abundance and interactions. Nucleic Acids 

Res 48, D220–D225 (2019).

Acknowledgements
We would like to thank the Hummingbird Team Sarah Hoffman, Jessika Ceiler, Dennis Nötzel, Patrick Neubert, 
Helena Schock, Jurgita Juozaityte, Elena Gleim and Elena Neumüller as well as Kathrin Waurich and not least 
Jochen Kohlhaas. We would like to thank Jan-Niklas Pfister, Lucas Tichy, and Katharina Bomans from the 
Department of Anesthesiology at Heidelberg University Hospital for their help with flow cytometry. We thank 
Mihaela Zavolan and Anastasiya Börsch for discussions of the cell sorting analyses. Finally, we would like to 
thank all study participants and their families.

Author contributions
B.R.S. conceived and designed the study. J.J., M.F., T.S., B.R.S. designed the dashboard. J.J. and M.F. coded the 
dashboard. F.T., J.S., M.A.W., T.R., C.R., F.H., K.T., L.K., H.K., M.K., P.C. organized clinical enrolment and sample 
and data collection. R.H., J.S., J.G., J.S., A.D.M. processed biological material and performed experiments. J.J., F.T., 
R.H., J.S., M.F., M.K., M.H., T.S., T.R., J.G., J.S., A.D.M. analyzed and interpreted the data. J.J. and B.R.S. wrote the 
manuscript. All authors approved the final version.

Competing interests
J.J., R.H., M.F., M.K., M.H., T.S., T.R., J.G., J.S., A.D.M., C.R., F.H., K.T. and B.R.S. are employees of 
Hummingbird Diagnostics and hold company stock options. P.C. serves on the scientific advisory board of 
Hummingbird Diagnostics. The remaining authors report no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/ 
10.1038/s41597-024-02976-z.
Correspondence and requests for materials should be addressed to B.R.S.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2024

https://doi.org/10.1038/s41597-024-02976-z
https://doi.org/10.1038/s41597-024-02976-z
https://doi.org/10.1038/s41597-024-02976-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	miR-Blood – a small RNA atlas of human blood components

	Background & Summary

	Methods

	Ethics declaration. 
	Blood donor cohort and study samples. 
	Blood count data. 
	Cell sorting of blood cells. 
	Quality control of sorted cells. 
	RNA isolation and generation of sRNA libraries. 
	sRNA sequencing and data processing. 
	Quality filtering of sequencing data. 
	Relative contribution of blood components to sRNA profile of whole blood. 
	Correlation analysis of whole blood sRNA expression and (sub-)cell type blood count. 
	sRNA profile of blood components. 
	Identification of overrepresented sRNAs for blood components. 
	Comparison to previous benchmark. 
	Dashboard implementation. 

	Data Records

	Technical Validation

	Quality control of cell purification. 
	Quality control of sRNA sequencing. 
	Comparison of the expression data to the previous benchmark. 
	Potential limitation. 

	Acknowledgements

	Fig. 1 Overview of the study cohort and samples.
	Fig. 2 t-SNE plot of normalized expression data.
	Fig. 3 Representative gating strategy absolute counts of lymphocyte subsets and monocytes.
	Fig. 4 Representative gating strategy relative counts of 18 leukocyte subpopulations.
	Fig. 5 Representative gating strategy flow cytometry quality control measured on a FACSVerse machine.
	Fig. 6 Representative gating strategy flow cytometry quality control measured on a FACSLyric machine Cellular events were gated from all events.
	Fig. 7 Outline of the calculations behind the deconvolution analysis to estimate the relative contribution of blood components to the sRNA profiles of whole blood.
	Fig. 8 Comparison to previous benchmark.
	Table 1 Donor overview showing the age and gender distribution for each disease group.
	Table 2 List of kits used to purify the major blood cell types.
	Table 3 List of antibodies used for quality control flow cytometry.
	Table 4 Used reference databases for mapping of sRNA sequencing reads.
	Table 5 Sample overview showing the age and gender distribution for each blood component type after quality filtering.




