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Acting Emotions: a comprehensive 
dataset of elicited emotions
Luís Aly   1,2 ✉, Leonor Godinho3, Patricia Bota   3, Gilberto Bernardes   1,2 & 
Hugo Plácido da Silva3

Emotions encompass physiological systems that can be assessed through biosignals like 
electromyography and electrocardiography. Prior investigations in emotion recognition have primarily 
focused on general population samples, overlooking the specific context of theatre actors who possess 
exceptional abilities in conveying emotions to an audience, namely acting emotions. We conducted a 
study involving 11 professional actors to collect physiological data for acting emotions to investigate 
the correlation between biosignals and emotion expression. Our contribution is the DECEiVeR (DatasEt 
aCting Emotions Valence aRousal) dataset, a comprehensive collection of various physiological 
recordings meticulously curated to facilitate the recognition of a set of five emotions. Moreover, we 
conduct a preliminary analysis on modeling the recognition of acting emotions from raw, low- and 
mid-level temporal and spectral data and the reliability of physiological data across time. Our dataset 
aims to leverage a deeper understanding of the intricate interplay between biosignals and emotional 
expression. It provides valuable insights into acting emotion recognition and affective computing by 
exposing the degree to which biosignals capture emotions elicited from inner stimuli.

Background & Summary
Researchers from multiple disciplines, such as psychology, cognition, and computing science, have demon-
strated significant interest in the computer-based recognition of emotions, leading to affective computing as 
a field within computer science focused on enabling computers to detect and respond to human emotions1. 
Affective computing fosters harmonious human-computer interaction by facilitating computers’ understanding 
and appropriate response to human emotions2. Efforts in affective computing are directed towards refining 
computers’ ability to perceive and interpret human emotional states accurately, ultimately aiming to enhance 
the overall quality of user interactions and experiences in various domains such as healthcare, education, or 
entertainment.

Researchers commonly regard emotions as psychological states that find expression through facial expres-
sions and can be discerned using computer vision techniques3,4. While facial recognition effectively identifies 
facial emotional expressions such as anger, disgust, and surprise, physiological sensors offer a distinct avenue 
for examining an individual’s emotional state5. Physiological sensors measure physiological activities (e.g., the 
electrical potential of neural impulses), including the heart, skin, and brain6,7, and can detect subtle changes in 
emotional states that are not apparent through facial expressions alone. Physiological sensors capture internal 
physiological responses related to the autonomic nervous and limbic systems, which individuals do not explic-
itly control. Recent research has explored how indicators like heart rate correlate with emotional expressions8,9, 
facial muscle activation10,11, or electrodermal activity12. In the study by Sharma and colleagues13, physiological 
signals were synchronized with real-time continuous annotation of emotions involving multiple participants 
watching various videos. However, the extent of agreement between subjective and physiological emotional 
responses over time, particularly regarding temporal dynamics and the degree to which these emotional por-
trayals resemble spontaneous emotional expressions, remain subjects of ongoing debate14.

The studies mentioned in the literature rely on five types of stimuli applied to one or more individuals, as 
described in15: (i) performing specific tasks, such as driving; (ii) exposure to externally driven stimuli, such as 
watching a movie; (iii) leader-follower interactions, as observed during a meeting; (iv) dynamic interactions, 
such as engaging in a conversation; and finally, (v) cooperative tasks. However, to the best of our knowledge, 
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there needs to be more research that focuses on internally driven stimuli that arise from within an individual’s 
body rather than being externally perceived. These internal processes generate stimuli that can significantly 
influence an individual’s emotions or physiological responses.

Despite the growing interest in affective computing, most studies have primarily focused on recognizing 
emotions within general population samples. More attention should be given to investigating creative indi-
viduals’ emotional experiences and non-verbal expressions, particularly among theatre actors. As an art form, 
theatre provides an analytical metaphor that allows for the observation and exploration of elements from every-
day life16. Theatre actors are of particular psychological interest in affective computing, not only because they 
receive approval from audiences but also due to their proficiency in controlling expressive behavior and their 
expertise in non-verbal emotional communication17. An exception to this research gap is the work by Zhang and 
colleagues18, which presented a dataset of actors’ kinematics in expressing six basic emotions.

To further investigate elicited emotions, i.e., internally driven emotions, we conducted a study involving 11 
actors tasked with eliciting five emotions: neutral, calm, tiredness, tension, and excitement. For our study, we 
adopted the working definition of acting emotions as referring to the intentional elicitation of specific emotional 
states by the actors solely through internal stimuli. During the experiment, we collected various physiological 
measures, including electrocardiography (ECG), electrodermal activity (EDA), respiration (PZT), electromy-
ography (EMG), and motion data. Data were compiled into a comprehensive and systematic dataset named 
DECEiVeR19, encompassing approximately seven hours of continuous recordings. Furthermore, the dataset 
incorporates the annotation data previously utilized in a publication that introduced and validated our approach 
to emotion annotation20. Additionally, our experiment protocol details a novel approach to emotion recogni-
tion. By eliciting emotions without any external input, participants reveal new insights invaluable to the field. 
This method allows for a more authentic and spontaneous expression of emotions, diverging from traditional 
emotion elicitation techniques. Our findings suggest that actors, in their pursuit of emotional authenticity, often 
employ creative strategies to convey emotions that may not align with conventional expressions. For instance, 
one participant (actor) noted that their portrayal of anger intentionally deceives, i.e., circumvents the obvious, 
offering the audience a fresh perspective on emotional expression.

Methods
Ethics Statement.  The study received retrospective approval from the Data Protection Officer of The 
University of Porto, Portugal, under approval number 11094042/2023. The Officer evaluated and concluded that 
the risks to the rights and freedoms of participants contributing to this dataset were very low. This assessment was 
based on several factors: participants voluntarily engaged in the study after making an informed decision, and the 
data is considered anonymous when considering reasonable means (human, technological, temporal and finan-
cial) that could potentially be used for personal identification. The dataset comprises exclusively physiological 
signal data, each linked to individual participants through unique identification numbers assigned for the study. 
These numbers are not connected to the participants’ identities, ensuring the data’s anonymity.

Informed consent for data sharing and participation was obtained from all participants. They received 
detailed information about the study’s objectives, the methods used for data collection, and the measures taken 
to maintain confidentiality. Every participant was fully apprised of the nature of the research and how the col-
lected data would be used, ensuring their participation was informed and voluntary. The study did not offer any 
financial incentives for participation.

Participants.  Eleven Portuguese professional actors (five females and six males with a mean age of 36 and 
a standard deviation of 10.82 years) participated in this study. Participants were recruited through an open call 
directed at professional theatre companies and schools. All participants reported no neurological or psychiatric 
problems.

It is important to note that our study focuses on a specialized population segment, specifically within the 
context of the Portuguese acting profession. In Portugal, the acting profession is relatively rare, so a sample 
size of 11 participants reflects this specialized group. Our study offers valuable insights specific to this context, 
contributing to the broader understanding of emotional expression in professional acting. The participants vary 
in age, and we have maintained a gender balance, adding diversity to our study. While we acknowledge the lim-
itations regarding broader generalizability, we believe our findings are significant for understanding emotional 
elicitation in this specific professional group.

Experiment design.  In defining emotional experience, we adopted the approach presented in Mauss et al.21,  
which posits a model of emotions that conceptualizes them as experiential and physiological phenomena. 
According to this model, emotional responses are represented as dimensions rather than discrete states. As such, 
an emotional response encompasses both experiential and physiological aspects. Our study focused on recogniz-
ing emotions by analyzing physiological patterns, aligning with contemporary key theories in emotion research. 
These theories propose that physiological responses are fundamental components of emotional experiences22.

We adopted the circumplex model proposed by Russell23, where emotions are represented as continuous 
numerical values in multiple dimensions. The valence-arousal (VA) circumplex model (see Fig. 1), positions 
emotions along two orthogonal axes: valence and arousal. Valence indicates the degree of positive or negative 
feelings, while arousal represents the degree of excitement or calmness. To operationalize these dimensions, we 
defined a set of four emotions located at the extremes of each quadrant: High Valence & Low Arousal (HVLA), 
Low Valence & Low Arousal (LVLA), Low Valence & High Arousal (LVHA), and High Valence & High Arousal 
(HVHA), in addition to a neutral state at the center of the space.
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Experiment protocol.  Two weeks before the experiment, participants were instructed to engage in mental 
imagery exercises to elicit the five emotions and a neutral state. Participants were encouraged to imagine various 
scenarios, such as film scenes, theatrical backdrops, personal memories, or any other events they believed could 
evoke each emotion under investigation.

On the day of the experiment, participants received an oral description of the study procedures. Physiological 
sensors were attached to the participants, and they were seated comfortably on a chair positioned at the center of 
the stage (see Fig. 2a,b). The lighting intensity was dimmed to create an environment resembling a theater stage 
(please refer to Fig. 2c). A detailed explanation of the experimental protocol was then provided, outlining the 
sequence of emotions, the duration allocated for acting out each emotion, and the intermission period between 
emotions to allow for the re-establishment of a neutral state before proceeding to the next emotion. Before 
acting out each emotion, the name of the emotion was announced to ensure clarity and consistency across all 
participants. The emotional set was presented in the same order for each experimental session, and the entire 
experiment was approximately 40 minutes.

Following the experiment’s conclusion, the sensors were detached from the participants. Subsequently, we ran 
a feedback session wherein participants employed a touch-responsive application to provide their assessment. 
Within a custom application, each participant could recreate the emotional trajectory on a two-dimensional VA 
representation displayed on the screen. This interactive interface allowed participants to express their perception 
of emotional experiences by manipulating the positioning of points on the valence-arousal space. This feedback 
collection process aimed to gather valuable insights regarding the effectiveness of the research methodology. 
Participants were also encouraged to share any additional insights or observations related to the experiment.  
The experiment was repeated 15 days later to assess the temporal correlations between sessions.

Fig. 1  Illustration of a two-dimensional valence and arousal space. The five emotional states - calm, tired, tense, 
and excited - are highlighted in bold, plus the neutral. Each quadrant of the space, labeled with Roman numerals 
from I to IV, corresponds to the specific emotional set selected for investigation.

Fig. 2  The experimental scenario, with participant’s consent for their likeness to be used. Panel (a) presents a 
stage perspective, depicting the space where the experiment was conducted, including the setup of the biosignal 
acquisition system. Panel (b) provides an audience perspective, illustrating the stage under controlled lighting 
conditions. Panel (c) offers an experiment perspective, showing a participant who has granted permission for 
the use of their image, eliciting one of the emotional states under study on the stage.
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Data acquisition.  The data recording in our study was performed using the BITalino Plugged kit24 in com-
bination with an R-IoT device. The R-IoT device provided WiFi connectivity, enabling communication between 
the BITalino board and the computer via the User Datagram Protocol (UDP). When plugged onto the Universal 
Asynchronous Receiver/Transmitter of a BITalino (r)evolution device, the R-IoT streams single Open Sound 
Control25 packets containing all the exported data (IMU + BITalino). The BITalino (r)evolution Plugged kit was 
housed within a 3D-printed enclosure designed to safeguard its components.

For data acquisition and management, we developed custom software using the MaxMSP (https://cycling74.
com/products/max) programming environment (see Fig. 4a). This software facilitated various functionalities, 
including listening to the BITalino hardware through the UDP port, parsing the data, visualizing the signals, 
formatting the data, and saving the physiological signals obtained from the board (see Fig. 4b). The software 
supported recording in two different formats: raw and resampled. The raw format involved logging the record-
ings at the sample rate of the board, i.e., 100 Hz, while the resampled format maintained a constant sample rate 
of two milliseconds, i.e., 500 HZ. The resampled version was an arbitrary selection based on the assumption that 
we could derive high-resolution interpolated versions for future analysis (see Fig. 4c). Both raw and resampled 
versions were automatically saved in files with unique identification for each recording session. Furthermore, 
the software facilitated the synchronized video and audio recording, ensuring that these components could be 
analyzed alongside the captured physiological data in future analyses.

Data was recorded using an Apple iMac with a 2.5 GHz Intel Core i5 processor, 20 GB DDR3 RAM, and 
a 21.5-inch screen. Video and audio recordings were captured using the iMac’s built-in microphone and HD 
camera.

Assessment software.  After each session, participants were presented with a video recording of their per-
formance. Subsequently, utilizing a touch-responsive application, they were instructed to reproduce the emo-
tional trajectory of each emotion on a two-dimensional valence- arousal (VA) space (see Fig. 1). This self-report 
assessment aimed to ascertain nuances in each emotion, the separation of emotions, and identify the gap between 
elicited emotion and the final result. Furthermore, participants were requested to provide a concise textual 
description of the mental imagery employed to evoke the emotions under investigation.

Sensors & Instruments
Emotion recognition employing biomedical sensors is a well-consolidated research field relevant to AC and 
HCI communities. It has been explored in conjunction with other modalities26,27 and individually28–30. Although 
there is no report on the optimized placement position of a biomedical sensor setup31, we adopted the proce-
dures depicted in Fig. 3. In the following paragraphs, we describe the physiological measures used in the present 
study. Finally, we provide the transformed sensor output values for each of the five physiological sensors used 
in the experiment.

The electromyography sensor (EMG) captures the electrical activity of surface or internal muscles, using non-
invasive electrodes placed on the body surface or invasively in contact with muscle fibers32. In our study, these 
sensors were used for facial electromyography; sensors were positioned on the left side of the face, targeting the 
corrugator supercilli and zygomaticus major muscles, which display a higher mimicry rate in comparison to the 
right side33.

The electrocardiography sensor (ECG) measures the heart’s electrical activity using electrodes placed in con-
tact with the body surface34. In our study, ECG electrodes were positioned according to the commonly used 
Lead II configuration35.

The electrodermal activity sensor (EDA), also known as galvanic skin resistance (GSR), captures changes in 
skin conductance resulting from activity in the sympathetic nervous system through electrodes applied to the 

Fig. 3  Sensor placement strategy adopted in the context of our study. Panel (a) showcases the placement of the 
EDA sensor in the non-dominant hand. Panel (b) points the location of ECG in Lead II configuration, the PZT 
in the thorax, and a three-axis digital accelerometer sensor. Finally, on panel (c) depicts the placement of the 
EMG 1 corrugator supercilii and EMG2 zygomaticus major.
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palms of the hands or soles of the feet36. In our study, EDA was measured in the palm of the non-dominant 
hand37.

The piezo-electric respiration sensor (PZT) captures chest displacement induced by inhalation and exhalation 
activity using a piezoelectric element, a pressurized tube, or variations in inductance within a coil embedded in 
the fabric38. Respiratory rate was measured using an elastic chest belt adjusted in length to fit the participant’s 
thorax.

The accelerometer sensor (ACC) measures static or dynamic acceleration, typically employing a damped mass 
mounted on a spring39.

Data Records
The DECEiVeR (DatasEt aCting Emotions Valence aRousal) dataset19 is publicly accessible via the Figshare 
open access repository. The entire dataset is consolidated into a single archive file, which can be accessed at 
(https://doi.org/10.6084/m9.figshare.23579862).

For promoting different perspectives on the (DatasEt aCting Emotions Valence aRousal), the main 
DECEiVeR dataset19 structure is organized into five main folders: DECEiVeR_raw, DECEiVeR_resampled, 
DECEiVeR_session, DECEiVeR_arouval, and DECEiVeR_features. README files are available in each direc-
tory to explain the contents and organization of the data. Participant numbers are identified with the letters “ID” 
followed by a two-digit number (e.g., ID01, ID02), which is consistent across all DECEiVeR datasets. For exam-
ple, the file “ID01_01_01_NEUTRAL_RAW.csv” corresponds to data from the first participant’s first session, 
during which they acted out the first emotion, namely neutral, in a raw format. The dataset is depicted in Fig. 6 
and organized as follows:

DECEiVeR_raw.  The [DECEiVeR_Raw] directory contains the raw data logs, representing the unprocessed 
data obtained from all 11 participants. The data is organized based on the corresponding emotion of each partic-
ipant. We collected data at a sampling rate of approximately 100HZ. The [DECEiVeR_Raw] directory comprises 
approximately 556 megabytes (MB) of data. It is subdivided into five folders, each corresponding to one of the 
emotions investigated in the study. Each folder contains individual CSV files containing nine variables, each 
occupying its column.

•	 Column 1. Time in milliseconds of each acquisition sample
•	 Columns 2-9. Contain the transformed sensor output values sampled (values from −1 to 1) from the 

EMG1-corrugator, EMG2-zygomaticus, ECG, EDA, PZT, and three accelerometer axes.

DECEiVeR_resampled.  The [DECEiVeR_resampled] directory houses the resampled data logs from all 11 
participants, referring to data adjusted to a sampling rate of 2 ms per sample. The DECEiVeR_resampled archive 
contains approximately 1.20 gigabytes (GB) of data. The directory is organized into five separate folders, each 
dedicated to one of the emotions examined in the study. Each CSV file within these folders encompasses nine 
variables, each occupying its own column.

•	 Column 1. Time in milliseconds of each acquisition sample at ∼7 ms per sample
•	 Columns 2-9. It contains the transformed sensor output values sampled (values from −1 to 1) from the 

EMG1-corrugator, EMG2-zygomaticus, ECG, EDA, PZT, and three accelerometer axes.

Fig. 4  Illustration of the experiment instruments. Panel (a) showcases the placement of various sensors on 
different body parts of the participants. These sensors were connected to an (r)evolution Plugged kit board 
and a BITalino R-IoT device, which provided WiFi connectivity. To ensure protection and compatibility with 
theatrical performances, the entire setup was enclosed in a 3D-printed casing, as depicted in the image. A 1 
euro coin is included in the image for size comparison. Panel (b) highlights the custom software developed for 
data recording and analysis. The software facilitated listening to the UDP port, parsing physiological signals, 
visualizing data, and saving data in raw and resampled formats. The image showcases the software interface 
utilized for data processing. Panel (c) emphasizes storing sensor data in a CSV file, where each participant and 
emotion is assigned a unique identifier. The CSV file was structured in column format, with the following data 
arrangement: timestamp, EMG1, EMG2, ECG, EDA, PZT, and acceleration data (X, Y, & Z axes).
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DECEiVeR_session.  The [DECEiVeR_Session] directory contains the resampled data for the 11 participants, 
arranged according to sessions one and two. The DECEiVeR_Session archive, comprising approximately 1.20 GB 
of data, is structured within a directory with 11 individual folders, each corresponding to a specific participant. 
These folders contain CSV files consisting of nine variables, each occupying its own column. This organization 
facilitates the analysis and exploration of the resampled data in a session-specific manner.

•	 Column 1. Time in milliseconds of each acquisition sampled at 500 Hz.
•	 Columns 2-9. Contains the transformed sensor output values sampled (values from −1 to 1) from the 

EMG1-corrugator, EMG2-zygomaticus, ECG, EDA, PZT, and three accelerometer axes.

DECEiVeR_arouval.  The resampled data from all 11 participants is stored within the directory, organized 
based on dimensions. It is further subdivided into four folders: [DECEiVeR_01_higharous] containing data logs 
related to tension and excitement, [DECEiVeR_02_lowarous] containing data logs related to calmness and fatigue, 
[DECEiVeR_03_posvalence] containing data logs related to calmness and excitement, and [DECEiVeR_04_neg-
valence] containing data logs related to fatigue and tension. Each file within these folders contains nine variables, 
each occupying its column. This directory structure allows for convenient access and analysis of the resampled 
data, enabling researchers to examine the dimensions and associated data logs separately.

•	 Column 1. Time in milliseconds of each acquisition sampled at 500 Hz
•	 Columns 2-9. Contains the transformed sensor output values sampled (values from 0 to 1) from the 

EMG1-corrugator, EMG2-zygomaticus, ECG, EDA, PZT, and three accelerometer axes.

DECEiVeR_features.  The directory encompasses the extracted features from the data logs of all participants, 
organized by individual sensors, specifically [01_ECG], [02_EMG], [03_EDA], and [04_PZT]. Extracting features 
from the raw signal allows each sample to be represented by a reduced set of values instead of thousands of vari-
ables. It is important to note that the [03_EDA] directory includes extracted features from both a 10-second and 
60-second time window. The DECEiVeR_Session archive contains approximately 15 MB of data. This directory 
structure facilitates the analysis of extracted features from different sensors, providing researchers with a concise 
representation of the data while retaining relevant information for further exploration and interpretation.

Data Pre-processing
In addition to the raw log files from the sensor data, we provide a statistical description and feature-based 
annotation of the biomedical sensor data. Feature extraction plays a crucial role in signal processing, reducing 
the data size while preserving relevant information. Higher-level analysis systems, such as emotion classifiers, 
often rely on this set of features to train their models. For feature extraction, we used BioSPPy40, a toolbox for 
biosignal processing written in Python, bundling together various signal processing and pattern recognition 
methods to analyze biosignals.

Fig. 5  Participants’ self-assessment. The right part of the image illustrates the assessment software developed in 
our study. We prompted participants to reproduce the intended emotional trajectory while watching the video 
recording of their performance through a touch-responsive interface. The left part of the image depicts the 
self-reports and the obtained continuous annotations trajectories. The self-reports are in line with the emotions 
intended for each emotional category, i.e., each emotion category covers the designed ground-truth quadrant, 
with a distinction between different categories: Calm belongs to the HVLA; Tiredness to the LVLA; Tension 
to the LVHA; and Excitement to the HVHA, suggesting the participants successfully induced the expected 
degree of valence and arousal per emotion. We highlight the outliers in the valence dimension for Tiredness and 
Tension, and the arousal dimension in Tension and Excitement.

https://doi.org/10.1038/s41597-024-02957-2
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The statistical descriptors are categorized into temporal and spectral domains, calculated on a time window 
with 60-second time windows with 10-second overlaps41,42. This segmentation strategy enabled us to validate 
the collected data effectively. We extracted the most relevant features from each segment, as specified in Table 2, 
which presents the statistical descriptors, with each feature represented by a set of 11 descriptive statistics per 
analyzed window: minimum and maximum values, mean, difference, variance, root-mean-squared (RMS), 
standard deviation (SD), root-mean-squared standard deviation (RMSSD), kurtosis, skewness, and interquartile 
range (IQR). We report spectral descriptors features with ten spectral descriptors: total energy, spectral centroid, 
spectral skewness, spectral kurtosis, spectral slope, spectral decrease, spectral roll-off, and spectral variation. 
Table 3 presents the 18 extracted features organized by sensor type.

Technical Validation
We conducted a preliminary analysis to address three essential inquiries: (1) the efficacy of the raw physiolog-
ical data in capturing and recognizing emotions under investigation; (2) the effectiveness of the feature-based 
physiological data in capturing and distinguishing emotions under examination; and (3) the temporal persis-
tence of the physiological measurements between two-spaced sessions. We acquired data for the first two tests 
to determine which sensor yields the highest differentiation of emotions based on raw and feature-based data, 
respectively. The latter evaluation assessed the variability of physiological responses across the two sessions per 
participant and emotion, thereby shedding light on concerns about calibration and reproducibility. Ultimately, 
the findings aim to uncover the potential of physiological data in elucidating inner-elicited emotion. These 

Fig. 6  Tree diagram illustrating the directory structure of the DECEiVeR dataset19. The root directory, labeled 
[DECEiVeR dataset], comprises four main directories: [DECEiVeR raw], [DECEiVeR resampled], [DECEiVeR 
session], [DECEiVeR arouval], and [DECEiVeR features]. The [DECEiVeR raw] and [DECEiVeR resampled] 
directories include five sub-directories organized by emotions. Within each of these directories, individual files 
are provided for each participant in both sessions. The [DECEiVeR session] directory contains a sub-directory 
by participant containing individual files for each participant. The [DECEiVeR arouval] directory is structured 
according to emotional quadrants in each sub-directory, specifically high and low arousal and valence 
dimensions. Within each directory, individual files are available for each participant. Lastly, the [DECEiVeR 
features] directory is organized by sensor sub-directories containing individual files for each emotion. However, 
one exception is the [EDA] directory, which includes two sub-directories representing the two analysis windows 
adopted in our study: one for a ten-second window and another sub-directory for a one-minute window.

https://doi.org/10.1038/s41597-024-02957-2
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results can provide valuable guidance for future endeavors in developing robust models for understanding and 
recognizing emotions evoked by internal stimuli.

To try to answer the first question, we focused on determining if there are significant statistical differences in 
the raw signal data between emotional pairs study43. To assess these differences, we applied t-tests on raw sensor 
data to compare the means between pairs of emotions and determine whether there was a significant distinction 
between them. The t-test provided us with a corresponding p-value, which indicates the strength of evidence 
against the null hypothesis. The p-value ranges from 0 to 1, with smaller values indicating stronger evidence 
against the null hypothesis. Researchers commonly establish threshold values to define the level of significance44. 
Commonly used thresholds include p ≤ 0.001, p ≤ 0.01 and p ≤ 0.05, denoting high, moderate and low signifi-
cance. The applied test results are presented in Fig. 7 and illustrate the results, with green denoting a p ≤ 0.001, 
indicating highly significant differences. Yellow denotes a p ≤ 0.01, indicating moderate significant differences. 
Red denotes a p ≤ 0.05, denoting relatively lower but significant differences.

Sensor Extracted features

ECG

Heart rate is the number of heartbeats per minute (HR min and HRmax)

The time period between successive heartbeats (IBI)

Interbeat intervals from which artifacts have been removed (NNi)

Standard deviation (SD) of NN intervals (SDNN)

Filtered data to remove noise (RR)

Intervals that differ by more than 50 ms (RRi)

Standard deviation of the average NN intervals for each 5 min segment (SDANN)

Percentage of successive RR intervals that differ by more than 50 ms (pNN50)

The number of adjacent NN intervals that differ from each other by more than 50 ms (NN50)

Integral of the density of the RR interval histogram divided by its height (TRindex)

EDA

Tonic level of electrical conductivity of skin (SCL)

Phasic change in electrical conductivity of skin (SCR)

Phasic rate, rise and half-recovery

EMG zygomaticus Statistical, temporal and spectral features (see Table 1)

EMG corrugator Statistical, temporal and spectral features (see Table 1)

PZT

Statistical, temporal and spectral features (see Table 1)

Respiration rate

Interval of respiration peaks

Table 3.  Overview of the sensors used in the study and the corresponding 14 extracted features from the signals.

Sensor No. Manufacturer Model Transformation equation Units

EMG 02 BITalino EMG 100716
=





−


 ⋅

EMG v( )mv

ADC
n v

EMG1000
2

1
2

3, 3

1009
μC

ECG 01 BITalino ECG 100716
=





−


 ⋅

ECG v( )mv

ADC
n v

ECG1000
2

1
2

3, 3

1100
mV

EDA 01 BITalino EDA 081217 =
⋅

EDA v( )mv

ADC
n

1000
2

3, 3

0, 132
μS

RESP 01 BITalino PZT 280519 = − ⋅( )PZT 100%ADC
n% 2

1
2

%

ACC (3 axis) 01 BITalino/RIoT BR 20200207 — {−8; + 8}g

GYR (3 axis) 01 BITalino BR 20200207 — {−2; + 2} °/s

ADC 06 BITalino BR 20200207 — —

Table 1.  Overview of the sensors used in the study. The table includes (i) the type of sensor, (ii) the number of 
sensors used in the experiment, (iii) the manufacturer, (iv) the reference model, (v) any applicable conversion 
equations used to transform input values, and (vi) the physical units based on the International Standard units.

Domain Statistical descriptors

Temporal Minimum and maximum value, mean, difference, variance, root-mean squared (RMS), standard deviation (SD), root-mean 
squared standard deviation (RMSSD), kurtosis, skewness and interquartile range (IQR)

Spectral Total energy, spectral centroid, spectral skeweness, spectral kurtosis, spectral slope, spectral decrease, spectral roll-off, spectral 
variation

Table 2.  Overview of the 19 statistical descriptors grouped into two domains: temporal and spectral.
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Results show that EMG2 and PZT differ best across all five emotional states. Please note that the placement 
of the EMG sensor suggests having a significant impact on recognizing acting emotions. The EMG1, placed at 
zygomaticus muscle activity, has the worst performance in differentiating the five emotions under study com-
pared to the EMG2. While the PZT sensor results show better performance in capturing differences across both 
valence and arousal dimensions, the EMG2 and ECG show enhanced differentiation for arousal or valence, 
respectively.

To investigate the effectiveness of the feature-based physiological data in capturing and distinguishing emo-
tions under examination, we assessed which features from Tables 1 and 2 best differentiate the four emotions and 
plotted density and peaks in the data. The violin plots in Fig. 8 showcase the distributions of features commonly 
used for emotion recognition. Our preliminary analyses generally do not reveal a clear distinction between emo-
tions, except for the three features extracted from the PZT sensor, which reveals better performance across the 
four emotions. The selected ECG features display a slight distinction between emotions. We could not identify 
clear patterns in the data for the remaining sensor set. The results show that physiologically-based features are 
characteristic of specific emotions. For instance, emotional excitement is associated with high SCR and elevated 
HR values, while feelings of calmness link to reduced respiration rates and low EMG1 activity.

The three tests mentioned above show findings worth examining. First, a calibration phase is crucial for 
adapting to the subject under analysis, especially when building classification models to understand complex 
emotional data. Secondly, the raw data’s feature selection is crucial to understand the dataset. The DECEiVeR 
features folder in our dataset contains a comprehensive set of features previously extracted from the raw signal 
for more in-depth investigation. Finally, a more subjective finding of our research is that expectations differ 
when inducing emotions through visual or auditory emotional content and asking the subject to elicit an emo-
tion from his/her inner self. Moreover, suppose participants, like theatre actors, are highly skilled in acting emo-
tions. In this context, they are expected to not deliver obvious and predictable responses, such as the non-trained 
population.

Finally, to examine the consistency of measurements across different sessions, we assessed the reliability of 
these measurements for each participant over time. In this context, ‘reliability’ pertains to the consistency of a 
specific measurement, particularly a physiological one, over a given period45. In our study, this period spanned 
fifteen days. The rationale behind conducting a repeat experiment after 15 days was primarily to understand the 
reliability of physiological measures in the context of acting performances rather than focusing exclusively on 
the long-term stability of the data.

Fig. 7  Significance levels from t-tests comparing the raw physiological data between emotions. The figure’s 
color scheme highlights low (red), moderate (yellow), and high (green) significance. Figures (a) and (b) refer 
to both EMGs. Figure (c) corresponds to the ECG sensor. Figure (d) corresponds to the EDA sensor. Figure 
(e) displays the results for the PZT sensor. Finally, Figure (f) depicts the outcome of the t-test analysis for an 
individual sensor according to the arousal and valence dimensions (please refer to Fig. 1). These figures visually 
depict the statistical significance of the t-test results, providing insights into the relationships between the 
sensors and emotions in the study.
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In professional acting, the principle of repeatability holds critical significance. Actors need to be confident 
that a particular action or expression will reliably evoke similar emotional and physiological responses, espe-
cially in the dynamic environment of live performances. Our study was designed to investigate this aspect of 
repeatability, focusing specifically on physiological responses. Accordingly, we utilized reliability tests deemed 
most suitable for assessing the short-term consistency of actors’ emotional and physiological reactions. The 
results of these tests offer vital insights into the repeatability of emotional expressions in acting, a crucial com-
ponent in the study of performance.

We measured the reliability of measurements of four emotions from session 1 to session 2 with the same par-
ticipants and measures. We employed the intraclass correlation coefficient (ICC), namely a twoway mixed-model 
with absolute-agreement metric44. The ICC is a standard index ranging from 0.0 to 1.046. It provides guidelines 
for interpreting ICC levels, including the following thresholds: ICC ≥ 0.75 indicates “Excellent” reliability, ICC 
≥ 0.60 and <0.75 indicates “Good” reliability, ICC ≥ 0.40 and <0.60 indicates “Fair” reliability, and ICC<0.40 
indicates “Poor” reliability. The results are presented in Fig. 9, which illustrates the ICC values across all data-
bases. EMG sensors are reliable across sections because they show a greater number of ICC values ≥ 0.75 The 
performance of the HIGH ICC set (EMG1 and EMG2) was found to be medium-high, indicating good reliabil-
ity. However, the performance of the LOW ICC set (ECG and PZT) was low in reliability. This observation can 

Fig. 8  “Violin” plots of the distribution of the selected features values across different types of four emotions.
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be attributed to the participants’ explicit control over muscular movements, as measured by EMGs, compared to 
their limited control over the autonomic nervous system, as measured by ECG and EDA sensors.

Future work in this research field should further explore the reliability of measurements by testing different 
types of ICCs. By assessing the data using various ICCs, researchers can determine if the reliability results dif-
fer significantly, providing valuable insights into the robustness of the measurements. Additionally, extracting 
meaningful features from the collected data is essential for future investigation. Researchers can develop more 
informative and efficient emotion recognition and analysis models by identifying relevant physiological patterns 
and characteristics. Feature extraction techniques can help uncover hidden patterns in the data and provide 
valuable insights into the physiological underpinnings of emotions.

In the context of artistic studies (the application scenario of our study), the conducted statistical analysis 
and results offer guidelines that can play a pivotal role in enlightening creatives as they design their theatri-
cal performances. For instance, understanding the best typology of sensors associated with specific emotions  
(or emotional dimensions) can provide invaluable insights for artists aiming to evoke emotional responses 
beyond classification. Furthermore, assessing sensor response consistency over time for each emotion is crit-
ical. It allows artists to gauge the reliability of their chosen sensor in conveying intended responses. Current 
evaluation provides valuable directions for art directors to ensure some degree of consistency across multiple 
performances, thus contributing to the enduring quality of the artistic work.

Lastly, future research should experiment with machine learning models to develop robust and accurate 
emotion recognition systems. By training and evaluating various machine learning algorithms on the col-
lected physiological data, researchers can explore the potential of these models in automatically detecting and 

Fig. 9  Correlation levels from ICC tests comparing data consistency through sessions. Panel (a) and (b) 
display the ICC reliability measurements for both EMG sensors, indicating the consistency and agreement of 
the measured muscular activity between sessions. Panel (c) illustrates the ICC reliability measurement for the 
ECG sensor. Panel (d) represents the ICC reliability measurement for the EDA sensor. Panel (e) showcases the 
ICC reliability measurement for the PZT sensor. Overall, the ICC reliability measurements provide valuable 
information about the consistency and stability of the physiological measurements across sessions, highlighting 
the reliability of the sensors in capturing and measuring specific physiological responses related to emotions.
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classifying emotional states. This approach can contribute to developing real-time emotion recognition systems 
with applications in affective computing, human-computer interaction, and virtual reality.

Code availability
The code used for the experiment is publicly available at platform and cloud-based service for software 
development and version control GitHub. https://github.com/DECEIVER-dot/BITalino-Toolbox.

We developed the code for these applications in MaxMSP. All required packages are listed in the requirements.
txt file. This repository contains three applications developed in MaxMSP that enable direct communication 
with an IRCAM R-IoT module embedded in a BITalino board. The applications provide various functionali-
ties, including biosignal data recording, Bluetooth connectivity, and interactive annotation while viewing video 
recordings of experiments. Please note that the software is designed to work with the MaxMSP programming 
environment and requires external libraries for specific functionalities.

The first application allows seamless communication via a USB connection with the IRCAM R-IoT module on 
the BITalino board. It lets the user record biosignal data directly into a CSV file format with two different sample 
rates. The recorded data is saved in its raw form without normalization or interpolation. Please be aware that the 
current software version does not include data normalization or interpolation.

The second application builds upon the functionality of the first application but adds Bluetooth connectivity as 
an alternative communication method. With this application, the user can connect the IRCAM R-IoT module on 
the BITalino board and the computer using Bluetooth. It provides the same data recording capabilities as the USB 
version, but motion data is not recorded with this application version.

Experiment Annotation with Video Recording (Mira and iOS) The third application is designed for interactive 
annotation while viewing video recordings of experiments. Developed in MaxMSP, it requires the installation of 
external libraries for the Mira interface, which provides enhanced interaction capabilities. Additionally, this appli-
cation relies on an iOS device to run the software effectively. Using this application, researchers or experimenters 
can annotate the video recordings in real-time, allowing for precise and synchronized annotation of events or 
observations.

We implemented code in Python using the BioSPPy library to extract relevant information from biosignals. 
BioSPPy is a Python library for biosignal processing providing a set of algorithms for processing and analyzing 
physiological signals, such as electrocardiography, electrodermal activity, and electromyography, to name a few. 
BioSPPy simplifies extracting relevant information from biosignals and enables researchers and developers to focus 
on their analysis tasks. BioSPPy offers various modules and functionalities, including signal processing and feature 
Extraction such as HRV, EDA, and EMG analysis. BioSPPy is an open-source library and can be easily installed 
using Python package managers like pip or conda. Its modular design and user-friendly API make it accessible 
to beginners and experienced biosignal processing researchers. For more information, documentation, and code 
examples, please visit the official BioSPPy GitHub repository at (https://github.com/PIA-Group/BioSPPy).

RStudio (https://posit.co/download/rstudio-desktop/) code was developed for conducting tests and interclass 
correlation analysis. The provided code allows users to perform various statistical tests and calculate interclass 
correlation coefficients using R programming language. Please note that the file naming and location should be 
adjusted according to the user’s computer file structure. We include the required external libraries for running 
the tests.
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