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Introducing MEG-MASC a high-
quality magneto-encephalography 
dataset for evaluating natural 
speech processing
Laura Gwilliams   1,2,3 ✉, Graham Flick2,3,4,5, Alec Marantz2,3,4, Liina Pylkkänen2,3,4, 
David Poeppel   2,6 & Jean-Rémi King   2,7

The “MEG-MASC” dataset provides a curated set of raw magnetoencephalography (MEG) recordings of 
27 English speakers who listened to two hours of naturalistic stories. Each participant performed two 
identical sessions, involving listening to four fictional stories from the Manually Annotated Sub-Corpus 
(MASC) intermixed with random word lists and comprehension questions. We time-stamp the onset and 
offset of each word and phoneme in the metadata of the recording, and organize the dataset according 
to the ‘Brain Imaging Data Structure’ (BIDS). This data collection provides a suitable benchmark to 
large-scale encoding and decoding analyses of temporally-resolved brain responses to speech. We 
provide the Python code to replicate several validations analyses of the MEG evoked responses such as 
the temporal decoding of phonetic features and word frequency. All code and MEG, audio and text data 
are publicly available to keep with best practices in transparent and reproducible research.

Background & Summary
Humans have the unique ability to produce and comprehend an infinite number of novel utterances. This capac-
ity of the human brain has been the subject of vigorous studies for decades. Yet, the core computational mecha-
nisms upholding this feat remain largely unknown1–3.

To tackle this issue, a common experimental approach has been to decompose language processing into 
elementary computations using highly controlled factorial designs. This approach allows experimenters to com-
pare average brain responses to carefully chosen stimuli and make inferences based on the select ways that 
those stimuli were designed to differ. The field has learnt a lot about the neurobiology of language by taking this 
approach; however, factorial designs also face several key challenges4. First, this method has led the community 
to study language processing in atypical scenarios (e.g. using unusual text fonts5, meaningless syntactic con-
structs6,7, or words and phrases isolated from context8,9). Presenting language in this unconventional manner 
runs the risk of studying phenomena that are not representative of how language is naturally processed. Second, 
high-level cognitive functions can be difficult to fully orthogonalize in a factorial design. For instance, compar-
ing brain responses to words and sentences matched in length, syntactic structure, plausibility and pronuncia-
tion is often close to impossible. In the best case, experimenters will be forced to make concessions on how well 
the critical contrasts are controlled. In the worst case, unidentified confounds may drive differences associated 
with experimental contrasts, leading to incorrect conclusions.

During the past decade, several studies have complemented the factorial paradigm with more natural exper-
iments. In these studies, participants listen to continuous speech10–12, read continuous prose13,14 or watch videos 
that include verbal communication15. This approach is more likely to recruit neural computations that are rep-
resentative of day-to-day language processing. Complications arising from correlated language features can be 
overcome by explicitly modeling properties of interest, in tandem with potential confounds. This allows variance 
belonging to either source to be appropriately distinguished.
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To analyze the brain responses to the complex stimulation that natural language provides, a variety of encod-
ing and decoding methods have proved remarkably effective10,16–21. Consequently, language studies based on 
naturalistic designs have since flourished11,22. The popularity of this approach has some of its roots in the rise of 
natural language processing (NLP) algorithms, which map remarkably onto brain responses to written and spo-
ken sentences23–30. Such tools also allow experimenters to annotate the language stimuli for features of interest, 
without relying on time-consuming annotations done by hand. These data have allowed researchers to identify 
the main semantic components10, recover the hierarchy of integration constants in the language network31, 
distinguish syntax and semantics hubs32 and to track the hierarchy of predictions elicited during speech process-
ing28,33,34. More generally, brain responses to natural stories have proved useful in keeping participants engaged, 
while studying the neural representations of phonemes, word surprisal and entropy22,35,36.

While large and high-quality functional Magnetic Resonance Imaging (fMRI) datasets related to lan-
guage processing have recently been released37,38, there is currently little publicly available high-quality 
temporally-resolved brain recordings acquired during story listening. The most extensive databases of such data 
include:

•	 van Essen et al.39: 72 subjects recorded with fMRI and MEG as part of the Human Connectome Project, lis-
tening to 10 minutes of short stories, no repeated session39

•	 Brennan and Hale40: 33 subjects recorded with EEG, listening to 12 min of a book chapter, no repeated 
session40

•	 Broderick et al.11: 9–33 subjects recorded with EEG, conducting different speech tasks, no repeated sessions11

•	 Schoffelen et al.38: 100 subjects recorded with fMRI and MEG, listening to de-contextualised sentences and 
word lists, no repeated session38

•	 Armeni et al.41: 3 subjects recorded with MEG, listening to 10 h of Sherlock Holmes, no repeated session41

Until the present release of our dataset, there existed no public magneto-encephalography (MEG) with (1) 
several hours of story listening (2) multiple sessions (3) a systematic audio, phonetic and word annotations (4) a 
standardized data structure. Thus, our dataset offers a powerful resource to the scientific community.

In the present study, 27 English-speaking subjects performed ~two hours of story listening, punctuated by 
random word lists and comprehension questions in the MEG scanner. Except if stated otherwise, each subject 
listened to four distinct fictional stories twice.

Methods
Participants.  Twenty-seven English-speaking adults were recruited from the subject pool of NYU Abu Dhabi 
(15 females; age: M = 24.8, SD = 6.4). All participants provided a written informed consent and were compen-
sated for their time. Participants reported having normal hearing and no history of neurological disorders. All 
participants were right-handed, as evaluated using the Edinburgh Handedness Inventory questionnaire42. All 
but one participant (S21) were native English speakers - this person was a native speaker of Hindi, and learned 
English at 10 years old. All but five participants (S3, S12, S16, S20, S21) performed two identical one-hour-long 
sessions. These two recording sessions were separated by at least one day and at most two months depending on 
the availability of the experimenters and of the participants. The study was approved by the Institutional Review 
Board (IRB) ethics committee of New York University Abu Dhabi.

Procedure.  Within each ∼1 h recording session, participants were recorded with a 208 axial-gradiometer 
MEG scanner built by the Kanazawa Institute of Technology (KIT), and sampled at 1,000 Hz, and online 
band-pass filtered between 0.01 and 200 Hz while they listened to four distinct stories through binaural tube 
earphones (Aero Technologies), at a mean level of 70 dB sound pressure level.

Before the experiment, participants were exposed to 20 sec of each of the distinct speaker voices used in the 
study to (i) clarify the structure of the session and (ii) familiarize the participants with these voices. The sound 
files and scripts are available in (‘/stimuli/exp_intro/’).

The order in which the four stories were presented was assigned pseudo-randomly, thanks to a “Latin-square 
design” across participants. The story order for each participant can be found in ‘participants.tsv’. This 
participant-specific order was used for both recording sessions. Our motivation for running two identical ses-
sions was to (i) give researchers the ability to average the data across the two recordings to boost signal-to-noise; 
(ii) provide a like-for-like data reliability measure; (iii) give the opportunity for matched train and test datasets 
if attempting to run cross validated analyses.

To ensure that the participants were attentive to the stories, they responded, every ∼3 min and with a button 
press, to a two-alternative forced-choice question relative to the story content (e.g. ‘What precious material had 
Chuck found? Diamonds or Gold’). Participants performed this task with an average accuracy of 98%, con-
firming their engagement with and comprehension of the stories. The questions and answers are provided in 
(‘stimuli/task/question_dict.py’).

Participants who did not already have a T1-weighted anatomical scan usable for the present study were 
scanned in a 3 T Magnetic-Resonance-Imaging (MRI) scanner after the MEG recording to avoid magnetic arte-
facts. Twelve participants returned for their T1 scan.

Before each MEG session, the head shape of each participant was digitized with a hand-held FastSCAN laser 
scanner (Polhemus), and co-registered with five head-position coils. The positions of these coils with regard to 
the MEG sensors were collected before and after each recording and stored in the ‘marker’ file, following the 
KIT’s system. The experimenter continuously monitored head position during the acquisition to ensure that the 
participants did not move.
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Stimuli.  Four English fictional stories were selected from the Manually Annotated Sub-Corpus (MASC) 
which is part of the larger Open American National Corpus43. MASC is distributed without license or other 
restrictions (https://anc.org/data/masc/corpus/577-2/):

•	 ‘LW1’: a 861-word story narrating an alien spaceship trying to find its way home (5 min, 20 sec)
•	 ‘Cable Spool Boy’: a 1,948-word story narrating two young brothers playing in the woods (11 min)
•	 ‘Easy Money’: a 3,541-word fiction narrating two friends using a magical trick to make money (12 min, 10 sec)
•	 ‘The Black Willow’: a 4,652-word story narrating the difficulties an author encounters during writing (25 min, 

50 sec)

An audio track corresponding to each of these stories was synthesized using Mac OS Mojave © version 
10.14 text-to-speech. To help decorrelate language features from acoustic representations, we varied both voices 
and speech rate every 5–20 sentences. Specifically, we used three distinct synthetic voices:‘Ava’, ‘Samantha’ and 
‘Allison’ speaking between 145 and 205 words per minute. Additionally, we varied the silence between sen-
tences between 0 and 1,000 ms. Both speech rate and silence duration were sampled from a uniform distribution 
between the min and max values.

Each story was divided into ~3 min sound files. In between these sounds – approximately every 30 s – we 
played a random word list generated from the unique content words (nouns, proper nouns, verbs, adverbs and 
adjectives) selected from the preceding 5 min segment presented in random order. We decided to include word 
lists to allow data users to compare brain responses to content words within and outside of context, following 
experimental paradigms of previous studies38,44. In addition, a very small fraction (<1%) of non-words were 
inserted into the natural sentences, on average every 30 words. We decided to include non-words to allow com-
parisons between phonetic sequences that do and do not have an associated meaning.

Hereafter, and following the BIDS labeling45, each “task” corresponds to the concatenation of these sentences 
and word lists. Each subject listened to the exact same set of four tasks, in a different block order.

Preprocessing.  MEG.  The MEG dataset and its annotations are shared raw (i.e. not preprocessed) organ-
ized according to the Brain Imaging Data Structure45 MNE-BIDS46.

MRI.  Structural MRIs were collected with separate averages of the T1w images using 3D MPRAGE 
sequence with 0.8 mm isotropic resolution (FOV = 256 mm, matrix = 320,208 sagittal slices in a single slab), 
TR = 2400 ms, TE = 2.22 ms, TI = 1000 ms, FA = 8 degrees, Bandwidth (BW) = 220 Hz per pixel, Echo Spacing 
(ES) = 7.5 ms, phase encoding undersampling factor GRAPPA = 2, no phase encoding oversampling.

To avoid subject identification, the T1-weighted MRI anatomical scan was defaced using PyDeface47 (https://
github.com/poldracklab/pydeface) and manually checked.

For four subjects (02, 06, 07, 19) we were unable to record structural MRIs, and so instead we provide the 
scaled FreeSurfer average MRIs in their place.

The alignment between the spaces of (1) the head-position coils, (2) the MEG sensors and (3) the T1 MRI 
was co-registered manually with MNE-Python48.

Stimuli.  We include in the dataset: the original stories (‘stimuli/text’), the stories intertwined with the word 
lists (‘stimuli/text_with_wordlists’) and their corresponding audio tracks (‘stimuli/audio’).he alignment between 
the MEG data and the words and phonemes is provided for each participant separately (e.g., /sub-01/ses-0/meg/
sub-01_ses-0_task-1_events.tsv’).

Both sentences and word lists were annotated for phoneme boundaries and labels (107 phoneme labels, 
detailing phoneme category and its location in the word (Beginning; Internal; End) using the ‘Gentle aligner’ 
from the Python module lowerquality https://lowerquality.com/gentle/. However, the inclusion of the original 
audio leaves the possibility for future research to develop more advanced alignment technique and recover 
additional features.

For each phoneme and word, we indicate the corresponding voice, speech rate, wav file, story, word posi-
tion within the sequence, and sequence position within the story, and whether the sequence is a word list or a 
sentence.

Computing environment.  In addition to the packages mentioned in this manuscript, the processing of the pres-
ent data is based on the free and open-source ecosystem of the neuroimaging community. In particular, we used:

•	 MNE BIDS46 (https://mne.tools/mne-bids)
•	 Bids-Validator (https://github.com/bids-standard/bids-validator)
•	 Nibabel49 (https://nipy.org/nibabel/)
•	 Scikit-Learn50 (https://scikit-learn.org/)
•	 Pandas51 (https://pandas.pydata.org/)

Data Records
The dataset is organized according to Brain Imaging Data Structure (BIDS) 1.2.145 and publicly available on the 
Open Science Framework data repository52 https://doi.org/10.17605/OSF.IO/AG3KJ under a Creative Common 
Licence 0. An image of the folder structure is provided in Fig. 1. The detailed description of the BIDS file system 
is available at http://bids.neuroimaging.io/. In summary,
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• ‘./dataset_description.json’ describes the dataset
�• ‘./participants.tsv’ indicates the age and gender of each participant, the order in which they heard the sto-
ries, whether they have an anatomical MRI scan, and how many recording sessions they completed
• ‘./stimuli/’ contains the original texts, the modified texts (i.e. with word lists), the synthesized audio tracks.

•	 Each’./sub-SXXX’ contains the brain recordings of a unique participant divided by session (e.g.’ses-0’ 
and’ses-1’)

•	 In each session folder lies the anatomical and the meg data, and the timestamp annotations (see Fig. 4).
•	 Sessions are numbered by temporal order (s0 is first; s1 is second).

Fig. 1  Dataset file structure.
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•	 Tasks are numbered by a unique integer common across participants.
•	 The dataset can be read directly with MNE-BIDS46.

Technical Validation
We checked that the present dataset complies with the standardized brain imaging data structure by using the 
Bids-Validator (https://github.com/bids-standard/bids-validator).

MEG recordings are notoriously noisy and thus challenging to validate empirically. In particular, MEG can 
be corrupted by environmental noise (nearby electronic systems) and physiological noise (eye movement, heart 
activity, facial movements)53. To address this issue, several labs have proposed a myriad of preprocessing tech-
niques based on temporal and spatial filtering54 and trial and channel rejection55. However, there is currently no 
accepted standard for the selection and ordering these preprocessing steps. Consequently, we here opted for (1) a 
minimalist preprocessing pipeline derived from MNE-Python’s default pipeline48 followed by (2) median evoked 
responses and (3) standard single-trial linear decoding analyses.

Minimal preprocessing.  For each subject separately, and using the default parameters of MNE-Python, we:

•	 bandpass filtered the MEG data between 0.5 and 30.0 Hz with raw.load_data().filter(0.5, 
30.0, n_jobs = 1),

•	 temporally-decimate the data 10x, segment these continuous signals between −200 ms and 600 ms after 
word and phoneme onset, and apply a baseline correction between −200 ms to 0 ms with mne.Epochs(t-
min = −0.2, tmax = 0.6, decim = 10, baseline = (−0.2, 0.0)),

•	 and clip the MEG data between fifth and ninety-fifth percentile of the data across channels.

Evoked.  Figure 2 displays the median evoked responses across participants and words onset and after pho-
neme onsets, respectively. Both of these topographies are typical of auditory activity in MEG36.

Decoding.  For each recording independently, our objective was to verify the alignment between the word 
annotations and the MEG recordings. To this end, we trained a linear classifier W ∈ Rd across all d = 208 
magnetometers (X ∈ Rn × d), for each time sample relative to word (or phoneme) onset independently, and 
for each subject separately. The classifier consisted of a standard scaler, followed by a linear discriminant 
regression implemented by scikit-learn50 using model = make_pipeline(StandardScaler(), 
LinearDiscriminantAnalysis())

Fig. 2  Median (across subjects) evoked response to all words. The gray area indicates the global field power (GFP).
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•	 decode high versus low median zipf-frequency of each word, as defined by the WordFreq package56.
•	 decode whether the phoneme is voiced or not.

The decoding pipeline was trained and evaluated using a five-split cross-validation scheme (with shuffling) 
using cv = KFold(5, shuffle = True, random_state = 0) The scoring metric reported is Pearson R 
correlation between the continuous probabilistic output of the classifier on each trial, and the ground truth label 
(high vs. low for word frequency; voiced vs. voiceless for voicing). The full decoding pipeline can be found in the 
script check_decoding.py.

The results displayed in Fig. 3 show a reliable decoding at the phoneme and at the word level, across both 
subjects and tasks (i.e. stories).

The success of our decoding analysis demonstrates: (i) the data have been correctly time-stamped relative to 
phoneme and word onset, in order to elicit a zero-aligned decoding timecourse; (ii) the data contain reliable sig-
nals that contain speech-related properties, suitable for further investigation; (iii) information at multiple levels 

Fig. 3  (a) Average (mean) decoding of whether the phoneme is voiced or not as a function of time following 
phoneme onset. The four colors refer to the four tasks (stories + word lists). Error bar are SEM across subjects. 
(b) Same as A for the decoding of words’ zipf frequency as a function of word onset. (c) Decoding of voicing 
(average across all tasks) for each participant, as a function of time following phoneme onset. (d) Same as C for 
decoding of word frequency (average across all tasks) for each participant, as a function of time following word 
onset.
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(phonetic and lexical) are present in the data, allowing users to test hypotheses at different linguistic levels of 
description. We anticipate that encoding models would provide equally compelling results. Note that a decoding 
performance of Pearson R = 0.08 is typical for single-trial MEG data of continuous listening, and is of the same 
magnitude that has been reported in previous studies38. We have a large number of events (tens of thousands of 
phonemes; thousands of words), and this dataset has been demonstrated to provide sufficient statistical power 
to yield significant results, despite small effect sizes36,57.

Usage Notes
import pandas as pd
import mne bids

bids_path = mne_bids.BIDSPATH(
 subject = ’01’,
 session = ’0’,
 task = ’0’,
 datatype = ”meg”,
 root = ’my/data/path’)

raw = mne_bids.read_raw_bids(bids_path)
raw.load_data().data # channels X times

df = raw.annotations.to_data_frame()

Accessing all sound, word and phoneme annotation is directly readable in a Pandas58 DataFrame format:

df = pd.DataFrame(df.description.apply(eval).to_list())

Code availability
The code is available on https://github.com/kingjr/meg-masc/.
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