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Spatiotemporal estimation of 
nutrient data from the northwest 
pacific and east asian seas
Gi Seop Lee  1, Jung Ho Lee  2 & Hong Yeon Cho  1 ✉

Nutrient data obtained from field observations have the potential to enhance our understanding of 
oceanic biogeochemical cycling and productivity changes. In particular, long-term nutrient data can 
provide valuable information on the links between climate change and biogeochemical changes. 
However, unlike other observational variables such as sea surface temperature, nutrient data are 
limited in terms of their broad-scale observations and automated sensor-based measurements. In this 
study, we analyzed nitrate and phosphate data obtained from coastal regions in Northeast asia and 
the northwest Pacific from 1980 to 2019 using the spatiotemporal kriging technique and provide results 
in a spatiotemporal grid format. The data are available at monthly intervals and may be attractive to 
researchers in the fields of oceanography, marine ecology, and marine biogeochemistry at the climate 
change scale. Furthermore, sharing the source code of the data production process can contribute to 
better long-term data reproduction in the future.

Background & Summary
The northwest Pacific and adjacent eastern Asian waters are known for their high primary productivity1–3, which 
has been examined in various marine chemical and biological studies, including those on water quality changes 
and material cycling. Nutrient data play a crucial role in these studies, with nitrogen and phosphorus being 
especially significant, as they influence the growth and reproduction of phytoplankton and shape the area’s 
phytoplankton species composition4–9. Human activities, such as artificial nitrogen input in densely populated 
regions such as eastern China and western Europe, affect the ocean’s biogeochemical structure10–13.

Coastal waters near East Asia, including the heavily impacted Yellow Sea and East China Sea, the unique East 
Sea with relatively lower human impact, and the northwest Pacific influenced by the Kuroshio current, are influ-
enced by both natural and human factors, leading to complex changes in nutrient levels14. Nutrient supply from 
the deep sea has been reported to have decreased worldwide due to the strengthening of the stratification1–3,15, 
while artificial supply through the atmosphere and rivers has increased in the East Asian waters11,12,16–18. Thus, 
understanding the long-term changes in nutrient levels in this region is crucial, and various perspectives are 
being studied to comprehend the phenomenon and predict future changes6,19–21.

From the perspective of the spatial estimation of ocean information, studies providing gridded data such 
as OISST (Optimum Interpolation SST [Sea Surface Temperature]) are ongoing22–24. In addition, research is 
being conducted to remove the bias of numerical models using spatial estimation techniques such as Kriging25. 
However, these techniques mainly focus on temperature and salinity. Nutrient data, however, primarily rely on 
in situ observations, as satellite remote sensing and unmanned equipment cannot cover them. Efforts have been 
made to provide monthly gridded nutrient data for the North Pacific region26–28, but 4D gridded nutrient data 
(x, y, z, t) that consider both spatial and temporal variations are limited to some reanalysis data using numerical 
models29.

This study uses 40 years of nutrient concentration observations from 1980 to 2019 to spatially and temporally 
optimize the data for the northwest Pacific Ocean (N25–45°, E121–145°) into a gridded format. The estimated 
nutrient grid data were validated through a verification process and are presented (with validation errors shown) 
in the modeled results.
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Methods
The procedure used to create gridded data is summarized in Fig. 1. This section outlines the steps involved in 
transforming raw observational data into nutrient grid data and validating the results. All procedures were exe-
cuted using the R programming language (R core team, 2023)30. The data production process consisted mainly 
of three steps: data collection and preprocessing, spatiotemporal estimation, and postprocessing and validation. 
These steps will be discussed in further detail below.

Data procurement. The data analyzed in this study were acquired from the National Institute of Fisheries 
Science (NIFS) Serial Oceanographic Observation (SOO, https://www.nifs.go.kr/kodc/eng/eng_coo_list.kodc)31, 
Japan Meteorological Agency (JMA) Oceanographic and Marine Meteorological Observations by Research 
Vessels (OMMORV, https://www.data.jma.go.jp/gmd/kaiyou/db/vessel_obs/data-report/html/ship/ship_e.
php)32, and topographic data from the National Oceanic and Atmospheric Administration (NOAA) Earth 
TOPOgraphy(https://www.ncei.noaa.gov/maps/grid-extract/)33,34. The data specifications, including file format, 
observational period, spatiotemporal resolution, and accessible URLs, are presented in Table 1.

The OMMORV data are currently accessible for download starting from 1997, with earlier data available in 
the JMA Data Report of Oceanographic Observations Special Issue35. To avoid duplications, any potential over-
lap in the data were excluded from the spatiotemporal estimation process.

Nutrient data. The SOO data can be obtained by specifying the region, line, station, observation date, and 
depth. These data comprise ten water quality parameters, including temperature, salinity, dissolved oxygen con-
centration, nitrate concentration, and phosphate concentration. The data have been collected since 1961 with a 
bimonthly (February, April, June, August, October, and December) measurement frequency. Although the station 
and line locations may have undergone slight changes, as of 2020, data from 207 stations along 25 lines have been 
accumulated.

Fig. 1 Workflow of the study. Nutrient and depth data were downloaded from various sources. The nutrient 
data obtained from different sources were compiled into a common data format, and data within the valid range 
of time, space, and nutrient variables were selected. Then, the refined data were used for variogram modeling 
and spatiotemporal kriging. 10-fold cross-validation was performed to indicate estimation errors, and the data 
were saved.
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The OMMORV data can be obtained through the provided link associated with each research vessel. The 
hydrographic data, saved with an ‘.E’ extension, were used in this study. The format of the data underwent a 
change in 2010 and is now classified into two versions, ‘E2.x’ and ‘E3.x’. The data are a 126-byte ASCII record in a 
fixed width format, with observation information and items arranged at regular intervals. Detailed information 
on the format of the data is available separately36.

To ensure compatibility, the nutrient data from both SOO and OMMORV underwent unit conversion. 
The original units of μmol/kg were changed to μmol/L, and the density was calculated based on the recorded 
water temperature and salinity data. This calculation was carried out assuming standard atmospheric pressure 
(10.1325 dbar) with the gsw library in the R programming language37,38. The SOO and OMMORV data were 
merged into a table of 2,023,251 observations and 16 variables, and the missing information for each variable is 
shown in Table 2.

The bathymetry used in this study utilized NOAA’s ETOPO 2022 data, which is the second release of these 
data following ETOPO133,39. The water depth data can be obtained either by downloading the desired area data 
from the following URL or by using the R Package marmap40. In this study, the water depth data within the range 
of N25–45° and E121–145° were processed at 10-minute intervals using the getNOAA.bathy function from the 
marmap library. The computation was performed on grid points that were densely set from the surface to the 
9,000 m depth range using the standard depth from WOD1841. However, to reduce the computational load, 
the number of depth grids was reduced from 137 to 43. Depth intervals were created at 20 m intervals for the 
0–200 m range, 100 m intervals for the 200–2000 m range, and 500 m intervals for the 2000–9000 m range to 
produce the grids.

Spatiotemporal estimation. The spatiotemporal kriging (STK) approach was used to transform the irreg-
ular nutrient data collected from the SOO and OMMORV sources into spatiotemporal grid data. This method 

Title Provider Format
Temporal 
Range Resolution Access URL

Serial Oceanographic 
Observation (SOO) NIFS, Korea .txt,.xls(excel),.csv(in korean)

1967–2022
1980–2022 
(used)

Bimonthly (temporal)
https://www.nifs.go.kr/kodc/eng/eng_coo_list.kodc
(in English)
https://www.nifs.go.kr/kodc/soo_list.kodc
(in Korean)

Oceanographic 
and Marine 
Meteorological 
Observations by 
Research Vessels, 
Hydrographic data 
(OMMORV)

JMA, Japan .E (fixed width)
1964–2022
1980–2022 
(used)

Seasonally (temporal)

https://www.data.jma.go.jp/gmd/kaiyou/db/vessel_obs/data-
report/html/ship/ship_e.php
(in English, >1997)
https://warp.ndl.go.jp/info:ndljp/pid/11160873/www.data.
jma.go.jp/gmd/kaiyou/db/vessel_obs/data-report/html/ship/
efile_NoS2_e.html
(in English, <2010)

ETOPO 2022 NOAA, US .tif — 15 arc sec (spatial) https://www.ncei.noaa.gov/maps/grid-extract/

Table 1. Data specifications for SOO, OMMORV, and ETOPO 2022. The table includes information on data 
providers, file formats, observational periods, spatiotemporal resolutions, and accessible URLs.

Variables Description Unit class N of missing

Nat Nation Character —

st Station Character —

date_time Date and Time POSIXct 4,150

lat Latitude
Degree(°)

Numeric —

long Longitude Numeric —

tm_x Coordinate x, TM projected long

m

Numeric —

tm_y Coordinate y, TM projected lat Numeric —

depth Depth Numeric 766,492

wt Water Temperature °C Numeric 632,880

sal Salinity psu Numeric 633,813

pH potential of Hydrogen — Numeric 1,611,517

DO Dissolved Oxygen ml/L (NIFS) μmol/kg (JMA) Numeric 803,932

PO4 Phosphate

μmol/L (NIFS, JMA <2010 winter) 
μmol/kg (JMA ≥ 2010 spring)

Numeric 1,160,474

NO2 Nitrite Numeric 1,291,329

NO3 Nitrate Numeric 1,296,471

SiO4 Silicate Numeric 1,619,079

Table 2. The basic description of the dataset merged from SOO and OMMORV. The preprocessed R object 
name and its description, unit, data type, and number of missing data are specified.
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has been widely used in various fields42–45 and distinguishes itself from those in previous studies by considering 
the vertical dimension in the 4-dimensional spatiotemporal estimation. The R libraries gstat and spacetime were 
utilized for maximum 3-dimensional spatiotemporal estimation46–48; however, a custom function had to be devel-
oped, as 4-dimensional coordinates are not supported by these libraries.

Kriging with External Drift (KED) was applied for nutrient estimation in unmeasured spatiotemporal areas 
using spatiotemporal coordinates as the auxiliary variables. KED is also referred to as universal kriging when 
the drift is limited to spatial coordinates49,50. The unmeasured point’s estimation at a specific time point is rep-
resented as a weighted combination of the spatial trend and the residual from the regression model at the meas-
ured point as in Eq. (1).

z x f x e z x z( ) ( ) ( ( ) ) (1)k
m

k k i
n

i i0 1 0 0 1
� ∑ ∑ω ω= + + λ −

= =

where xi and x0 represent the coordinates of the observation and the target location, respectively, and the 
4-dimensional coordinate structure including horizontal, vertical, and temporal dimensions is represented as 

�=x y z t x x[ , , , ] [ , , ]m1 . The subscript i denotes the observed location, and 0 denotes the location of interest 
for prediction. fk (x0) is a function representing the average spatiotemporal variation, and a linear function is 
used. ωk is the coefficient of the regression function fk (x0), and ω0 is the Lagrange parameter to remove bias. e is 
the residual of fk (x0), and λi represents the weight coefficient of e.

The optimal coefficients (ωk, ω0, λi) that satisfy the condition of minimizing the error variance in Eq. (2) are 
derived in the form of Eq. (3), and it is solved as shown in Eq. (4).
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The process of finding the solution in the form of a matrix equation is shown in Eqs. (3, 4), and the block 
matrices that make up the overall matrix equation are constituted as in Eq. (5–11). The bold symbols indicate 
the block matrix.
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where X is the observed coordinates, X0 is the target coordinates, and ~ represents the min-max scaled coordi-
nates. In is a unit vector of n × 1, 0m is a zero vector of 1 × m, and 0 is a zero matrix of m × m. The superscript T 
on a matrix represents the transpose.
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where the matrices ij
2σ  and σ j0

2  are calculated based on the spatiotemporal variogram h u( , )st
SMγ  estimated from 

the observational data. The variogram represents the change in covariance with respect to distance and time, 
reflecting the strength of the correlation between data points as a function of spatial and temporal distance. 
γ h u( , )st

SM  is expressed as a function of the spatial distance h and the temporal distance u (12, 13).
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The h u( , )st
SMγ  was fitted using the Sum-Metric (14) model51,52. The Spherical model (15) was applied equally 

to the γs, γt, and γjoint models.
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In the variogram model, h is the separation distance (generally, spatial distance), a is the range, and b is 
the nugget. The minimum of the observational data is C0 + b, and κ is an anisotropic parameter for time. Each 
parameter was optimally estimated using the L-BFGS-B algorithm46,53. An example of spatiotemporal variogram 
modeling using observed nitrate data from 2013 is provided in Fig. 2.

When computing the actual z x( )0� , only the estimated λi is used, and the regression coefficient ωk, which 
determines the spatial average variation, is calculated using Eq. (16) as a constraint.

∑ λ=
=

�z x z( ) (16)i
n

i i0 1

The prediction results of Eq. (16) are accompanied by the indicator of estimation uncertainty, the error var-
iance, as provided in Eq. (17).
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Data Records
The reproduced data are provided in comma-separated values (.csv) and R Data (.RData) file formats, with 
processing codes written in the R language54. The code for reading, analyzing, and visualizing the data can also 
be used to update the data. The data provided in CSV format consist of spatiotemporal coordinates (x, y, z, t), 
estimated values of nitrate or phosphate, and error variances of kriging. The error variances provide quantitative 

Fig. 2 Example of empirical (a) and fitted (b) variograms. The nitrate data from 2013 were used and fitted using 
the Sum-Metric model. The spatial and temporal distances were min-max scaled. The semivariance of the z-axis 
represents the inverse correlation with respect to spatiotemporal distance.
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6Scientific Data |          (2023) 10:700  | https://doi.org/10.1038/s41597-023-02602-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

information on the magnitude of estimation errors and can be utilized in future conditional simulations. R Data 
(.RData) is a binary data format that can be directly loaded into memory using the load function in the R pro-
gramming language for immediate use.

The dataset is projected in the Lambert azimuthal equal-area projection method with the following coordi-
nate reference system (CRS):

“+proj=laea +lat_0 = 34.53333 +lon_0 = 137.0698 +x_0 = 0 +y_0 = 0 +datum = WGS84 +units = m 
+no_defs +ellps = WGS84 +towgs84 = 0,0,0”

The data can be converted back to the longitude and latitude coordinate system using the following CRS:

“+proj = longlat +datum = WGS84 +no_defs +ellps = WGS84 +towgs84 = 0,0,0”

Coordinate transformation using R can be performed using spatial data libraries such as sp and sf’55–57.
However, the conversion process may introduce slight errors, resulting in longitude and latitude coordinates 

with nonuniform degree intervals. Therefore, interpolation methods such as aggregation, nearest neighbor, or 
bilinear interpolation may be necessary for the stretched grid.

technical Validation
The performance of the estimation model was evaluated using 10-fold cross-validation for spatial estimation 
results obtained through STK (Fig. 3, Table 3). Note that Simple and Ordinary Kriging always predict values that 
are less than or equal to the maximum observed value, while KED can predict values that are greater or smaller 
than the neighboring observed values. Therefore, if an estimated value falls outside the range of the WOD18 
standard, it may need to be adjusted to a value within the range before interpretation. In this case, negative con-
centration values were replaced with 0. The root mean square error (RMSE), mean absolute error (MAE), and 
adjusted coefficient of determination R( )adj

2  were used as performance evaluation metrics (18)58

R n
n m R

1
( 1) (1 ) (18)adj

2
2= −

− − −

Where n is the number of data points and m(=4) is the number of predictor variables used in the estimation.
The performance of the model in predicting water temperature and nitrate and phosphate concentrations 

was evaluated using error metrics (RMSE, MAE, adjusted R-squared). Note that since various reanalysis datasets 
are available, sea water temperature estimates are not provided here, and only the performance evaluation results 

Fig. 3 10-fold cross-validation results using observational data from 1980 to 2019, spanning a total of 40 
years(a: nitrate, b: phosphate, c: water temperature). Some values fall outside of the valid range, but many data 
points are densely distributed around the 1:1 line (black solid line). Due to the nature of KED, concentration 
values calculated as negative values can be converted to 0 or detection limit values.

Evaluation Metrics Water Temperature (°C) Nitrate (μmol/L) Phosphate (μmol/L)

RMSE 2.04 2.79 0.22

MAE 1.41 1.84 0.14

Radj
2 0.93 0.97 0.96

Table 3. The error evaluation metrics for the 10-fold cross validation, including the root mean square error 
(RMSE), mean absolute error (MAE), and adjusted R squared.
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are presented as supporting information. The estimation errors for water temperature were 2.05 °C (RMSE), 
1.42 °C (MAE), and 0.93 (Radj

2 ). The error metrics for nitrate concentration were 2.79 (RMSE), 1.84 (MAE), and 
0.97 (Radj

2 ), and those for phosphate concentration were 0.22 μmol/L (RMSE), 0.14 μmol/L (MAE), and 0.96 
(Radj

2 ). The spatial distribution of the errors showed that the area near Hokkaido in Japan had higher nutrient 
concentrations than other areas, with approximately 7 μmol/L for nitrate and approximately 0.8 μmol/L for 
phosphate(Fig. 4a,b).

The RMSE variation was analyzed according to depth(Fig. 4c,d). The RMSE was observed to be relatively 
higher within the 0–1000 m depth range, where the thermocline is located, but remained stable below a depth 
of 1000 m. However, an increase in RMSE was observed in the deep sea below 5000 m. The increased error in 
the thermocline and deep sea was attributed to the abrupt changes in nutrient concentration and lack of data, 
respectively.

Additionally, Compatibility with global-scale projects was assessed. The raw data utilized in this study was 
contrasted with the biogeochemical data product of GLODAPv2.2022(https://www.ncei.noaa.gov/data/oceans/
ncei/ocads/data/0257247/)59. Since the data prior to 2010 was verified in previous research using CLIVAR and 
SIO datasets11, the focus was on data from 2010 onwards. A total of 671 data points with precisely matching 
longitude, latitude, depth and time were compared(Fig. 5).

Subsequently, the data estimated by STK was also compared with the GLODAPv2.2022 data(Fig. 6). Among 
the gridded data from the period 2010–2019, grids that were spatiotemporally closest to certain GLODAPv2.2022 
data were compared. The grid data closest to the GLODAPv2.2022 data were identified, and those within the 5% 
quantile distance were selected. The criteria for selection were a horizontal distance of approximately 15 km, a 
vertical distance of about 16 m, and a time difference within roughly 9 days. For NO3, 2,652 data points were 
contrasted, yielding an Radj

2  of 0.984 and a Residual Standard Error of around 2.03. For PO4, 2,676 data points 
were examined, with an Radj

2  of 0.981 and a Residual Standard Error of approximately 0.158.

Fig. 4 Error distribution for horizontal (a,b) and vertical (c,d) directions. a and c represent the error 
distribution of nitrate concentration, while b and d represent the error distribution of phosphate concentration. 
In areas with high data density, errors are relatively low. The vertical distribution of errors shows an increasing 
trend in the thermocline (approximately 300 m).
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Usage Notes
This dataset was used to assess the nutrient dynamics in select areas of the northwest Pacific, both locally and 
regionally (Fig. 7). Gridded data can be examined through basic statistical analysis and spatial statistical meth-
ods such as EOF. These data can also be utilized for comparison with biogeochemical modeling outcomes. The 

Fig. 5 A comparison of nutrient data used for STK estimation (from NIFS and JMA) with spatiotemporally 
matched cruise data from GLODAPv2.2022. The results of the comparison for nitrate (a,c) and phosphate  
(b,d) are presented, with the distribution of differences converging towards a central value of 0.

Fig. 6 Results from a comparison of nitrate (a) and phosphate (b) gridded data estimated by STK from 2010 to 
2019 with GLODAPv2.2022 data. Information from the linear model is represented by the linear regression line 
(black solid line), 95% confidence interval (red dotted line), and 95% prediction interval (blue dotted line).

https://doi.org/10.1038/s41597-023-02602-4


9Scientific Data |          (2023) 10:700  | https://doi.org/10.1038/s41597-023-02602-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

surface (0–50 m averaged) nitrate concentration trend estimated in this study corroborates the decreasing nitrate 
concentration trend observed in previous studies20,21 since approximately 2010 in the Yellow Sea (Fig. 8) .

Fig. 7 Spatial distribution of the mean and standard deviation of nitrate (a,b) and phosphate (c,d) concentrations 
during the target period of estimation (1980–2019). The mean concentration and variability are highest in the 
Yellow Sea and near Hokkaido, Japan. The high standard deviation observed in the northwest Pacific off the 
southeast coast of Japan is attributed to the lack of data.

Fig. 8 The time series decomposition of the estimated nitrate (a) and phosphate (b) concentrations in the 
Yellow Sea region is displayed, where they were decomposed into trend, seasonal, and residual components. 
These outcomes can be utilized for research on the sources of variability and trend analysis.
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code availability
The R code scripts and dataset are available on ‘Figshare’ for reproducibility54. The author’s GitHub online repository 
will be continuously updated to ensure sustainable usage of these codes(https://github.com/Gi-Seop/STK).

Tested system. All codes were tested in the following system environment (Table 4).
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