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City-scale Vehicle Trajectory Data 
from Traffic Camera Videos
Fudan Yu1,2, Huan Yan   1,2 ✉, Rui Chen1,2, Guozhen Zhang1,2, Yu Liu   1,2, Meng Chen3 & 
Yong Li   1,2

Vehicle trajectory data underpins various applications in intelligent transportation systems, such 
as traffic surveillance, traffic prediction, and traffic control. Traditional vehicle trajectory datasets, 
recorded by GPS devices or single cameras, are often biased towards specific vehicles (e.g., taxis) 
or incomplete (typically < 1 km), limiting their reliability for downstream applications. With the 
widespread deployment of traffic cameras across the city road network, we have the opportunity to 
capture all vehicles passing by. By collecting city-scale traffic camera video data, we apply a trajectory 
recovery framework that identifies vehicles across all cameras and reconstructs their paths in between. 
Leveraging this approach, we are the first to release a comprehensive vehicle trajectory dataset 
that covers almost full-amount of city vehicle trajectories, with approximately 5 million trajectories 
recovered from over 3000 traffic cameras in two metropolises. To assess the quality and quantity of 
this dataset, we evaluate the recovery methods, visualize specific cases, and compare the results with 
external road speed and flow statistics. The results demonstrate the consistency and reliability of the 
released trajectories. This dataset holds great promise for research in areas such as unveiling traffic 
dynamics, traffic network resilience assessment, and traffic network planning.

Background & Summary
Vehicle trajectory data records the movement paths of vehicles, including their position and corresponding 
timestamp. It has been widely applied in transportation applications such as traffic surveillance1,2, traffic pre-
diction3–5, and traffic management6–8. In the context of traffic surveillance, this data enables the identification of 
congested areas, traffic hotspots, and accident-prone zones. In traffic prediction, it is leveraged to forecast future 
traffic conditions using historical trends and predictive models. Moreover, in traffic management, vehicle trajec-
tory data plays a critical role in optimizing traffic flow and identifying bottlenecks for effective traffic manage-
ment strategies. Existing vehicle trajectory datasets can be divided into two categories by data source: GPS-based 
datasets and video-based datasets. The GPS-based vehicle trajectory data can be collected in large amounts, 
and cover a wide spatial area with the popularity and capacity of GPS devices. However, these datasets often 
have biases towards certain types of vehicles, such as buses1 and taxis9–12, or specific groups of drivers, such as 
navigation users13 or ride hailing drivers14, due to privacy concerns. On the other hand, traditional video-based 
datasets15–20 track and detect vehicles within the field of view of a single camera. Although high-resolution cam-
eras with wide fields of view, such as high-flying drones15–20, are used, the recorded trajectories are still limited in 
length (typically less than 1 km16–18,20), which prevents the recording of all-amount trajectories.

With the widespread deployment of traffic cameras in modern cities, there is a growing opportunity to 
capture complete trajectories of vehicles. Traffic camera videos faithfully record all passing vehicles, offering a 
promising and unbiased source of vehicle trajectories. With sufficient camera coverage, these videos have the 
potential to capture nearly full-amount of vehicle trajectories. By utilizing vehicle re-identification techniques 
across different cameras in the city’s traffic camera system21,22, it becomes possible to reconstruct the complete 
trips of vehicles on the road network. The existing datasets23,24 generated from traffic cameras are synthetic 
vehicle trajectories derived from either aggregated traffic information or trajectory distribution. The dataset 
from Wang et al.23 focuses on aggregated flow-speed data and utilizes resampling techniques to generate holo-
graphic trajectories. In contrast, the dataset released by Li et al.24 generates synthetic individual-level trip data 
based on statistical frequency, providing information such as origin, departure time, destination, and path. 
However, it’s important to note that both datasets assume near-complete coverage of traffic cameras across all 

1Beijing National Research Center for Information Science and Technology (BNRist), Beijing, 100084, China. 
2Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China. 3School of Software, Shandong 
University, Jinan, 250101, China. ✉e-mail: yanhuanthu@gmail.com

Data Descriptor

OPEN

https://doi.org/10.1038/s41597-023-02589-y
http://orcid.org/0000-0001-9626-5676
http://orcid.org/0000-0002-2399-2829
http://orcid.org/0000-0001-5617-1659
mailto:yanhuanthu@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-023-02589-y&domain=pdf


2Scientific Data |          (2023) 10:711  | https://doi.org/10.1038/s41597-023-02589-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

road intersections and the flawless operation of optical character recognition (OCR) based license plate recogni-
tion systems. In reality, these conditions are often not met in most cities today25,26, which presents challenges for 
vehicle re-identification and trajectory recovery that may exceed the claims made in these studies.

In this paper, to the best of our knowledge, we are the first to release a city-scale traffic-camera-based vehicle 
trajectory dataset. The dataset contains almost full-amount of vehicle trajectories, comprising approximately 5 
million trajectories obtained from four days of camera videos collected from over 3000 traffic cameras in two 
Chinese metropolises. In order to recover the complete trip of each vehicle from the raw video data, we employ 
a trajectory recovery framework. As shown in Fig. 1, the core of the framework is an iterative spatial-temporal 
vehicle re-identification (Re-ID) and trajectory recovery system. This system optimizes both the Re-ID task 
and the path inference task by incorporating valuable spatial-temporal knowledge extracted from historical 
GPS-based vehicle trajectories. To address computational constraints, we partition the city road network into 
regions based on the distribution of traffic cameras. The trajectory recovery system is applied to each region, 
and then a trajectory merging operation is performed across regions to connect trajectories that were split apart 
during the division process. To show the spatial-temporal characteristics of the dataset, we visualize the data dis-
tribution in terms of static attributes and dynamic flow. We also evaluate the quality and quantity of the dataset 
by assessing the performance of our recovery method, visualizing specific resulting cases, and comparing road 
speed and flow with external statistical data.

This comprehensive dataset of individual-level vehicle trajectories at a city-scale level holds great potential 
for various research directions and downstream applications. Its availability of unbiased, full-amount data is 
expected to yield compelling research findings and more robust management strategies. Here are some potential 
tasks that this dataset can support:

•	 Unveiling city-scale traffic dynamics. By leveraging city-scale full-amount trajectory data and employing 
advanced data-driven methods, we can uncover valuable insights into traffic patterns and the intricate rela-
tionships among different traffic variables, unveiling the dynamics of traffic in the city27. This understanding is 
essential for gaining a deeper comprehension of the underlying mechanisms that drive urban transportation 
operations, as well as understanding the impact of urban traffic on the environment28, allowing us to develop 
effective traffic management strategies to enhance overall system efficiency in cities.

•	 Traffic network resilience assessment. By combining knowledge of traffic demand, road segment speeds, 
and road network topology, it becomes possible to identify the critical bottlenecks and assess the overall resil-
ience of the urban road network29. This understanding enables proactive measures to address vulnerabilities 
and enhance accessibility, playing a pivotal role in promoting smooth and efficient mobility for individuals 
and communities within the city.

•	 Traffic network planning. The dataset, with its comprehensive traffic demand and flow distribution records, 
can aid in identifying hotspots and congested roads in urban areas. This enables data-driven approaches for 
optimizing traffic network planning, encompassing the enhancement of road infrastructure, optimization of 
public transportation routes, and strategic placement of Point of Interest (PoI) locations30–32. Effective traffic 
network planning plays an important role in reducing traffic congestion and optimizing traffic flow, leading 
to a more efficient and sustainable urban environment.
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Fig. 1  Overall framework of the city-scale vehicle trajectory recovery system.
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Methods
Our framework, as depicted in Fig. 2, follows a streamlined data flow. Initially, we collect traffic camera video 
data from over 3000 cameras in two Chinese metropolises. The raw video data is then sampled and cropped into 
images. These images undergo feature extraction, generating visual features. These features are subsequently 
inputted into a clustering module, which identifies clusters representing vehicles re-identified across multiple 
cameras. Next, a probabilistic trajectory recovery model utilizes these clusters to infer the travel path between 
camera observations. To improve accuracy, a feedback data flow enables co-optimization of the re-identification 
and recovery processes. Additionally, spatial-temporal information from historical trajectories supports the 
probabilistic model through a dedicated data flow. Finally, within the divided city regions, an across-region 
trajectory recovery module is employed to match and merge trajectories that may have been split during the city 
division process.

Ethics statement.  In this section, we state how all the input data in this study are properly processed 
and used so that no personally identifying information is disclosed in any form. We further describe how the 
non-public input data is used under the awareness and approval of third-party data providers, ensuring that both 
the study and the released dataset strictly adhere to the stipulated collaboration terms. There are three kinds of 
input data in this study, including traffic camera video data, road network data, and historical trajectory data. 
The traffic camera videos utilized in this study are non-public data, acquired through collaborative efforts with 
third-party agencies. To protect the privacy of individuals featured in the videos, third parties anonymized the 
videos by only providing visual feature vectors embedded by a confidential neural network so that it is impos-
sible to infer the real-world vehicle plate ID. Our methodology enables the differentiation of vehicles in videos 
by measuring the distance between these vectors, not by attempting to infer the real-world vehicle plate IDs. 
Consequently, the proposed trajectory dataset does not contain any real-world vehicle identity information. 
Further, we are under the awareness and approval of the third parties to release the proposed trajectory dataset 
where we do not publish the anonymized vectors in any form, while the spatial-temporal information of trajec-
tory points is partly inferred based on the camera position and camera shooting time. For road network data, 
we obtain, use and re-distribute this public data under the Open Data Commons Open Database License 1.0 
adopted by OpenStreetMap. The historical trajectory data, obtained through collaboration with Amap, a major 
location-based service provider in China, is non-public. The data is collected by Amap with users’ consent dur-
ing the provision of map routing services through their app. To protect the privacy of the users, Amap removed 
the “UserID” attribute before providing us the data, ensuring no personally identifying information could be 
disclosed. We have the awareness and approval of Amap to release the proposed trajectory dataset. It includes 
only the trajectories recovered from traffic camera videos on the respective days of collection; no anonymized 
historical trajectories are published in any form. It should be emphasized that, while the dataset may reflect 
coarse-grained statistical characteristics analogous to the historical anonymized trajectory data, there is no 
release of the actual anonymized data.

Traffic camera video data collection.  We collected raw traffic camera video data from two Chinese 
metropolises: Shenzhen and Jinan. Shenzhen is renowned as one of China’s special economic zones and a global 
financial center, while Jinan serves as the capital of Shandong province in Eastern China. In Shenzhen, we collected 
videos from three specific days: November 4, 2020 (Wednesday), April 16, 2021 (Friday), and August 24, 2021 
(Tuesday). These videos were captured from a varying number of cameras on each day. Specifically, on November 
4, 2020, we collected videos from 441 cameras. These cameras covered a major city district in Shenzhen, known 
as the Longhua district. On April 16, 2021, we expanded our coverage to four city districts: Longhua, Guangming, 
Nanshan, and Futian. Hence, we collected videos from 1,460 cameras on that day. Similarly, on August 24, 2021, 
videos were collected from the same set of 1,460 cameras in these four city districts. The data collection starts 
from 8 a.m. to 8 p.m. In Jinan, we collected videos for a single day: October 17, 2022 (Monday). The videos were 
obtained from a total of 1,838 cameras, providing comprehensive coverage of the entire city of Jinan. The data 
collection spanned the entire day, starting from midnight (0 a.m.) and continuing until midnight (24 p.m.).

The video data in Shenzhen city was obtained through a collaboration with SenseTime (https://www.sen-
setime.com/), a company specializing in AI technologies for various domains such as smart city. Similarly, the 
traffic camera video data in Jinan city was provided by the Jinan traffic management agency (https://jnjtj.jinan.
gov.cn/) through a collaboration with the authors. Please note that the video data used in this study is not 
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publicly available. Researchers interested in replicating or conducting similar studies can explore collaboration 
opportunities with traffic agencies or companies specializing in traffic surveillance technologies and devices.

To process the raw video data, we employ a sampling technique where frames are extracted from the videos 
at a regular interval of 2 seconds. Each frame is then converted into an image. Subsequently, a state-of-the-art, 
pre-trained Convolutional Neural Network (CNN)-based vehicle detection model is utilized to identify and 
isolate vehicles within each frame image. These detected vehicles are cropped into smaller images, which we 
refer to as “camera records” for individual vehicles. As a result of this process, we obtained a substantial number 
of camera records from the collected videos. Specifically, in Shenzhen, approximately 4 million, 13 million, 
and 14 million camera records were extracted from the videos recorded on November 4, 2020, April 16, 2021, 
and August 24, 2021, respectively. In Jinan, around 19 million camera records were extracted from the videos 
recorded on October 17, 2022. These camera records serve as the foundation for our dataset and provide detailed 
information about each detected vehicle captured by the traffic cameras. The statistics of the collected data are 
summarized in Table 1.

Finally, to properly protect the privacy of all the citizens, who may be unaware their driving trajectories are 
shared (though they know that these are captured by traffic cameras), both SenseTime and the Jinan traffic man-
agement agency anonymized the video data in line with ethical procedures before providing it to us. Specifically, 
the raw camera records with potential personal identifiers are transformed into 256-dimensional vectors using 
a CNN before reaching us. The trained CNN’s model parameters remain confidential, ensuring that no per-
sonal details like vehicle license plates can be deciphered from these vectors. Besides, our released dataset only 
includes trajectories without real-world identity information, excluding these vectors.

Traffic camera and road network alignment.  We acquired road network data from OpenStreetMap33, a 
freely available geographic database maintained by a community of volunteers. Researchers interested in replicat-
ing or conducting similar studies can access road network data directly from OpenStreetMap. We build a directed 
graph G = <V, E> to represent the road network, where V and E are road intersections and roads respectively, 
with the Python package OSMnx34. The coordinates of traffic cameras are mainly provided by government, and 
some missing cases are complemented by resorting to Geocoding35. Then we align traffic cameras to G by match-
ing each camera to a graph node. In order to ensure that one logical road intersection is exactly represented by 
one single node in G, any group of neighboring nodes is detected with a spatial threshold D and merged into a 
single node. Then, we match each traffic camera to the nearest graph node within a spatial threshold D. However, 
while most traffic cameras are deployed at road intersections and thus can be matched to a graph node, some 
cameras are deployed in the middle of roads and there are no nearby nodes. In this case, we project a camera to its 
nearby roads. Note that we project the camera to all nearby roads as long as the corresponding projection point is 
within a threshold D, rather than only project the camera to the nearest road, considering that cameras typically 
monitor all the parallel neighboring roads in opposite directions. Then we introduce a new node at the center of 
all the projection points, cut apart and re-link the projected roads through the new node. In the end, we obtain a 
new graph G′ = <V′, E′> with some nodes merged into a single node, some new nodes introduced as projection 
points, and some roads divided apart at projection points. In this way, each traffic camera can be matched to its 
nearest node. In Shenzhen city, 1365 out of 1460 cameras are matched to 686 nodes within distance threshold D, 
where some cameras are not matched due to incompleteness of road network and possible coordinate errors of 
traffic cameras, and multiple cameras can be matched to the same node since several cameras can be deployed 
at one intersection. Since it is observed that 94% of cameras are located within a distance of 20 m from the road 
network, we set the threshold D to 20 m. Figure 3 shows the cameras and road networks in Shenzhen and Jinan. 
Additionally, a special case is presented to illustrate how 4 original graph nodes are merged together to represent 
a road intersection, and how a camera is matched to the road intersection.

City division.  Due to computational constraints, it is not feasible to perform vehicle re-identification and 
trajectory recovery over the entire city with thousands of traffic cameras and millions of camera records. To 
address this issue, we propose dividing the city area into several regions, each containing hundreds of cameras 
and millions of records, making it feasible for our algorithms. However, this division may result in incomplete 
trajectories for vehicles crossing region boundaries. We alleviate this by considering three aspects: (1) Each region 
is kept sufficiently large to accommodate the majority of vehicles traveling within it. (2) The region boundaries are 
determined by clustering the distribution of traffic cameras, resulting in sparser camera density at the boundaries 
and minimizing information loss during the division. (3) We design a trajectory matching and merging algorithm 
to connect and combine trajectories across regions (see following section “Across-Region Trajectory Recovery”).

Specifically, we utilize a size constrained clustering approach36 based on the coordinates of traffic cameras. 
This method extends the original K-Means algorithm by imposing constraints on the minimum and maximum 
size of each cluster. This ensures that each region has a minimum number of cameras to maintain its spatial scale 

City Date Spatial Range Temporal Range #Camera #Camera Record

Shenzhen

2020.11.04 1 district

8 a.m. - 8 p.m.

441 4 million

2021.04.16
4 districts 1460

13 million

2021.08.24 14 million

Jinan 2022.10.17 whole city all day long 1838 19 million

Table 1.  Spatial-temporal ranges and quantities of the dataset.
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and a maximum number of cameras to ensure computational feasibility. We conduct the experiments with dif-
ferent numbers of clusters to generate various city division plans and evaluate their quality using the Silhouette 
Coefficient, which measures the compactness and separation of clusters. Based on this evaluation, we select the 
best city division plan. After obtaining the regions through clustering, we introduce additional auxiliary regions 
along the boundaries between the divided regions. These auxiliary regions play a crucial role in matching and 
merging trajectories across the divided regions, facilitating a more complete reconstruction of vehicle trajectories.

Vehicle Re-identification (Re-ID).  In vehicle Re-ID, the sampled and cropped images extracted from 
video data are initially transformed into visual features. These visual features are then input into a clustering 
module, which is used to generate clusters representing vehicles that have been re-identified at multiple cameras.

Vehicle feature extraction.  Towards vehicle Re-ID, we apply modern pretrained CNN-based methods to extract 
vehicle visual features21. Given a camera record, namely, a small image of one detected vehicle cropped from a 
video frame, we use a ResNet-50 backboned model to extract a general appearance feature fa. We further apply 
a license plate detection model to crop vehicle image into license plate image and use a ResNet-50 backboned 
model to extract a license plate feature fp. For some vehicles fp is not available because the license plate detection 
can fail when vehicle image is of poor quality, for example, poor resolution, bad lighting, skewed or blocked sight 
line. fa and fp as the output of neural network model are 256-dimensional vectors. For efficiency of the following 
processes, we apply the principal components analysis (PCA) in each city region to reduce their dimension to 64. 
Besides, in order to incorporate spatial-temporal information into the re-identification task, we also introduce a 
dynamic feature fd which is initialized the same as fa and updated by our following spatial-temporal models (see 
following section “Co-optimization of Vehicle Re-ID and Trajectory Recovery”).

Note that we do not employ the license plate recognition (LPR) approach suggested by the work23 for two rea-
sons. Firstly, license plate detection can be unreliable due to various factors such as camera resolution, lighting 
conditions, and obstructions, resulting in a significant number of records without LPR results. Secondly, LPR 
is prone to errors when dealing with poor-quality images, often leading to incorrect identification of characters 
such as “0” and “D”. In fact, a related work26 conducts a study on how LPR performance deteriorates when pro-
vided with traffic camera snapshots instead of high-quality images as in an automatic parking payment system, 
where less than 10% of the snapshots are completely correctly recognized by LPR.

Vehicle clustering.  A 2-stage vehicle clustering algorithm is designed based on the extracted vehicle features. 
The first stage searches the top k nearest neighbors for each vehicle record based on its appearance feature fa 
and plate feature fp respectively. Considering the quadratic complexity, we implement this by Faiss37, which is 
a library for efficient similarity search of dense vectors. The second stage is a multi-modal similarity clustering 
process with linear complexity. The similarity between two records i and j is defined as the weighted average of 
cosine similarities based on appearance feature fa, plate feature fp and dynamic feature fd (all 256-dimensional 
vectors), with corresponding scalar weights wa, wp and wd.
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The similarity between a record and a cluster is defined as the average similarity between the record and each 
record in cluster. For each record, we define its candidate records as the searched KNN records, and its candidate 
clusters as the clusters that candidate records belong to. Then clusters are progressively constructed by traversing 
the records once. For a current target record during traversing, we find the cluster with the maximum similarity 
among its candidate clusters. Then the record is added to this cluster if the maximum similarity is larger than a 
threshold S, else a new cluster is built for this record.

The parameter settings are as follows. We set k to search KNN records is 128, with similarity weights wp = 0.8, 
and wa = wp = 0.1. Additionally, the similarity threshold is set to S = 0.8, as suggested in our previous works21,22. 
First, we mainly design the first stage KNN search to reduce the search scope in the second stage, which is of 
higher computational cost than the first stage. While our intention is to achieve results similar to an infinite k 
setting, we gradually reduce the value of k from a large number and observe how the final cluster results change. 
As a result, we find a value of 128 for k is sufficiently large to ensure that the final neighbors are included in the 
KNN candidates. Then, for the allocation of similarity weights to different visual features, our insight is that a 
larger weight should be assigned to the license plate feature fp compared to the general appearance feature fa. This 
is because different vehicles can exhibit similar appearances, but the same vehicle can appear significantly differ-
ent under varying lighting conditions. Next, we perform a grid search to determine the specific ratio between wp 
and wa while keeping wd = wa, given that fd is initialized the same as fa. Finally, the similarity threshold S is also 
decided through a grid search. Further details can be found in our prior work22.

Vehicle trajectory recovery.  Camera records are grouped into clusters using vehicle Re-ID, which yield 
multiple spatial-temporal observations of a vehicle at different road intersections. However, it is not sufficient 
to accurately recover the complete trajectory due to the possibility of multiple paths between consecutive obser-
vations. To overcome this challenge, we incorporate historical vehicle trajectories and employ a probabilistic 
model22 that leverages spatial-temporal information from historical vehicle trajectories. This model helps to infer 
the most possible path among the uncertain alternatives, enhancing the trajectory recovery process.

Probabilistic spatial-temporal recovery model.  We adopt the probabilistic spatial-temporal recovery model from 
our previous work22. It can calculate the probability of any path between two consecutive camera observations 
given the knowledge extracted from historical trajectories, thus helps find the most probable path. Comparing 
with neural network based models, the probabilistic model is highly explainable and, more importantly, efficient, 
and thus applicable in city-scale scenarios.

Specifically, given two chronologically consecutive camera observations, i.e., the start record point rs, start 
time ts, end record point re and end time te = ts + Δt, we denote the trajectory connecting the two points as 
P = {s1, …, sn}, where si represents the road segment. The posterior probability of the trajectory given the above 
information can be factorized into two parts:

∝ Δ = Δ .p r t r t p t r r t p r r t t p tPr( , , , ) Pr( , , , ) Pr( , , )Pr( , ) (2)s s e e s e e s e e e

The first factor is a prior probability that drivers who intend to move from rs to re will choose this trajectory 
as their route around time te, which accounts for the general popularity of the trajectory. The second factor is 
the likelihood that Δt is taken to travel along this trajectory around time te, which accounts for the consist-
ency between the actual travel time and the expected travel time determined by the real-time traffic condi-
tion. To consider the effect of te, practically we quantize it into 24 time slots with one-hour resolution, and the 
spatial-temporal knowledge extracted from historical trajectories in corresponding time slot will be used.

To model the prior factor, we assume that the transition from one road segment to another is independent 
from the start point rs given the end point re and satisfies Markov property:
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We refer to s r r tPr( , , )s e e1  as start segment probability and s s r tPr( , , )e e′  as segment transition probability. 
The start segment probability is calculated as the sum of segment transition probability over all the incoming 
segments.

To model the likelihood factor, we assume that the relative deviation of average speed follows a normal 
distribution:

σΔ = − Δ Δ −t p t t tPr( , ) exp( ( / 1) /2 ) , (4)e
2 2

where tΔ  is the sum of the average traveling time of each segment in p at time slot te, and σ is a hyper-parameter 
fine-tuned around the statistical standard deviation of historical trajectories.

Historical trajectory pre-processing.  We collected historical GPS-based vehicle trajectories from two cities, pro-
vided by Amap (https://mobile.amap.com/), a prominent map service provider in China through our collabo-
ration. However, it should be noted that this specific dataset is not publicly available. Researchers interested in 
similar data can explore collaboration opportunities with navigation service providers, ride-hailing platforms, 
taxi operators, or government agencies. To state the ethics of using this data and avoid privacy issues, the Amap 
users have given consent for the APP to collect their trajectories for research to improve location-based services. 
Further, Amap deleted the “UserID” attribute before providing us with the data, ensuring only anonymized 
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trajectories are available. What’s more, we use this data only to estimate road speeds and transition patterns for 
our trajectory recovery model and do not share these historical trajectories in any form.

In Shenzhen, there are 2,111,309 trajectories of 824,929 Amap users within 2 weeks. In Jinan, there are 
1,941,272 trajectories of 716,337 Amap users within 1 month. Although the historical trajectories may not 
encompass the full-amount vehicles, the dataset benefits from weeks of data collected from nearly one million 
navigation APP users. As a result, it is anticipated that the dataset will encompass a substantial number of sam-
ples representing various types of vehicles. This wealth of diverse data provides a solid foundation for robustly 
estimating average road speed and road transition patterns.

To align the trajectories with the road map, we utilize a modern and efficient map-matching algorithm38. 
This algorithm is specifically designed to handle large volumes of GPS points and road edges, making it suita-
ble for our city-scale scenario. We carefully analyze the map-matched results and find that due to some com-
plex city road network structures, such as complex intersections with rotary interchanges and overpasses, the 
map-matched paths can generate many unreal rings when some GPS points shift to a nearby road due to GPS 
error. When the nearby road is however quite distant at the topology view, a ring with multi-hops is generated 
to travel to-and-fro. We design a heuristic treatment which performs appropriate down-sampling to the input 
GPS points near complex road structures so that less GPS errors can occur in this critical regions. Meanwhile, it 
removes the rings in the results when few GPS points are map-matched on the ring.

Road speed estimation.  To model the likelihood factor (Eq. 4), we estimate the vehicle speeds on each road in 
each time slot (one hour) based on the map-matched historical trajectories. However, we find it non-trivial because 
the distribution of historical trajectories on different roads is unbalanced and some roads suffer from sparsity. And 
since the speed is estimated in each time slot, the sparsity issue can deteriorate. Also, due to the restricted sampling 
rate of GPS points and large vehicle speeds, it is not rare that only one or even no GPS point is recorded at one road 
among a vehicle’s trajectory, and in this case it is not straightforward to calculate the speed of that road.

To tackle these problems, we first calculate road speeds with a set of algorithms designed for different situa-
tions for a road depends on how many GPS points on it or near by. Then we further adopt a matrix-factorization 
method39 to complement the speeds that cannot be directly calculated. For speed calculation, if there are more 
than one point on a target road, we directly calculate the speed. If there is only one point on the target road, we 
seek the last point (if possible) on its predecessor and the first point (if possible) on its successor. This allows us 
to interpolate between each pair of consecutive points to estimate the time when the vehicle enters and leaves the 
road. The speed is then calculated by dividing the road length by the travel time. If there is no point on the target 
road, we seek the points quite near the origin and destination of the road on its predecessor and successor, and 
similarly we infer the travel time of the target road by interpolation.

For speed complement, we view the speed calculation result as a matrix V with missing values, and its shape 
is (Nr, Nt) where Nr is the number of roads and Nt is the number of time slots (i.e., 24). As Eq. 5 shows, V is 
divided into two parts, Vs and Vd, which account for the static component and dynamic component of the road 
speed respectively. Vs is assumed to be determined by the intrinsic road features and is further factorized into 
a road feature matrix F with shape (Nr, Nf) where Nf is the feature dimension and a feature effect matrix E with 
shape (Nf, Nt). We construct F by obtaining the road level information from OSM and the number of nearby 
POIs from Amap. E is to be learned, and each column of it is the same since the static component is independent 
of time. Vd is factorized into R with shape (Nr, Nt) and T with shape (Nt, Nl), where Nl is the dimension of a latent 
space which accounts for how road speed changes over time. E, R and T are learned by fitting the calculated 
speeds, and the missing values are complemented by the learned matrix factorization model.

= + = + .V V V FE RT (5)s d
T

Road transition estimation.  To model the prior factor (Eq. 3), we estimate the road transition probability 
s s r tPr( , , )out in e e  from an incoming road sm to an outgoing sout road at an intersection in the time slot of te given 

an camera point re as destination, based on the map-matched historical trajectories. We count the transition 
frequency matrix X at each intersection using the historical trajectory before it passes by re, where the rows and 
columns of X account for the incoming roads and outgoing roads respectively. Aware that the frequency counts 
can be sparse given the time slot and destination, the transition probability is not estimated by directly perform-
ing normalization along the axis of outgoing roads. Instead, we adopt a uniform Dirichlet distribution as the 
prior to avoid too radical estimation based on few frequency counts. Therefore, with few supporting data, the 
transition probability is close to a uniform distribution, and with enough supporting data, the transition proba-
bility is close to the frequency tendency. We also regularize the results in each time slot with a transition proba-
bility estimated based on historical trajectories from all time slots, since it is intuitive that given the destination, 
driver’s routing preference is quite stable across different time of day. This regularization is helpful for time slots 
with fewer historical trajectories.

Co-optimization of vehicle re-id and trajectory recovery.  An iterative pipeline is implemented 
to jointly optimize the vehicle re-identification and trajectory recovery process. Building upon our previous 
work22, we incorporate a feedback module into the Re-ID clustering. This module leverages spatial-temporal 
constraints provided by the proposed probabilistic trajectory recovery model. By detecting noises and recalling 
missing records in the clustering result, the feedback module enhances the accuracy and feasibility of the recov-
ered trajectory. Specifically, for noise detection, given a cluster of camera records, we find its optimal subset as 
non-noise records, and others as noises, using a feasibility scoring function which is based on the probabilistic 
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spatial-temporal recovery model. Then for each detected noise, we push its dynamic feature fd away from the 
average dynamic feature in the cluster. For missing records recalling, we try adding the detected noises from other 
clusters into a target cluster, and also try merging some small clusters with few records into a target cluster, if they 
are visually similar to the target cluster. Then we perform the noise detection as introduced above, and accept 
those records not detected as noise to be recalled into the target cluster. For each missing record to be recalled, 
we pull its dynamic feature fd towards average dynamic feature in the cluster. For more details, please refer to our 
previous work22.

Across-region trajectory recovery.  After performing trajectory recovery in each city region, we further 
specially tackle those trajectories traveling across regions because they are truncated apart during the city divi-
sion. A heuristic algorithm is designed to merge these parts. Specifically, we introduce an auxiliary region along 
the boundary of two adjacent regions so that it can basically cover the trajectories that travel between the two 
regions. Trajectories in this region are recovered by applying our recovery pipeline, and they act as links for piec-
ing up the head and tail of a truncated trajectory across the two regions.

Formally, suppose there is a recovered trajectory P*h  in region H, which is actually the head part of an trajec-
tory P truncated over region boundary. Similarly, a recovered trajectory P*t  in region T is the tail part of P. Given 
a middle part Pm of P recovered in the auxiliary region A, we calculate vehicle appearance feature f a

m and license 
plate feature f p

m as the average visual features of camera records on Pm. Our target is to find the underlying P*h  in 
H and the underlying P*t  in T.

Take finding P*h  as example, first we construct the candidate set hP  to be those trajectories in H starting out-
side of A and ending inside of A. Then we reduce Ph by filtering out those Ph of which the visual similarity 
between f a

m and f p
m is smaller than a threshold. Next, we try matching Pm with each Ph in Ph from the 

spatial-temporal view. Denote the part of Ph and Pm that is within the overlapped area of H and A as Ph
A and Pm

H 
respectively. We calculate the number of trajectory points, i.e., the camera records that are in common in Ph

A and 
Pm

H, which means how many times that Ph
A and Pm

H pass the same intersection at nearing time. Denoting the 
number of points in common as a and the number of points not in common as b, the matching score between 
Pm and Ph is calculated as:

S
e
e

a

max p t r r t a
1

, if 0,

Pr( , , , ) , if 0, (6)
match

a

a
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where we prefer larger a with a sigmoid function and punish b with a parameter λ = 0.8. And if a = 0 which 
means there is no common points between Ph

A and Pm
H, we replace the sigmoid term with the maximum trajec-

tory probability from the last point in Ph
A to the first point in Pm

H as formulated in Eq. 2. We find P*h  to be the Ph 
with the largest matching score between Pm which is at least 0.6. The matching of Pm and P*t  is similar. Through 
this, we link P*h , Pm and P*t  together to recover the whole trajectory across regions.

Data Records
We release the city-scale vehicle trajectory data as well as the corresponding road network data at our figshare repos-
itory40. Both the trajectory data and the road network data are formatted as comma-separated values (CSV) files.

•	 Road network data. The road network data is provided separately for Shenzhen city and Jinan city, with each 
city having two CSV files: one for graph nodes and another for graph edges. Table 2 presents the attributes 
and meanings of the data contained in the CSV files, providing a comprehensive understanding of the road 
network data for both cities.

•	 Node CSV file. Each line contains information about a road intersection, including a unique NodeID, the 
Longitude and Latitude coordinates in the WGS84 format, and a binary indicator (HasCamera) for the 
presence of cameras at the intersection. Specifically, in Shenzhen, there are 11,933 intersections, while in 
Jinan, there are 8,908 intersections.

•	 Edge CSV file. Each line represents a specific road segment and provides information such as the origin 
and destination NodeID, road class obtained from OpenStreetMap (OSM), geometry (coordinates in 
WGS84 format) defining the shape of the segment, and its length in meters. In Shenzhen, there are 27,410 
road segments, and in Jinan, there are 23,312 road segments.

The road network data is visualized in Fig. 4. In the visualization, the road intersections with a “HasCam-
era” attribute of “1” are marked as red spots. These intersections are equipped with cameras for monitoring 
and surveillance purposes. The roads are plotted based on the “Geometry” attribute, which provides the 
coordinates of each point along the road linestring. The color scheme is used to distinguish different road 
classes based on the “Class” attribute. Each road class is assigned a specific color, allowing for easy identifi-
cation and differentiation of road types.

•	 Vehicle trajectory data. The vehicle trajectory data consists of four CSV files, one for each city and day. 
Three files pertain to Shenzhen city on November 4, 2020 (Wed.), April 16, 2021 (Fri.), and August 24, 2021 
(Tue.), while the fourth file corresponds to Jinan city on October 17, 2022 (Mon.). Each line in the CSV file 
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represents a trajectory, resulting in the following counts: 568,803 trajectories for Shenzhen (November 4, 
2020), 1,649,085 trajectories for Shenzhen (April 16, 2021), 1,686,464 trajectories for Shenzhen (August 24, 
2021), and 1,184,417 trajectories for Jinan (October 17, 2022). The data attributes and their meanings can 
be found in Table 3. To be specific, VehicleID is used to identify different vehicles. It is worth noting that 
the VehicleID is an enumerating index generated during the vehicle clustering process. The clustering algo-
rithm assigns the same VehicleID to camera records within the same cluster. Therefore, the VehicleID is not 
associated with real-world car plates and serves as a unique identifier solely within the clustering context. 
The TripID represents the index of the trip for each vehicle. The Points attribute consists of trajectory points 
indicating road intersections and their timestamps. Additional attributes include DepartureTime (start time), 
Duration (time duration), and Length (travel length) of each trajectory.

Technical Validation
In this section, we aim to validate the quality of the trajectory data recovered from videos and demonstrate that 
our proposed dataset contains almost full-amount of vehicle trajectories. We begin by evaluating the perfor-
mance of our trajectory recovery method through an assessment of the resulting trajectories. Then, we examine 
the robustness of our method and discuss how traffic camera density can impact the quality of trajectory data 
by comparing the performance in different city regions with varied traffic camera density. To gain insights into 
the quality of the trajectories, we conduct an individual-level analysis by studying specific cases. This analysis 
allows us to examine the trajectories at a granular level and assess their accuracy and reliability. Furthermore, we 
analyze aggregated-level features such as road speed and flow. This broader analysis provides a comprehensive 
understanding of the overall characteristics of the trajectories and helps evaluate their usefulness in capturing 
traffic patterns and vehicle movements. By conducting these evaluations, we ensure the reliability and complete-
ness of our dataset.

(a) Shenzhen (b) Jinan

Fig. 4  Visualization of road network data.

Meaning Example Notes

Node

NodeID Node Identifier 0 An index code

Longitude Longitude of the intersection 114.02342 In World Geodetic System-1984 
(WGS84)

Latitude Latitude of the intersection 22.62788 In World Geodetic System-1984 
(WGS84)

HasCamera Whether there is any camera deployed 
at this intersection 0 “0” if no cameras, “1” otherwise

Edge

Origin NodeID of the edge’s origin 1

Destination NodeID of the edges’s destination 2

Class Road class information from OSM primary
Refer to OSM wiki for notes: 
https://wiki.openstreetmap.org/
wiki/Map_features#Roads

Geometry Coordinates of the road linestring. 
Points are divided by “_”. 114.0221-22.6414_114.0258-22.6404 In World Geodetic System-1984 

(WGS84)

Length Length of the road linestring 400 In meters

Table 2.  Road network data attributes.
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The performance of vehicle trajectory recovery.  We collect vehicle trajectory ground truth on August 
24, 2021 in Shenzhen city, which contains the GPS trajectory of 423 vehicles and 15,081 corresponding traffic 
camera records with identity labels. We evaluate the performance of our work on both the vehicle Re-ID task and 
the trajectory recovery task, since the prerequisite Re-ID task strongly affects the performance of the final trajec-
tory recovery task. For the vehicle Re-ID task, we measure the precision, recall, F1-score and expansion of clus-
tering results as our previous work proposes22. For the trajectory recovery task, we use metrics including Longest 
Common SubSequence (LCSS), Edit Distance on Real sequence (EDR) and Spatial-Temporal Linear Combine 
distance (STLC)41. We compare the performance of our method with baselines including BNN42, VeTrac26 and 
MMVC21, and for implementation details please refer to our previous work22. As Table 4 shows, our method 
achieves satisfactory overall performance and consistently outperforms all the baselines on both tasks across 
various metrics.

The impact of traffic camera density on the quality of vehicle trajectories.  To further examine the 
robustness of the method and the consistency of the trajectory quality across heterogeneous scenarios, we study 
five distinct city regions in Shenzhen. These regions exhibit varying traffic camera densities, and we compare their 
performance using the same metrics as mentioned earlier. These regions correspond to the city division results 
previously introduced. The density is defined as the proportion of road intersections covered by traffic cameras, 
specifically denoting the fraction of road intersections equipped with any traffic camera. During the statistical 
analysis, we filter out intersections located between “residential”, “living street” and “unclassified” roads. Instead, 
we only concentrate on the traffic camera coverage rate among other intersections, in order to control over the 
extent to which residential details are included in the OSM road network across different city regions. This is 
important since traffic cameras are not expected to be deployed at residential intersections.

We show the results in Table 5 and draw three key observations. First, the city regions with top three traf-
fic camera densities have similarly satisfactory performance, whereas those with the lowest two traffic camera 
densities show relatively poorer performance. As expected, higher traffic camera density correlates with better 

Method

Vehicle Re-ID Trajectory Recovery

Precision Recall F1-score Expansion LCSS EDR STLC

BNN 0.6311 0.7002 0.6639 3.6427 0.8315 58.6667 0.4940

VeTrac 0.7022 0.8236 0.7581 2.3813 0.7242 30.0413 0.6393

MMVC 0.8448 0.8690 0.8567 2.1940 0.6932 21.0645 0.6963

Ours 0.8545 0.8721 0.8632 2.1632 0.6778 17.0399 0.7160

Table 4.  Overall performance of our vehicle trajectory recovery approach and the baselines.

Camera Density

Vehicle Re-ID Trajectory Recovery

Precision Recall F1-score Expansion LCSS EDR STLC

0.2573 0.8767 0.8646 0.8706 2.6502 0.6224 15.8000 0.7548

0.1549 0.8888 0.8867 0.8877 1.6949 0.5449 15.1100 0.7995

0.1022 0.8924 0.9107 0.9014 1.9829 0.6184 15.7857 0.7760

0.0819 0.8026 0.8558 0.8283 1.2654 0.7310 19.9091 0.6828

0.0638 0.8411 0.8603 0.8506 2.5812 0.7570 18.0656 0.6495

Table 5.  Comparison of performance under different traffic camera density.

Meaning Example Notes

VehicleID Vehicle Identifier 0 An enumerating index generated during the 
vehicle clustering rather than car plate.

TripID Index of trip of the vehicle 0
A vehicle may have multiple trips in a day, so 
“VehicleID” is not enough to uniquely identify 
a trajectory.

Points
A series of trajectory points. Each point 
is “NodeID-Time”. Points are divided 
by “_”.

1-36000_3-36300_6-36900

“NodeID” is a intersection corresponding 
to road network. Exactly one road segment 
existing between two adjacent nodes is 
guaranteed. “Time” is represented by seconds 
starting from the beginning of the day.

DepartureTime Departure time of the trajecotry 36000 “Time” is represented by seconds starting from 
the beginning of the day.

Duration Time duration of the trajectory 900 In seconds

Length Travel length of the trajectory 5000 In meters

Table 3.  Trajectory data attributes.
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trajectory quality, measured from both the vehicle Re-ID task and the trajectory recovery task. Second, with 
increasing traffic camera density, the quality of vehicle Re-ID initially improves before slightly declining, with 
the third city region generally demonstrating the best performance. This pattern is both intriguing and reason-
able. When camera density is too low, the performance of trajectory recovery is inherently poor. As a result, our 
co-optimization module can hardly leverage weak spatial-temporal constraints to guide the Re-ID clustering. 
Conversely, when camera density is excessively high, the clustering task becomes more challenging due to the 
increased number of camera records to be clustered, potentially leading to a drop in performance. Third, the 
trajectory recovery quality follows a similar trend of initially rising and then slightly declining with increasing 
traffic camera density. In this case, the second city region generally displays the best performance. This is rea-
sonable because the difficulty of the trajectory recovery task is primarily influenced by the coverage rate of traffic 
cameras. Additionally, the quality of the upstream task, namely vehicle Re-ID, also impacts the final outcome. 
Moreover, the observation that the second region excels in trajectory recovery while the third region excels in 
vehicle Re-ID aligns with the insight that trajectory recovery benefits from higher camera density, whereas vehi-
cle Re-ID is more favorable with a lower camera density to ensure manageable clustering tasks.

To sum up, our method demonstrates robust performance across diverse scenarios, with performance dis-
crepancies attributed to varying traffic camera densities, supported by insightful explanations. This preliminary 
study shows that in Shenzhen, the quality of trajectory data remains satisfactory when traffic camera density 
exceeds 10%. However, it is noteworthy that the data quality may experience a decline (but remain comparable 
to the city-scale overall performance of the best baseline as shown in Table 4) when camera density is small.

Fig. 5  A recovered vehicle trajectory and its related image records in Shenzhen.

Fig. 6  A recovered vehicle trajectory and its related image records in Jinan.

https://doi.org/10.1038/s41597-023-02589-y


1 2Scientific Data |          (2023) 10:711  | https://doi.org/10.1038/s41597-023-02589-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

A case study to verify the quality of vehicle trajectories.  To assess the quality of the recovered tra-
jectories, we provide a specific example from Shenzhen along with the corresponding traffic camera records and 
the ground truth trajectory. In Fig. 5, the red dashed line represents the ground truth trajectory, which spans 
a distance of over 10 km. The black solid line indicates the recovered trajectory, which closely aligns with the 
ground truth. Furthermore, all nine traffic camera records (depicted as green nodes) along the trajectory path are 
accurately matched, despite challenges such as a large number of camera records, varying shooting angles, and 
unfavorable lighting conditions (e.g., record 1). This case demonstrates the effectiveness of our vehicle Re-ID and 

Fig. 7  Visualization of statistical characteristics of the recovered trajectories in Shenzhen.

Fig. 8  Visualization of statistical characteristics of the recovered trajectories in Jinan.
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trajectory recovery framework, affirming the satisfactory quality of our vehicle trajectory data based on traffic 
camera videos. In the case of Jinan, since there were no real trajectories available in the dataset, we only presented 
the recovered trajectories along with the corresponding images of vehicles captured by cameras. These images are 
displayed in Fig. 6. By examining the vehicle images, it is evident that they belong to the same vehicle, demon-
strating the accuracy of our trajectory recovery algorithm.

Statistical analysis of vehicle trajectories.  To gain valuable insights into the statistical characteristics 
of trajectory data within the city, we conducted visualizations focusing on two perspectives: the static view and 
the dynamic view.

Static view.  We conducted a spatial-temporal analysis of trajectory data in both Shenzhen and Jinan. Figure 7 
shows the statistics for Shenzhen, including the cumulative distribution function (CDF) figures for trajectory 
length, duration, and quantity on roads, which exhibit long-tailed characteristics. Figure 7d displays the number 
of trajectories departing in each hour, indicating a concentration of trajectories between 8 a.m. and 7 p.m., with 
clear morning and evening peaks. However, trajectories from 6 p.m. to 7 p.m. may not appear as a significant 
peak due to limited data availability after 7 p.m. Figure 8 presents the statistics for Jinan, where the distributions 
of trajectory length, duration, and quantity on roads show a similar long-tailed pattern as in Shenzhen. Figure 8d 
illustrates the number of trajectories departing in each hour in Jinan, revealing two peaks during rush hours 
(8:00–9:00 am and 4:00–5:00 pm), a trough during noon, and minimal vehicle activity at night, aligning with the 
expected traffic patterns.

Dynamic view.  We present the heat maps of origin distribution (O), destination distribution (D), and 
origin-destination (OD) flow for vehicle trajectories in Shenzhen and Jinan (Figs. 9, 10). The columns represent 
O, D, and OD, while the rows correspond to morning, noon, and evening periods. In Shenzhen, we analyzed 
trajectories during three 2-hour windows (9:00–11:00, 12:00–14:00, and 16:00–18:00). The top 40 grids with the 
highest O and D flows, accounting for 74% of the total flows, were selected. The resulting O and D figures exhibit 
consistent traffic patterns, aligning with the distribution of traffic cameras and showing increased activity and 
diverse mobility patterns during peak hours. Similarly, in Jinan, we analyzed trajectories during three 2-hour 

Fig. 9  Flow distribution of different OD pairs at different time periods in Shenzhen.
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windows (9:00–11:00, 12:00–14:00, and 16:00–18:00). The top 40 grids with the highest O and D flows, account-
ing for 67% of the total flows, were selected. The O and D figures demonstrate that more hot spots appear during 
peak hours, indicating increased activity and similar traffic patterns to Shenzhen.

Feature analysis of aggregated vehicle trajectories.  In this subsection, we aggregate the vehicle tra-
jectories to further validate the data quality and demonstrate that our dataset encompasses almost all vehicles in 
the city during the specified time range.

We first validate data quality by comparing our road speeds with Amap’s. Road speeds are estimated by cal-
culating average speeds for each road segment using trajectory points at both ends. We filter out roads with less 

Fig. 10  Flow distribution of different OD pairs at different time periods in Jinan.

Fig. 11  Comparison of road speeds between our released data and Amap data for different types of roads in 
Shenzhen.
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than 1,000 speed values and remove outliers based on Median Absolute Deviation43. To visualize the comparison 
results, we aggregate the speeds w.r.t road class and hour respectively, as shown in Fig. 11 (Shenzhen) and Fig. 12 
(Jinan). Both Amap and our speeds show expected differences among different road types, with our speeds 
slightly lower. Our speed calculation includes waiting time at traffic lights and midway stops, while Amap’s data 
is based on instant GPS speeds. When comparing speeds by hour, a noon-time peak is observed in both datasets, 
with our speeds generally slightly smaller than Amap’s. We also report Mean Absolute Error (MAE) and Root 
Mean Square Error (RMSE) values for each road and hour. In Shenzhen, MAE and RMSE values are 7.13 km/h 
and 9.39 km/h, respectively. In Jinan, MAE and RMSE values are 7.66 km/h and 9.82 km/h, respectively. It’s 
important to note that the Amap speed data we compared with was averaged from historical days, not collected 
on the exact same day as our dataset. The reported MAE and RMSE values are reasonable considering daily 
variations in road speeds.

In terms of data quantity, our trajectory dataset represents a city-scale coverage, including nearly the full 
amount of vehicles in the city region during the specified time range. In Shenzhen, on April 16, 2021, there were 
1,649,085 trajectories from 1,121,683 vehicles, and on August 24, 2021, there were 1,686,464 trajectories from 
1,103,997 vehicles. The recovered number of vehicles accounts for approximately 44% of the total daily vehicle 
count reported by the local government, considering factors such as limited camera coverage and collection 
time. In Jinan, comparing our released data with the local traffic management bureau (TMB) data, we found 
similar temporal patterns and a small discrepancy in vehicle counts shown in Fig. 13, with an average MAE 
of approximately 18 for trunk roads and 14 for primary roads. There are 1,184,417 recovered trajectories with 
963,125 vehicles in total. This closely aligns with the average number of weekday vehicles reported by TMB, 
which is around 0.89 million.

Usage Notes
All datasets open in this paper are in file form, and users can access them in their entirety without any further 
permission. For your convenient usage, we recommend some Python packages for processing and analyzing the 
released datasets conveniently. First, Pandas44 can be used to read and process the CSV files. Then, we suggest 
using NetworkX45 to construct a topology graph of the road network, which can synthesize the files for both 
nodes and edges. With the road network graph, users can easily convert the trajectory, which is described by 

Fig. 12  Comparison of road speeds between our released data and Amap data for different types of roads in 
Jinan.

Fig. 13  Comparison of vehicle numbers on two types of roads (our released data V.S. TMB data).
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the “NodeID” of road intersections, to a GPS coordinates based trajectory. Next, we recommend Folium46 for 
visualizations of trajectories or road network with background map tiles. For further geometric computations or 
operations on our datasets, e.g., interpolating the intersection-level trajectory along the road geometry to obtain 
denser trajectory point, we suggest Shapely47 with rich API for geometry objects and computations. Besides, if 
you have any problems with coordinate reference system conversion, e.g., combining our data with other data 
sources with possible different coordinate systems, we recommend Pyproj48. An example to read, convert and 
visualize our dataset is also provided in our GitHub repository49.

Finally, we discuss the limitations of the dataset and the potential restriction to its applications, helping 
researchers decide whether it is suitable for their studies. First, because the dataset involves only four days of 
trajectories, it cannot support studies focused on long-term mobility patterns, such as city growth involving 
evolving mobility patterns50. For analytical research that tries to draw general conclusions such as the yearly 
average distribution of vehicle exhaust51, statistical road flow and speed data is more suitable. However, our data-
set contains short-term and fine-grained traffic dynamics, and offers comprehensive insights into specific days. 
It proves useful for traffic congestion modeling27, where short-term dynamics are crucial, or for cross-sectional 
studies trading generalization performance for more precise and detailed calculations28. For methodology ori-
ented studies which mainly use trajectory data to develop and validate the methods rather than make explicit 
practical management decisions, the dataset remains suitable as long as the method itself can operate spanning 
only a few days31,32. Second, trajectories recorded by traffic cameras cannot strictly represent a vehicle’s entire 
journey due to potential loss of data concerning the “first mile” before the first camera and the “last mile” after 
the last camera. Therefore, for studies requiring precise origin and destination information of trajectories, the 
dataset may be not suitable.

Code availability
The codes for how we generate the trajectory dataset based on visual embedded traffic camera records, evaluate 
the vehicle Re-ID and trajectory recovery metrics, and report statistical characteristics are available in our GitHub 
repository49. There are also tips for installing Python requirements.
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