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Hourly emissions of air pollutants 
and greenhouse gases from open 
biomass burning in China during 
2016–2020
Yuanqian Xu1, Zhijiong Huang2, Jiashu Ye3 & Junyu Zheng3 ✉

Open biomass burning (OBB) is a significant source of air pollutants and greenhouse gases that 
have contributed to air pollution episodes in China in recent years. An accurate emission inventory is 
critical for the precise control of OBB. Existing OBB emission datasets are commonly based on MODIS 
observations, and most only have a daily-scale temporal resolution. Daily OBB emissions, however, 
might not accurately represent diurnal variations, peak hours, or any open burning processes. The 
China Hourly Open Biomass Burning Emissions (CHOBE) dataset for mainland China from 2016 to 2020 
was developed in this study using the spatiotemporal fusion of multiple active fires from MODIS, VIIRS 
S-NPP and Himawari-8 AHI detections. At a spatial resolution of 2 km, CHOBE provided gridded CO, 
NOx, SO2, NH3, VOCs, PM2.5, CO2, CH4 and N2O emissions from OBB. CHOBE will enhance insight into 
OBB spatiotemporal variability, improves air quality and climate modelling and forecasting, and aids in 
the formulation of precise OBB preventive and control measures.

Background & Summary
Open biomass burning (OBB) typically involves forest, grassland and in-field crop straw fires. In China, over 
95% of the total OBB emissions are accounted for by the in-field crop straw and forest fires1,2. The disposal of 
crop straw increasingly shifted from indoor combustion to in-field burning as China’s economy developed3. 
As a result, the crop straw that would otherwise be burned in a dispersed manner is burned in a concentrated 
time and place, causing China to experience severe haze periods and detrimental health effects4–11. On the other 
hand, OBB emissions increased by more than 50% from 2003 to 2014, and have fluctuated at the national scale in 
China in recent years2,3. Additionally, OBB emissions were a substantial source of air pollutants and greenhouse 
gases in China, contributing 20% and 6% of the national CO and CO2 emissions, respectively, in 201712–14.

A high-resolution OBB emission inventory is necessary for OBB regulation and atmospheric simulations. 
Globally, several OBB emission datasets, including GFED15,16, GFAS17, FINN18 and FEER19, had been developed. 
In addition, there are several national OBB emissions datasets in China based on Moderate Resolution Imaging 
Spectroradiometer (MODIS) fire point/burned area observations2,20–22 or crop yields1,23. However, due to the 
significant uncertainty in the activity data used to calculate emissions, these OBB emission datasets still have 
limitations. First, OBB emissions in China tend to be underestimated due to the coarse spatial resolutions of 
MODIS (1 km for active fires and 500 m for burned areas) which cannot detect tiny fire occurrences3,24. Second, 
some studies used prescribed spatial and temporal profiles based on MODIS observations or land-use to allocate 
city-based/county-based emissions estimated using the crop yields-based method to get a model-ready dataset 
for air quality simulations23,25. but these prescribed profiles cannot reflect the dynamic variations of OBB emis-
sions26–28. Third, the hourly variation of OBB emissions cannot be resolved by the most commonly used MODIS 
datasets, which only observe four times at local 01:30, 10:30, 13:30 and 22:3029.

To address the aforementioned restrictions, we developed an hourly OBB emission dataset from 2016 to 2020 
in mainland China, which is named the China Hourly Open Biomass Burning Emissions (CHOBE), using a 
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newly developed OBB emission estimation approach30. The high-resolution activity data of CHOBE benefit from 
the spatiotemporal fusion of multiple active fires detected by MODIS, the Visible Infrared Imaging Radiometer 
onboard the Suomi National Polar-orbiting Partnership (VIIRS S-NPP) and Himawari-8 AHI. 6 air pollutants 
(CO, NOx, SO2, NH3, VOCs, PM2.5) and 3 greenhouse gases (CO2, CH4, N2O) are included in CHOBE, which 
can provide hourly data supporting air quality and climate simulations and OBB control.

Methods
Dataset and scopes. In-field crop straw burning and forest fires are the main source sectors in this study 
since they are responsible for more than 95% of China’s OBB emissions1,2. Due to its high fuel loading per unit 
area, forest fire emissions are characterized by small emission density, high intensity and long duration, whereas 
crop straw burning emissions have wider spatial distribution, low intensity and short duration2,29. Hence, crop 
straw burning and forest fire emissions were estimated separately.

In addition to the commonly used MODIS observations, most of the small active fires that MODIS have 
missed could be captured by using VIIRS S-NPP active fires, which have a higher spatial resolution of 375 m 
and a monitoring frequency of twice per day (at 01:30 and 13:30 local time). The temporal resolution of OBB 
emission was resolved to an hourly scale using Himawari-8 AHI observations, which have a temporal resolution 
of 10 min and a spatial resolution of 2 km29–31. MODIS and VIIRS S-NPP active fires were obtained from the Fire 
Information for Resource Management System (FIRMS) of NASA (https://firms.modaps.eosdis.nasa.gov/)32, 
and Himawari-8 AHI active fires were from the P-Tree System of Japan Aerospace Exploration Agency (JAXA) 
(https://www.eorc.jaxa.jp/ptree/)33.

To estimate OBB emissions across mainland China from 2016 to 2020, multiple active fires observed by 
MODIS, VIIRS S-NPP and Himawari-8 AHI were pre-processed. As shown in Fig. 1, the estimation of hourly 
gridded OBB emissions involves three steps: 1) Pre-processing of multiple active fires; 2) Spatial and temporal 
fusion of multiple active fires from polar-orbiting and geostationary satellite observations to achieve hourly 
OBB activity data and 3) Regional estimation of OBB emission coefficients and hourly estimation of gridded 
emissions. The hourly OBB emissions of CO, NOx, SO2, NH3, VOCs, PM2.5, CO2, CH4, N2O from 2016 to 2020 
were spatially distributed into 2.41 × 106 grids with a spatial resolution of 2 km.

Pre-processing of multiple active fires. Since fire pixels with low-confidence were typically treated as 
clear, non-fire or land pixels, active fires with high confidence (MODIS ≥ 30%, VIIRS S-NPP is N or H, and 
Himawari-8 AHI ≥ 2) were employed to confirm the accuracy of emission estimates34. A total of 3.05 × 105 
MODIS active fires, 1.43 × 106 VIIRS S-NPP active fires and 4.54 × 106 Himawari-8 AHI active fires were applied. 
Based on the spatial patterns of agriculture and forest land-use, these active fires were categorized into crop straw 
burning and forest fires.

Fig. 1 Flowchart of the hourly OBB emission estimation.
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Our previous research demonstrated that there are considerable regional discrepancies in spatiotempo-
ral variations and driving forces of OBB emissions35. We classified mainland China into 7 crop straw burning 
regions according to China’s provincial agricultural habits and boundaries (Supplementary Table 1), and 4 forest 
fires regions based on the geographical distributions of forest types (as shown in Supplementary Fig. 1) followed 
by our previous study30. Then, crop straw burning and forest fires were assigned to these 7 crop straw burning 
regions and 4 forest fire regions based on their latitude and longitude.

Crop straw burning and forest fires were separately matched to the 2 km grids using a 1-hour time step by 
assuming that there is little change in the fire radiative power (FRP) variation during OBB within an hour to 
identify the statistical relationships of multiple active fires derived from various satellites. If there is more than 1 
active fire from MODIS or VIIRS S-NPP at the same time, it is considered that multiple small fires occur simul-
taneously in a 2 km grid and their FRP is added. Regarding Himawari-8 AHI detection, its 6 detections of FRP 
within an hour are averaged. As a result, by the matching multiple active fires, OBB detections are transformed 
from point-by-point to grid-based observations (referred to as grided FRP), and crop straw burning and forest 
fires would be converted to gridded FRP separately if they are on the same grid.

Spatial and temporal fusion of multiple active fires. According to our previous study30, the param-
eters in Table 1 were used to fuse multiple active fires. To solve the problem of FRP underestimation of MODIS 
and Himawari-8 AHI observations caused by their coarse spatial resolution, modified factor α was gained 
from the relationships between contemporaneous VIIRS-MODIS and VIIRS-Himawiri-8 AHI gridded FRP 
(see Supplementary Table 2) considering that VIIRS S-NPP FRP was more reflective of OBB than MODIS and 
Himawari-8 AHI active fires due to its high spatial resolution36,37. The gridded FRP derived from MODIS and 
Himawari-8 AHI was modified by multiplying α.

It is necessary to screen the contemporaneous gridded FRP since the overlaps of overpassing time from 
various satellites. The principle of choosing the high spatial resolution of contemporaneous active fires was used 
to screen the overlapped gridded FRP from VIIRS S-NPP, modified MODIS and Himwari-8 AHI. Hence, the 
hourly fused FRP was calculated by using Eq. (1).

= × + × + ×FRP w FRP w FRP w FRP (1)fused Hm Mm V1 2 3

where FRPfused standards for the gridded FRP within an 1-hour bin; FRPHm and FRPMm represent the modified 
Himawari-8 AHI and MODIS FRP, respectively; FRPV is the VIIRS S-NPP FRP; w1, w2, and w3 are the fusion 
weights in which w3=1, w1=0 and w2=0 if FRPV was available, w2=1, w1=0 and w3=0 if FRPMm was valid and 
FRPV was unavailable, w1=1, w2=0 and w3=0 if only FRPHm was valid.

Our previous study revealed that changes in burning duration (BD) and FRP variation during the OBB com-
bustion cycle is closely related to the observed FRP values30. Thus, BD was determined by 11 regression models 
as shown in Supplementary Fig. 2 and Eq. (2), which were fitted by Himawari-8 AHI observed fire cycles from 
2016 to 2020.

= × +BD a FRP b (2)r p r

Parameter Usage Source

α FRP modification factor of MODIS fires and Himawari-8 AHI first for different regions See Supplementary Table 2

BD (a, b) Parameters for burning duration calculation for different regions See our previous study Table S130

FRP variations (λ, k) Scale and shape parameters of Weibull distribution in the FRP variations for different regions and BD See our previous study Table S230

Table 1. Parameters for the spatiotemporal fusion of multiple active fires.

Region CO2 CH4 N2O

In-field crop straw burning Region 1 784.18 2.51 0.04

In-field crop straw burning Region 2 877.97 2.64 0.04

In-field crop straw burning Region 3 1060.30 3.07 0.05

In-field crop straw burning Region 4 870.50 2.60 0.05

In-field crop straw burning Region 5 863.48 2.73 0.05

In-field crop straw burning Region 6 697.63 2.22 0.04

In-field crop straw burning Region 7 747.28 2.24 0.04

Evergreen broad-leaf forest fires 673.63 2.09 0.11

Mixed forest fires 668.30 2.05 0.11

Deciduous broad-leaf forest fires 668.30 2.05 0.11

Needle-leaf forest fires 620.74 2.46 0.11

Table 2. Regional FRE-based OBB emission coefficients of greenhouse gases in g/MJ.
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where ar and br are the parameters of the regression models for 7 crop straw burning and 4 forest fire regions (r). 
FRPp stands for the peak FRP during a fire cycle.

FRP variations were determined by 86 Weibull curves as a function of peak FRP while the related BD was 
larger than 4 hours (Eq. 3), which was fitted by historical observations of burning cycles from Himawari-8 AHI 
for each region (see Supplementary Fig. 3). Otherwise, FRP was regarded as Gaussian distributions followed 
by Vermote et al.27 since small fires with short BD cannot be effectively detected by Himawari-8 AHI (Eq. 4). 
According to the fused FRP and calculated BD, Weibull curves was adopted for 34% of the crop straw burning 
fires and 37% of forest fires.
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where t is the burning time from the beginning of a fire cycle. tm represents the period before the peak FRP dur-
ing the fire cycle. λ and k stand for the scale and shape parameters of the Weibull distribution, which were fitted 
for each BD in different regions.
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Where μ and σ denote to parameters of the Gaussian distribution, μ is the middle time of BD and σ is quarter of BD.
Moreover, we judged the continuity for adjacent fused FRP based on their values and variations to prevent 

the repeated integration of fused FRP that may belong to a continuous OBB combustion process. They were 
regarded as the same OBB event if the latter FRP is within ± 60% range of the change curve of the previous fused 
FRP. and the FRP change curve was redraft with partial retention before the vertex of the first fused FRP curve, 
a linear change between continuous fused FRP and Partial retention after the vertex of the last fused FRP curve.

By hourly integrating the constructed FRP curves, gridded fire radiative energy (FRE) was estimated to pro-
duce high-resolution OBB activity data.

Hourly estimation of gridded OBB emissions. To obtain greenhouse gas emission datasets from OBB, 
FRE-based emission coefficients of CO2, CH4 and N2O were also estimated by following the method shown in 
our previous study30. 21 regression models of regional fused FRE and historical emissions based on statistical data 
were built to fit the FRE-based crop straw burning emission coefficients of CO2, CH4, N2O (see Table 2). In terms 
of forest fires, their FRE-based emission coefficients were quantified by multiplying the local dry matter-based 
emission coefficients and conversion factor from FRE to dry matter consumption (0.41 kg/MJ)27.

The gridded OBB emissions were estimated using Eq. (5) based on the fused hourly FRE and regional 
FRE-based OBB emission coefficients.

E FRE EC FRE EC( ) ( ) (5)p r CB r CB r p s FF s FF s p1
7

, , , 1
4

, , ,∑ ∑= × + ×
= =

where Ep refers to the grided OBB emission of atmospheric component p; FRECB,r stands for the gridded crop 
straw burning FRE at hourly resolution in crop straw burning region r; ECCB,r,p represents FRE-based crop straw 
burning emission coefficients in crop straw burning region r of atmospheric component p; FREFF,s is the grided 
forest fire FRE at hourly resolution in forest fire region s; ECFF,s,p is the FRE-based forest fire emission coefficient.

Data Records
The CHOBE datasets can be found at figshare38. A total of 19 hourly data records (coordinates of 2 km grids and 
hourly emission inventories) are contained in the datasets. Of those,

•	 1 is the central longitude and latitude of the 2 km-grids across mainland China used in this study [file “China 
2 km-grids longitude and latitude”];

•	 9 are the hourly gridded OBB emissions in mainland China (2016–2020) for different types of air pollutants 
and greenhouse gases [file “Hourly gridded ‘type’ emissions, 2016–2020”];

•	 9 are the hourly provincial OBB emissions in mainland China (2016–2020) for different types of air pollutants 
and greenhouse gases [file “Hourly provincial ‘type’ emissions, 2016–2020”].

The hourly OBB gridded emission inventories were tabulated in a uniform table with 4.02 × 106 rows and  
26 columns. The 4.02 × 106 rows represent each grid with OBB emission that occurred from 2016 to 2020. The 
26 columns are (1) the first column is the grid ID, with their corresponding central longitude and latitude shown 
in the file “China 2 km-grids longitude and latitude”; (2) the second column is the date of OBB emissions; (3) the 
3–26 columns are hourly gridded OBB emissions in gram from 00:00 to 23:59 during the day, respectively. The 
provincial OBB emission inventories are tables with 52288 rows and 26 columns. The 52288 rows stand for OBB 
emissions in different provinces from 2016 to 2020, and the columns are hourly OBB emissions for the related 
province.

Table 3 presents annual emissions of CO, NOx, SO2, NH3, VOCs, PM2.5, CO2, CH4, N2O from 2016 to 2020 
in mainland China. For how these estimates compare to other OBB emission datasets, please see the Technical 
Validation section. Figure 2 shows the monthly CO2 emissions in mainland China with the top 10 provinces noted 
from 2016 to 2020 and annual CO2 emissions in the 31 provinces were shown in Supplementary Table 3. Annual 
OBB emissions from 2016 to 2020 in mainland China decreased with fluctuations. The top 10 (out of 31 total) 
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provinces typically contributed more than 80% of the national OBB emissions in the peak months of February, 
March, and April, while in other months they only made up about 50% of China’s total OBB emissions. Particularly 
in Heilongjiang, OBB emissions from the top 10 provinces are the main areas contributing to the peaks.

Technical Validation
Spatial coverage. Using the Sichuan Xichang (Case 1, from March 30 to April 2, 2020) and Shandong Qingdao 
(Case 2, from April 23 to April 25, 2020) forest fires as examples, we exhibited the allocations of MODIS, VIIRS 
S-NPP and Himawari-8 AHI active fires to explore the differences in spatial coverage of the multiple active fires and 
purely MODIS active fires (Fig. 3a–d). There are 4 grids in Case 1 (Fig. 3a) and 4 grids in Case 2 (Fig. 3b) with OBB 
that were missed by MODIS active fires. The deficiencies are made up by VIIRS-SNPP and Himawari-8 AHI active 
fires, as indicated by the black frame. Given that multiple active fires have complete spatial coverage, it is possible that 
the fused fires employed in this study can capture more burned grids than the active fires typically used by MODIS.

At the national scale, as shown in Fig. 3e, the ratio of VIIRS S-NPP to MODIS-covered grids was 2.2~2.7 for 
both crop straw burning and forest fires due to the high spatial resolution of VIIRS S-NPP. Since the high tem-
poral resolution, Himawari-8 AHI covered grids were enhanced by around 5 times and 10 times for crop straw 
burning and forest fires, respectively, compared with MODIS. As a result, the average annual number of 2 km 
grids covered by fused OBB fires was 8.7 times higher than what was observed by MODIS, indicating that more 
OBB was covered by fused fires.

Temporal fluctuations. Hourly FRP from various satellite observations and OBB emissions during two typ-
ical OBB cases (same as Fig. 3) were shown in Fig. 4 to further illustrate the temporal changes of FRP during a fire 
event. Neither polar-orbiting satellites nor geostationary satellite FRP can continually capture the variations of 
forest fire activity. Hourly variations during the period were vividly portrayed by reconstructing the FRP variations 

Component 2016 2017 2018 2019 2020

CO 18.10 18.80 13.50 16.20 15.20

NOx 0.73 0.83 0.54 0.69 0.66

SO2 0.13 0.15 0.10 0.123 0.12

NH3 0.22 0.24 0.17 0.20 0.19

VOCs 3.43 3.35 2.53 2.90 2.74

PM2.5 2.54 2.80 1.88 2.35 2.23

CO2 357 380 266 326 306

CH4 1.11 1.19 0.83 1.02 0.96

N2O 0.04 0.04 0.03 0.03 0.03

Table 3. Annual OBB emissions in mainland China from 2016 to 2020 in Mt.

Fig. 2 Monthly CO2 emissions from OBB in mainland China from 2016 to 2020 with the top 10 provinces noted.

https://doi.org/10.1038/s41597-023-02541-0
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using the BD models and Weibull curves. In Case 1, CHOBE successfully recorded the news’ reported propaga-
tion of the open fires at night on April 1. The temporal alterations in Case 2 were likewise accurately captured by 
CHOBE, particularly for the resurgence on April 24 at noon. In Case 2, CHOBE also accurately captured the tem-
poral changes, especially for the resurgence at noon on April 24. The consistency between the temporal variations 
reflected by CHOBE and news reports illustrates its ability to capture the hourly changes in OBB emissions.

Uncertainties. Uncertainties of OBB emission estimates mainly derive from activity data and emission 
factors24,39. In this study, hourly fused FRE was used as the activity data to estimate hourly OBB emissions. 
Uncertainties in fused FRE mainly come from the observed FRP, BD calculation and the fused FRP variations. 
According to Freeborn et al., the variability of MODIS FRP was ±53.2% for a single active fire, but it can decrease to 
less than ± 5% when more than 50 active fires were aggregated40. Thus, we assumed the coefficient of variation (CV) 
observed FRP from multiple satellites was about 5% since only active fires with high confidence were employed, 
and MODIS and VIIRS active fires were both aggregated to 2 km grids. The comparison between observed BD and 
predicted BD based on fitting parameters of a and b revealed that the CV of BD was about 40%. Also, according to 
the gaps in observed FRP variations and predicted FRP variations, the CV of fused FRP variations was about 10%. 
It was assumed that these parameters used to quantify the hourly active data follow a normal distribution.

The uncertainties of the gridded daily FRE for each region were displayed in Supplementary Table 4 in 
accordance with the Monte Carlo approach. Uncertainties in gridded daily FRE ranged from −25% to 45% in 
most regions, whereases crop straw burning Region 4 has the largest uncertainties, ranging from −67% to 78%. 
The following factors contributed to the high uncertainty in crop straw burning Region 4: (1) its correlation 
coefficient (R2) of BD fitting was 0.7521, which is lower than in other regions. (2) FRP curve is determined by 
BD, FRP and fires continuity. The FRP curve of independent fires (i. e., no fires were observed in 1 hour before 
and after at the same grid) is drawn in accordance with BD, but the FRP between continuous fused fires is 
thought to be linear. As a result, FRP curve of independent fires typically has larger uncertainty. The proportion 
of independent fires in crop straw burning Region 4 was 75%, but proportions in other regions ranged from 43% 
to 69%, indicating that more FRP curves were classified as separate OBB event, with larger uncertainties.

As presented in Supplementary Table 5, the FRE-based crop straw burning and forest fire emission coeffi-
cients generated by the statistical model and coefficient conversion, respectively, were comparable to prior stud-
ies. the uncertainties of the FRE-based OBB emission coefficients applied in this study were difficult to measure 
due to the inability to ascertain the uncertainty of specific parameters, such as the uncertainties of regression 
models of regional fused FRE and historical emissions based on statistical data. The CVs of FRE-based crop 
straw burning and forest fire emission coefficients were thus obtained from Andreae41 and are shown in Table 4 

Fig. 3 Spatial distributions of MODIS, VIIRS S-NPP and Himwari-8 active fires during typical cases (a–d) and 
comparisons of covered 2 km-grids number of different active fires from 2016 to 2020 (e). Case 1: a & c, Xichang 
forest fires from March 30 to April 2, 2020 in Sichuan province. Case 2: b & d, Qingdao forest fires from April 23 
to April 25, 2020 in Shandong province. The true color images highlighted the burned area’s edge in red, the  
2 km-grid was in grey, and the grids with OBB that were missed by MODIS active fires were in black.
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under the presumption that 7 crop straw burning regions and 4 forest fire regions share the same CV of emission 
coefficients.

By applying the Monte Carlo method with 100,000 simulations, we quantified the uncertainties of the annual 
OBB emissions associated with activity data and emission coefficients. The normal distribution was assumed 
for both activity data and emission coefficients with the CVs mentioned above. Supplementary Table 6 displays 
OBB emission uncertainties with 95% confidence intervals for each region. Due to the large uncertainty in FRE, 
crop straw burning Region 4 experienced slightly larger uncertainty than in the other regions. The diversity 
in uncertainties of crop straw burning emission and forest fire were primarily responsible for the variances 
in FRE-based emission coefficients. The uncertainty range of annual OBB emissions in mainland China were 
−45%~45% for CO emissions, −44%~ 44% for NOx emissions, −64% ~ 65% for SO2 emissions, −53% ~ 53% 
for NH3 emissions, −75% ~ 76% for VOCs emissions, −56% ~ 56% for PM2.5 emissions, −10% ~ 11% for CO2 
emissions, −70% ~ 71% for CH4 emissions and −39% ~ 40% for N2O emissions.

Comparison with existing datasets. Mainland China’s annual, monthly and hourly (during a high emit-
ted period from 27 March to 3 April, 2020) OBB estimates in CHOBE were compared to existing global OBB 
emission datasets (Fig. 5) to validate the CHOBE datasets established in this study. Similar to Pan et al.39, we 
also discover significant gaps between several OBB emission datasets. Compared with GFEDv4.1 s (https://www.
globalfiredata.org/data.html)16, FINNv1.5 (https://www.acom.ucar.edu/Data/fire/)18 and GFASv1.2 (https://www.
ecmwf.int/en/forecasts/dataset/global-fire-assimilation-system)17, the annual OBB emissions in CHOBE are  
2~7 times higher, and the monthly emissions are 1~48 times higher. This is expected because these datasets, 
which all used MODIS observations, cannot observe some fire events due to the coarse resolution of 1 km and for 
active fires and 500 m for burned areas and the low monitor frequency of 4 times per day. Compared with FEER 
v1.0 (https://feer.gsfc.nasa.gov/data/emissions/)19, CHOBE emissions are lower by about 40%. This is because 
FEER applied the MODIS AOD constrained emission coefficients, which were greatly overestimated in China and 
about 10 times higher than the OBB emission coefficients used in this study19,30,42. Hence, ignoring the influence 
of emission factors, the activity data of the OBB emission constructed based on multiple active fires in CHOBE 
was effectively reduce the underestimation by only using MODIS observations.

Fig. 4 Hourly FRP from different satellite observations and OBB emissions estimated in this study during two 
typical cases as presented in Fig. 3.
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Component Crop straw burning Forest fires

CO 72% 44%

NOx 51% 59%

SO2 88% 68%

NH3 63% 71%

VOCs 105% 88%

PM2.5 54% 78%

CO2 16% 8%

CH4 104% 53%

N2O 43% 46%

Table 4. CVs of crop straw burning and forest fires emission coefficients.

Fig. 5 Comparisons with existing datasets of annual OBB CO (a) and CO2 (b) emissions, monthly OBB CO2 
(c) emissions and hourly CO2 (d) emissions during a high emitted period from 27 March to 3 April, 2020, 
in mainland China. The hourly GFEDv4.1 s emissions were calculated by taking the average of the 3-hourly 
emissions. The hourly emissions from FINNv1.5, GFASv1.2 and FEERv1.0 were obtained by dividing the daily 
emissions by 24 hours since they have a temporal resolution of one day.

https://doi.org/10.1038/s41597-023-02541-0
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The hourly variations of GFEDv4.1 are similar to CHOBE, but there is 1~3 hours difference between its peak 
hour and CHOBE because its diurnal cycle was obtained based on historical GOES observations in the western 
hemisphere rather than real-time detections16. In comparison to CHOBE, FINNv1.5 and GFASv1.2 failed to 
capture the emission peaks around 15:00, whereas hourly emissions from FEERv1.0 approximately the CHOBE 
peaks, but did not capture the troughs at night.

Spatial distributions of CHOBE and existing datasets were displayed in Fig. 6 using CO2 emissions in 2020 
as an illustration. All the datasets displayed comparable spatial patterns, with the northeast and south China 
being the main hot spots. CHOBE covered 2.35 × 104 grids for a spatial resolution of 0.1°, whereas FINNv1.5, 
GFASv1.2 and FEERv1.0 covered ~ 1.71 × 104 grids, indicating that CHOBE captured more burnings than exist-
ing datasets that relied solely on MODIS observations.

Usage Notes
CHOBE contains gridded emissions of 6 air pollutants (CO, NOx, SO2, NH3, VOCs, PM2.5) and 3 greenhouse gases 
(CO2, CH4, N2O) from OBB during 2016 to 2020 in mainland China with a temporal resolution of 1 hour and spa-
tial resolution of 2 km. CHOBE fills in the gap left by China’s lack of hourly OBB emission inventories when dealing 
with the considerable diurnal changes in the OBB. CHOBE can be used to investigate spatiotemporal variations 
and identify the driving forces behind OBB emissions during China’s 13th Five-Year Plan period, which included 
rigorous atmospheric control policies at the national, provincial, and city levels. By providing high-resolution OBB 
emission inputs, CHOBE is projected to increase modelling accuracy. CHOBE can also be applied to evaluate 
emission reductions and provide support for the formulation of precise OBB preventive and control strategies.

The hourly OBB emissions estimate in this study has three limitations: (1) Some minor fires that fell under 
the Himawari-8 AHI monitor restriction or occurred outside of the polar-orbiting satellite overpassing period 
were still missed. More satellite observations, such as VIIRS on board the National Oceanic and Atmospheric 
Administration-20 (NOAA-20) at the spatial resolution of 375 m and the Advanced Geosynchronous Radiation 
Imager (AGRI) onboard the Feng Yun-4A (FY4A) with a monitor frequency of 15 mins, can be fused to further 
improve the spatiotemporal representation of hourly OBB emissions. (2) Land-use was used to distinguish crop 
straw burning and forest fires, but crop straw burning and forest fires are easy to be confused as they are gen-
erally near to each other. Field investigations are recommended to ensure the accuracy of crop straw burning 
and forest fire identification. (3) Localized measurements of FRE-based crop straw burning and forest fire emis-
sion coefficients will be done in the future to reduce the uncertainties in OBB emission estimations since OBB 
emission coefficients varied in different regions.

Code availability
Sample codes for estimating gridded emissions from hourly FRE and regional OBB emission coefficients, named 
as “Code for emission estimation”, are available on the online platform figshare alongside the CHOBE datasets38.
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