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M4Raw: A multi-contrast, multi-
repetition, multi-channel MRI 
k-space dataset for low-field MRI 
research
Mengye Lyu  1 ✉, Lifeng Mei1, Shoujin Huang1, Sixing Liu  1, Yi Li1, Kexin Yang1, Yilong Liu  2, 
Yu Dong3, Linzheng Dong3 & Ed X. Wu4,5

Recently, low-field magnetic resonance imaging (MRI) has gained renewed interest to promote MRI 
accessibility and affordability worldwide. The presented M4Raw dataset aims to facilitate methodology 
development and reproducible research in this field. The dataset comprises multi-channel brain k-space 
data collected from 183 healthy volunteers using a 0.3 Tesla whole-body MRI system, and includes 
T1-weighted, T2-weighted, and fluid attenuated inversion recovery (FLAIR) images with in-plane 
resolution of ~1.2 mm and through-plane resolution of 5 mm. Importantly, each contrast contains 
multiple repetitions, which can be used individually or to form multi-repetition averaged images. After 
excluding motion-corrupted data, the partitioned training and validation subsets contain 1024 and  
240 volumes, respectively. To demonstrate the potential utility of this dataset, we trained deep learning 
models for image denoising and parallel imaging tasks and compared their performance with traditional 
reconstruction methods. This M4Raw dataset will be valuable for the development of advanced data-
driven methods specifically for low-field MRI. It can also serve as a benchmark dataset for general MRI 
reconstruction algorithms.

Background & Summary
Magnetic resonance imaging (MRI) is a powerful medical imaging technology for clinical diagnosis of various 
diseases. However, MRI accessibility is low and highly uneven around the world, with the majority of MRI 
scanners concentrated in high-income countries, leaving approximately 70% of the world’s population with 
little or no access to MRI1–6. Low-field MRI under 1 Telsa (T) has gained renewed interest6–14 as a potential 
solution to this problem due to its significantly lower cost for purchase, installation, and maintenance com-
pared to high-field MRI systems. In addition to the economic considerations, low-field MRI has a number 
of intrinsic advantages compared to high-field MRI, including improved patient comfort, low sensitivity to 
metallic implants, fewer image susceptibility artifacts, and extremely low radiofrequency specific absorption rate 
(SAR)1–6. However, despite improvements in MRI hardware since the 1980s, the key limiting factor at low field 
remains the signal-to-noise ratio (SNR) per unit time. This often results in long scan times and compromised 
image quality, hindering the adoption of low-field MRI in areas that require fast imaging and high SNR.

Recently, data-driven methods, particularly deep learning-based approaches, have emerged as a poten-
tial solution to the SNR problem at low field. In the field of computer vision, data-driven methods have rap-
idly evolved to outperform traditional methods by a wide margin in many low-level tasks, such as denoising, 
deblurring, and super-resolution15–17. These methods have been deployed in digital cameras and mobile phones 
for daily use with robust performance. Similar trends have been seen in the field of MRI reconstruction18–20.  
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For example, variational neural network (VarNet) based methods21 have been proposed and evaluated in a 
number of MRI applications21–24, showing superior performance in accelerating scans and boosting SNR.

Training data are critical for the development of data-driven methods. In comparison to natural images, MRI 
data are rare, and most public MRI datasets25–28 only include magnitude images, which lack important phase 
and multi-channel information necessary for realistic MRI reconstruction tasks29. Furthermore, the few existing 
multi-channel k-space datasets30–33 were all acquired using high-field MRI systems, which have different signal 
and noise characteristics from low-field systems. The lack of publicly available low-field MRI data has become a 
barrier for researchers to enter this field or reproduce different approaches of previous studies.

To address this gap, we present a new multi-channel k-space dataset acquired using low-field MRI. It con-
tains brain data from 183 subjects, each with 18 axial slices and 3 contrasts: T1-weighted (T1w), T2-weighted 
(T2w), and fluid attenuated inversion recovery (FLAIR). Importantly, each contrast includes two or three repeti-
tions, resulting in more than 1,000 volumes in total that can be used in various ways by the MRI community. We 
name this multi-contrast, multi-repetition, multi-channel MRI raw k-space dataset as M4Raw for low-field MRI 
research. In this paper, we describe the method for producing this dataset and demonstrate its potential uses in 
denoising and parallel imaging reconstruction.

Methods
The general workflow to produce the M4Raw dataset is illustrated in Fig. 1. Multi-contrast, multi-repetition, 
multi-channel MRI k-space data were collected from 183 healthy volunteers using a 0.3 T MRI system with a 
four-channel head coil. Single-repetition images were generated by applying the inverse Fourier transform to 
the k-space data and combining the coil signals using the root sum of squares. Multi-repetition averaged images 
were then obtained by calculating the magnitude average of individual repetitions for each contrast. The final 
dataset comprises a training subset of 128 subjects, a validation subset of 30 subjects, and a motion-corrupted 
subset of 25 subjects.

Imaging protocol. A total of 183 healthy volunteers were enrolled in the study with written informed con-
sent, following approval by the Institutional Review Board of Shenzhen Technology University (reference num-
ber: SZTULL012021005). All participants were cognizant of the nature of the study, and provided consent for 
their materials to be made publicly available in anonymized form as part of the written consent process. The 
majority of the participants were college students (aged 18 to 32, mean = 20.1, standard deviation (std) = 1.5; 

Fig. 1 General workflow to produce the M4Raw dataset. Multi-contrast, multi-repetition, multi-slice, multi-
channel k-space data were acquired from 183 healthy volunteers using a 0.3 T MRI system equipped with a four-
channel head coil. The final dataset includes a training subset of 128 subjects, a validation subset of 30 subjects, 
and a motion-corrupted subset of 25 subjects. Phase encoding (PE) and frequency encoding (FE) directions are 
marked.
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116 males, 67 females). Axial brain MRI data were obtained from each subject using a clinical 0.3 T scanner 
(Oper-0.3, Ningbo Xingaoyi) equipped with a four-channel head coil. This scanner is a classical open type per-
manent magnet-based whole-body system. Three common sequences were used: T1w, T2w, and FLAIR, each 
acquiring 18 slices with a thickness of 5 mm and an in-plane resolution of 0.94 × 1.23 mm2. To facilitate flexible 
research applications, T1w and T2w data were acquired with three individual repetitions and FLAIR with two 
repetitions. The decision to only acquire two repetitions for FLAIR was made due to its long scan time per repe-
tition. Acquiring more repetitions would result in more than 6.5 min total scan time and increase vulnerability to 
motion artifacts. T1w scans were performed first, followed by FLAIR scans, and lastly T2w scans, all with identi-
cal multi-slice geometry planning. The complete imaging parameters are summarized in Table 1.

Data processing. The k-space data from individual repetitions were exported from the scanner console 
without averaging. The corresponding raw images were in scanner coordinate space and may be off-centered due 
to patient positioning. To correct this, an off-center distance was estimated along the left-right direction for each 
subject using the vendor DICOM images, and the k-space data were multiplied by a corresponding linear phase 
modulation. The k-space matrices were then converted to Hierarchical Data Format Version 5 (H5) format34, with 
imaging parameters stored in the H5 file header in an ISMRMRD-compatible format35. The items in the DICOM 
headers were selectively transferred to the H5 headers, ensuring subject anonymization in accordance with the 
DICOM Basic Application Level Confidentiality Profile. We applied Retain Device Identity, UIDs, Longitudinal 
Temporal Information, and Institution Identity Options while removing all items related to subject identity, such 
as subject name, personal ID, and date of birth. The k-space dimensions were arranged in the same manner as 
the fastMRI dataset30, allowing existing codes for fastMRI to be run on M4Raw with minimal modification. For 
each repetition, the reference images were formed by 2D inverse Fourier transform of the k-space data and taking 
root sum of squares of the coil channels. The reference images were also stored in the H5 files as potential training 
targets of parallel imaging reconstruction.

It should be noted that, similar to other MRI k-space datasets30,31,33, in order to preserve the raw data 
characteristics, the images were not further defaced. However, unlike 3D isotropic MRI data25–27,31, our 2D 
multi-slice data have relatively thick slices (5 mm thickness + 1 mm gap) covering only the upper half of the head 
(FOVz = 108 mm), which renders potential facial identification through 3D reconstruction highly improbable.

Subset partition. The dataset was divided into three subsets: training, validation, and motion-corrupted. 
The motion-corrupted subset was first extracted by identifying intra-scan and inter-scan motion. First, all data 
were visually inspected for severe intra-scan motion and apparent inter-scan motion. Then, the remaining data 
were examined quantitatively for inter-scan motion again. 3D translational motion model was employed with 
the parameters estimated using the Python scikit-image package36. Inter-scan motion was further divided into 
inter-repetition motion (between different repetitions of the same contrast), and inter-contrast motion (between 
the multi-repetition averaged images of different contrasts). Inter-repetition motion was considered severe if the 
translation was more than 1.25 pixels in-plane or 0.2 slice-thicknesses through-plane beyond the global means. 
Inter-contrast motion was considered severe if the translation was more than 5 pixels in-plane or 1 slice-thickness 
through-plane beyond the global means. As a result, 26 subjects were placed in the motion-corrupted subset 
because at least one of their scans contained severe motion following the abovementioned criterion. Last, the 
remaining data were randomly split into a training subset of 128 subjects (1024 volumes) and a validation subset 
of 30 subjects (240 volumes).

Note that in the above process, we only estimated the motion without performing actual correction for sev-
eral reasons. Firstly, as shown in Table 2, the motion in the training and validation data was minor. Secondly, not 
all studies require motion correction; for example, inter-repetition motion has little impact on reconstruction of 
a single repetition, and inter-contrast motion should not interfere with most reconstruction algorithms unless 
multi-contrast strategies are employed24,37–39. Lastly, the optimal motion correction approach can vary depend-
ing on the specific application, including the choice of motion models and interpolation methods, which the 
M4Raw users may readily implement based on their own needs.

Data Records
The multi-channel k-space and single-repetition images from the 183 participants, including T1-weighted, 
T2-weighted, and FLAIR contrasts, have been made publicly available through the Zenodo repository40. The 
training, validation, and motion-corrupted subsets are separately compressed into three zip files, containing 
1024, 240, and 200 H5 files, respectively. Among the 200 files in the motion-corrupted subset, 64 files are placed 
in the “inter-scan_motion” sub-directory and 136 files in the “intra-scan_motion” sub-directory.

Sequence type Matrix size TR/TE
Scan time per 
repetition

No. of 
repetitions

Echo train 
length

Echo 
spacing Common parameters

T1w Spin echo 256 × 195 500/18.4 ms 1 min 38 s 3 1 — Field-of-view: 240 × 240 mm2

No. of slices: 18
Slice thickness/gap: 5/1 mm
Sampling bandwidth: 31.25 KHz
Phase encoding in left-right 
direction

T2w Fast spin echo 256 × 195 5500/128 ms 1 min 12 s 3 15 16.0 ms

FLAIR Inversion recovery 
fast spin echo 256 × 198 7500/98 ms; 

TI = 1655 ms 2 min 15 s 2 11 16.3 ms

Table 1. MRI sequence parameters for data acquisition.
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All the H5 files are named in the format of “study-id_contrast_repetition-id.h5” (e.g., “2022061003_
FLAIR01.h5”). In each file, the imaging parameters, multi-channel k-space, and the single-repetition images can 
be accessed via the dictionary keys of “ismrmrd_header”, “kspace”, and “reconstruction_rss”, respectively. The 
k-space dimensions are arranged in the order of slice, coil channel, frequency encoding, and phase encoding, 
following the convention of the fastMRI dataset30.

Technical Validation
M4Raw dataset quality assessment. The quality of the data in the training and validation subsets was 
evaluated with regard to the image SNR, head motion, and coil sensitivity quality.

The SNR of both the single-repetition images and the multi-repetition averaged images were meas-
ured by calculating the mean signal divided by the standard deviation of noise. As shown in Fig. 2, a signal 
region-of-interest (ROI) of size 100 × 100 was selected at the center of each image, while four noise ROIs of size 
30 × 30 were selected at the corners. The resulting SNR distribution for each contrast is also plotted in Fig. 2. 
Overall, the SNRs of single-repetition images were 14.97 ± 0.94 for T1w, 12.32 ± 0.60 for T2w, and 14.73 ± 0.81 
for FLAIR; the SNRs of multi-repetition averaged images were 24.39 ± 1.49 for T1w, 20.10 ± 0.97 for T2w, and 
20.20 ± 1.06 for FLAIR. The ratios between the SNRs of single-repetition images and multi-repetition averaged 
images were 1.63 ± 0.02 for T1w, 1.63 ± 0.01 for T2w, and 1.37 ± 0.01 for FLAIR, which are close to their theo-
retical values, i.e., the square root of the number of repetitions.

The inter-scan head motion in the training and validation data was evaluated by 3D image translation estima-
tion using the scikit-image package36. The results, presented in Table 2, indicated that the inter-repetition motion 
was minor, with standard deviation less than 0.3 pixels in-plane and 0.05 slice-thicknesses through-plane. The 
inter-contrast motion was slightly larger, yet still small, with standard deviation less than 0.8 pixels in-plane 
and 0.2 slice-thicknesses through-plane. All estimates had a near-zero mean, except for those in the frequency 
encoding direction. This was expected because the main field drift commonly observed in low-field systems with 
permanent magnets3 can cause slight shifting of the image in this direction over time.

Direction

Inter-repetition motion Inter-contrast motion

T1w T2w FLAIR T1w-T2w T1w-FLAIR FLAIR-T2w

Slice encoding (Superior-inferior) −0.01 ± 0.03 0.00 ± 0.02 −0.02 ± 0.04 −0.08 ± 0.20 −0.09 ± 0.16 0.01 ± 0.09

Frequency encoding (Anterior-posterior) −0.39 ± 0.26 −0.31 ± 0.18 −0.31 ± 0.17 −1.50 ± 0.66 −0.83 ± 0.40 −0.64 ± 0.30

Phase encoding (Left-right) 0.01 ± 0.27 −0.01 ± 0.17 0.04 ± 0.21 0.14 ± 0.77 0.08 ± 0.61 0.04 ± 0.35

Table 2. Inter-scan head motion estimation (mean ± std, in pixels).

Fig. 2 Signal-to-noise ratio (SNR) analysis of the training and validation data. (a) Representative image and 
SNR distribution of the single-repetition images. (b) Representative image and SNR distribution of multi-
repetition averaged images. The signal and noise regions-of-interest (ROI) used for SNR calculation are 
indicated with blue and orange boxes, respectively.
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The coil sensitivity quality was quantitatively evaluated using the g-factors41, which are the pixel-wise noise 
amplification ratios in traditional SENSE reconstruction. The coil sensitivity maps were estimated using the 
ESPIRiT42 method by the Berkeley Advanced Reconstruction Toolbox (BART) toolbox (https://mrirecon.
github.io/bart) and the g-factor maps were subsequently derived using the pygrappa package (https://github.
com/mckib2/pygrappa). Figure 3 illustrates typical coil channel images, coil sensitivity maps, and g-factor maps 
at acceleration factor (R) = 2 for upper, middle, and lower slices. Figure 4 presents a statistical analysis of the 
99th percentile g-factor values for different slices, which serves as a measure of maximum noise amplification. 
Overall, the 99th percentile g-factors had a global mean ± std of 1.21 ± 0.29 at R = 2 and 1.78 ± 0.50 at R = 3, 
while the slice-wise mean values ranged from 1.07 to 1.67 at R = 2 and from 1.53 to 2.28 at R = 3. The results 
demonstrated the feasibility of applying parallel imaging, but also indicated that traditional reconstruction 
methods41,43 might be seriously challenged at high acceleration factors.

Demonstration of M4Raw dataset for parallel imaging reconstruction. To demonstrate the utility 
of parallel imaging on the M4Raw dataset, an end-to-end variational network (VarNet) model22 was trained using 
the code from the fastMRI repository. Cartesian undersampling was retrospectively applied in the phase encoding 
direction at acceleration factors (R) = 2 and 3, while the central 256 × 30 k-space was left fully sampled for coil 
sensitivity calibration. The Adam optimizer was used with a learning rate of 1 × 10−3 for training over 50 epochs. 
The obtained model was evaluated on the validation subset and compared with the classical GRAPPA algorithm43 
in terms of peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM). The results, shown in Fig. 5, 
demonstrated that the VarNet method exhibited superior PSNR performance and produced high-quality images 
even at R = 3, whereas the noise amplification problem in GRAPPA was too severe to provide usable images.

Demonstration of M4Raw dataset for denoising reconstruction. For the demonstration of image 
denoising, a simple U-Net model44 and a state-of-the-art natural image restoration model NAFNet45 were trained 
on the M4Raw dataset. During training, the single repetition image was used as input, and the multi-repetition 
averaged image was used as the label. Both models were trained with Adam optimizer, and a learning rate of 
1 × 10−4 was used for 50 training epochs before reduced to 1 × 10−5 for another 10 epochs. The trained models 
were then compared with the classical BM3D algorithm46, and the sigma parameter for BM3D was set to 0.025 
according to the noise estimation. PSNR/SSIM values were computed for quantitative evaluation. As shown in 
Fig. 6, both data-driven methods outperformed the traditional BM3D method in terms of PSNR and SSIM values, 
and they offered visually better images with less blurring than the BM3D results.

Fig. 3 Representative images of individual coil channels, coil sensitivity maps, and the g-factor maps at 
acceleration factor (R) = 2.
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Usage Notes
The M4Raw dataset enables development of various data-driven methods for low-field MRI reconstruction. 
It can also serve as a benchmark dataset for comparing different methods specific to low-field MRI. The data-
set encompasses characteristics of low-field MRI data, while also possessing similarities to existing high-field 
datasets30–33. As such, it can be used as a general test dataset for a wide range of MRI reconstruction algorithms, 
including those originally proposed for high-field MRI. Apart from parallel imaging and denoising, potential 
research applications for this dataset include super-resolution, motion correction, and image style transfer from 
low-field to high-field. Additionally, the dataset’s inclusion of multiple contrasts allows for joint multi-contrast 
image reconstruction to further advance image quality24,37–39.

Fig. 4 The 99th percentile g-factors on different slices as a measure of the coil sensitivity quality. The 99th 
percentile g-factors had a global mean ± std of 1.21 ± 0.29 at R = 2 and 1.78 ± 0.50 at R = 3, and the slice-wise 
mean values ranged from 1.07 to 1.67 at R = 2 and from 1.53 to 2.28 at R = 3. The high g-factors at R = 3 make 
it challenging for traditional parallel imaging methods to deliver useable images, yet data-driven methods may 
remain robust as illustrated in Fig. 5.

Fig. 5 Results of the pilot M4Raw dataset demonstration for data-driven parallel imaging reconstruction. The 
mean PSNR and SSIM values were calculated for each contrast on the validation subset and labeled on top of the 
representative images. The trained VarNet model substantially outperformed the traditional GRAPPA method.
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For simplicity, researchers may opt to exclude the motion-corrupted subset from model training and evalu-
ation. However, since it represents a common real-world MRI data imperfection, this subset can be valuable for 
developing motion correction techniques or motion-resistant reconstruction algorithms. It should be noted that 
not all data in this subset exhibit significant motion; if any scan from a subject was deemed motion-corrupted, 
all data related to that subject would be placed in this subset.

As can be observed from Fig. 3, the coil sensitivity exhibits large variations along the slice direction. Thus, 
another potential research application of this dataset is simultaneous multi-slice (SMS) reconstruction47.  
The k-space data can be multiplied by the CAIPIRINHA phase48 and summed along the slice direction to 
simulate SMS acquisition. SMS acceleration can effectively reduce the minimal TR and achieve higher SNR than 
in-plane acceleration. This technique is particularly suitable for low-field MRI without the SAR problem faced 
at high field1.

It should be noted that all M4Raw data were acquired using one MRI system, while other low-field systems 
may have different designs of magnets and coils1–3. Expanding the dataset to include data from a variety of 
low-field systems as well as paired data from high-field systems is an area of ongoing work. We welcome any 
collaborations to expand the dataset’s scope.

code availability
To facilitate users of this dataset, we have released the following Github repository: https://github.com/mylyu/
M4Raw. The repository contains Python examples for data reading and deep learning model training, and the 
trained model weights to reproduce the results in Figs. 2–6.
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