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Evolving collaboration, 
dependencies, and use in the Rust 
Open Source Software ecosystem
William Schueller   1,7, Johannes Wachs   1,2,7, Vito D. P. Servedio1, Stefan Thurner1,3,4 ✉  
& Vittorio Loreto   1,5,6

Open Source Software (OSS) is widely spread in industry, research, and government. OSS represents 
an effective development model because it harnesses the decentralized efforts of many developers 
in a way that scales. As OSS developers work independently on interdependent modules, they 
create a larger cohesive whole in the form of an ecosystem, leaving traces of their contributions 
and collaborations. Data harvested from these traces enable the study of large-scale decentralized 
collaborative work. We present curated data on the activity of tens of thousands of developers in the 
Rust ecosystem and the evolving dependencies between their libraries. The data covers eight years of 
developer contributions to Rust libraries and can be used to reconstruct the ecosystem’s development 
history, such as growing developer collaboration networks or dependency networks. These are 
complemented by data on downloads and popularity, tracking dynamics of use, visibility, and success 
over time. Altogether the data give a comprehensive view of several dimensions of the ecosystem.

Background & Summary
Open Source Software (OSS) has recently been described as the “infrastructure” of the digital society1. OSS is 
an excellent example of open collaboration among many individuals that has a significant impact on the econ-
omy2–5. Within specific OSS ecosystems - collections of software programs or libraries are in many cases, but 
not always delineated by the use of a particular programming language like Rust, Python, or PHP - developers 
contribute software that depends on software already in the ecosystem, often created by strangers. For instance, 
a library that generates data from probability distributions may use a random number generator from another 
library rather than writing a new one. The outsourcing of core functions leads to a rich structure of techni-
cal dependencies, often represented as a network6. These libraries are usually hosted on collaborative coding  
platforms like GitHub or GitLab.

The nature of OSS contributions is such that the traces of activity of individuals are observable, i.e., what they 
contributed to which libraries and when. The cumulative efforts of thousands of developers can reveal a great 
deal about the nature of collaborative projects and work7. Information on the use, visibility, and popular success 
of individual libraries can be tracked over time8, along with the co-evolution of technical dependencies and 
social collaboration9. Such data can give insight into the dynamics of massive and decentralized collaborations6 
and how these digital ecosystems evolve.

Here, we present a comprehensive dataset on one such ecosystem built around the Rust programming language. 
Rust, a relatively young language, has recently seen a sharp increase in popularity. Besides its significant connec-
tions with Mozilla10, it is, as of December 2021, the second approved language of the Linux kernel besides C. For 
several years now, it has been voted the “most loved” language in the Stack Overflow Developer Survey. We have 
collected and curated temporal data on the technical dependencies, developer contributions, and the use and suc-
cess of individual libraries. Specifically, we can observe when a developer made an elemental contribution of code 
to a specific library, what other libraries that library depends on, and how widely used and popular the library is. 
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We record over five million distinct contributions of over 72 thousand developers, contributing to over 74 thousand 
libraries over eight years.

Our data processing pipeline, available as open-source software, combines data from Cargo (the Rust eco-
system library manager) and the code hosting platforms GitHub and GitLab. It considers and handles multiple 
issues common to the study of collaborative software development data11: contributor disambiguation12,13, bot 
detection14, and the identification of nested projects and merged work. The result is a database tracking the  
evolution of a large, interconnected software ecosystem at a fine scale.

In contrast to other data sources on collaborative software development, our dataset contains more accurate 
and complete data for the Rust software ecosystem. Focusing on Rust allows us to integrate developer contribu-
tions with data on software dependencies and usage. In this way, our data is richer and more focused than what 
can be found in more extensive databases such as GHTorrent15, GHArchive, Software Heritage16, or World of 
Code17. Moreover, as we highlight in the Technical Validation section, we achieve a broader coverage by focus-
ing on the Rust ecosystem: 15% of the packages in our dataset are not in the GHTorrent database. Our dataset 
also requires significantly less storage space than the sources mentioned above and can be directly analysed by 
researchers with minimal computing infrastructure requirements. At the same time, Rust is a large ecosystem 
that has evolved in a decentralized manner with contributions from thousands of developers hosted on multiple 
platforms, differentiating it from data sourced from single projects like the Linux Kernel or Apache projects18.

We plan to update the dataset annually provided that the primary upstream sources (crates.io, GitHub & 
GitLab) remain stable. Researchers can also use our pipeline to reconstruct the dataset, a process that requires 
some data storage space (around 300 GB, though this volume will likely increase over time as the dataset is 
updated) and several days to query the data sources and process the results. Our code can also be adapted to col-
lect data from other ecosystems, such as the Julia programming language’s ecosystem. However, we note that not 
all ecosystems offer the same scope of data as Rust. For example: Rust is relatively young compared to Python, 
Ruby, or Javascript - as a result a much larger share of the Rust ecosystem’s history is accessible on GitHub. The 
Rust ecosystem is also relatively small: estimates of the NPM (Node) ecosystem’s size suggest its metadata alone 
are greater than 100 GB, while the repos themselves would take up multiple terabytes as described here: https://
socket.dev/blog/inside-node-modules.

We proceed as follows: first, we describe our data collection and wrangling process and the resulting data-
base. We compare our data coverage against GHTorrent, a widely used database of OSS contributions, finding 
that our data is more complete. We then outline usage notes for researchers interested in topics such as online 
cooperation7,19 and collaborative innovation20, success21, and supply chain networks22–24 in software. Our data 
can easily be represented as, for example, dynamic networks of collaborating developers, time series of usage 
statistics, growing networks of interdependent libraries, or combinations thereof.

Methods
We describe the data sources, and how we combine and curate data from various sources to create a comprehensive 
overview of the Rust ecosystem. We provide a visual overview of the established data processing pipeline in Fig. 1.

Data sources and collection.  Cargo: Libraries and dependencies.  Our first source of data is the Cargo 
package (which are called crates in the Rust community) registry. Registries, often called package managers, play 
an important role in nearly all OSS ecosystems. They allow users to download and update different libraries while 
resolving dependencies and managing conflicts. Other examples of registries around different programming lan-
guages include PyPI for Python, CRAN for R, Rubygems for Ruby, and NPM for Node. We use Cargo as a source 
of technical dependencies and downloads for Rust. These are available as part of a daily dump from crates.io, 
accessible via: https://crates.io/data-access.

The data can be directly imported in a PostgreSQL database, and contains package names and creation dates, 
their versions, a list of dependencies for each version with the semantic versioning (semver) syntax associated 
to them, and the daily downloads per version of each package. For a relevant discussion of the importance of 
semantic versioning in OSS ecosystems, see recent work by Decan and Mens25. Packages are also often associated 
to a repository URL and a documentation URL, but those are not always provided and depend on maintainer 
input.

Code repositories: github, gitlab and other git platforms.  To understand who contributes to which library, we 
turn to the social coding platforms on which these packages are hosted. In the case of Rust, nearly all packages 
in Cargo are hosted on either GitHub or GitLab. Specifically, 74,829 packages had links to either platform. Of 
these links, 51,657 were unique and 46,895 of them could be cloned from either GitHub (44,893), GitLab (1,498) 
or other git platforms (504). The inclusion of data from GitLab represents an important extension over the most 
widely used databases in OSS research, GHTorrent and GH Archive, which only use data from GitHub. Both of 
these platforms use Git version control, making projects hosted on either alternative comparable.

The elemental code contributions to OSS projects using the Git version control system are called commits 
and are associated to email addresses belonging to the author and contributor (in practice these are usually the 
same). GitHub and GitLab both host Git projects (called repositories or repos, for short), which we downloaded 
and used to extract information about activity and collaboration. The mapping between repos and the libraries 
hosted on Cargo is not one-to-one and requires additional processing, described below. The Git version control 
history of a project allows us to examine in detail the contribution histories of all developers working on a pro-
ject. Indeed, previous work has shown how this highly granular data can be exploited to study collaboration and 
interactions among developers26,27. To do so, we “clone” (download) each repo locally. We also make use of the 
GitHub and GitLab GraphQL APIs to disambiguate contributors.
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Measuring use, visibility, and success: downloads and stars.  We quantify two dimensions of the use of libraries: 
the number of times they are downloaded and the number of times they received positive social feedback (stars) 
on GitHub. The two metrics highlight different aspects of use. Downloads, sourced directly from Cargo, present 
a more technical measurement of use. GitHub’s stars are more suggestive of visibility. For example, a highly 
technical library that provides background functions may be downloaded many times but have relatively few 
stars. The social aspect of GitHub and platforms is known to play an important role in collaborative software 
engineering28,29. GitHub stars and other forms of social feedback including followers and sponsors matter as 
information signals in the software development community for both libraries and contributors30,31, for exam-
ple on the labour market32. Of course, library owners can and do seek to raise GitHub stars for their libraries 
by promoting them30; stars are by no means an objective measure of library popularity. That said, we collected 
time-stamped GitHub stars and forks, a measure of code reuse, for repos directly from the GitHub GraphQL 
API. For GitHub users, we also collected the network of followers and sponsors each user has using the same 
API. GitHub implemented sponsorships for developers in 201933, enabling developers to crowdfund from users 
who appreciate their work directly on their GitHub pages.

Data processing.  Several additional curation steps need to be taken to insure the data collected is useful for 
the purposes of research into digital collaboration. We describe three specific steps here.

Repositories, packages, forks.  One would easily assume individual packages of the Rust ecosystem tracked by 
Cargo correspond one-to-one with repositories on GitHub or GitLab, and this is generally the case. However, 
some repositories host several packages. For example modules or plugins that extend a core package are often 
hosted together in the same repo, but are distinguished in Cargo. This presents a data challenge: dependencies 
are recorded between packages, while contributions are recorded at the repo level.

For each package listed in the registry, one or several URLs are typically provided. They correspond to a link 
to the code and/or the documentation. Here, we take the URL corresponding to the code, and if empty, coalesce 
it with the documentation URL. We parse the individual URLs by recognizing the prefixes synonyms of github.
com and GitLab.com and the pattern github.com/<owner>/<name> corresponding to a repository.

We also try to identify other git platforms by matching the pattern <platform_root_url>/<owner>/ 
<name>, and using git ls-remote on a maximum of 5 repos per candidate to check if it is indeed a git 
platform.

Repositories are sometimes renamed, and both URLs can be present in distinct packages. The old URL typ-
ically redirects to the new one. To resolve this and be able to merge repositories under one entity, we use the 

Fig. 1  Data processing pipeline. We collect data from Cargo, the package registry of the Rust programming 
language, and complement it with data from the code hosting platforms GitHub and GitLab. The processed 
result integrates information on package dependencies, use (downloads and stars), and authors.
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<owner>/<name> returned by the GraphQL API (of both GitLab and GitHub) when querying about the 
repository, for example when collecting information about forks.

After downloading the repositories (also called cloning), we analyse the commit data and retrieve commit 
hash, author and contributor emails and names (usually the same), and commit parents. We also compute the 
number of lines added and deleted for each commit. We analyse all available branches, and the unique hash 
ensures that we do not count commits twice per repository. However, commits can appear in several reposito-
ries, when one repository is a fork of another. We keep attribution of commits to each repository where they 
appear, but we also attribute each commit to a main repository, supposed to be its origin. For this, we retrieve 
the information about forks from the GitHub or GitLab GraphQL API, and take as origin the highest reposi-
tory in the fork tree containing the commit. When this method is unsuccessful (e.g., undeclared forks, or forks 
between different Git platforms), we take the repository having the oldest package, using its creation date from 
the package manager.

Collaborative coding events.  For repos hosted on GitHub and GitLab, we also collect data on collaboration 
events including issues and pull requests. Developers can open issues, highlighting bugs and problems with a 
code base. Maintainers can respond in comments and close issues, indicating whether they have been addressed. 
Pull requests are how non-core developers contribute code to a project - these can be commented upon and 
merged into a project, or rejected. These events, comments on them, their labels, status, and emoji reactions to 
them are all recorded in our data with time stamps. Similar data (comments and emoji reactions) for commits 
on GitHub are provided as well. Seeking to preserve developer privacy, we do not provide the texts associated 
to these events.

Dependencies.  When analysing the dependencies between packages sourced from Cargo, and aggregating the 
network to dependencies between repositories, we noted the presence of cycles. In this context a cycle represents 
a pattern like: Package A depends on Package B, Package B depends on Package C, and Package C depends on 
Package A. Though there were only few of such examples, we decided to prune dependencies to remove such 
cycles for two reasons. The first is that they represent a logical inconsistency in what a dependency means. 
Second, without cycles, the resulting dependency network is a directed acyclic graph (DAG). DAGs are them-
selves interesting data structures appearing in a variety of data science contexts34. Given the small number of 
packages involved in cycles, we manually inspected them. Dependency cycles in package space correspond 
mainly to unnecessary dependency links or even fake packages for the sake of testing dependency declarations. 
Repository space cycles are more complex to prune. We adopted the heuristic to remove the dependencies (in 
both repo and package space) in cycles of length 2 by pruning the dependency of the oldest node to the newest 
(by creation date or earliest date of the repo’s corresponding packages), and naturally removing dependency 
cycles of length 1. The remaining cycles were inspected manually, and the cycles were broken by removing the 
dependency links where it made more sense, in most cases from a repository having one of the highest down-
load counts to one having one of the lowest. One remaining repository, although corresponding to numerous 
downloads, has been pruned from all dependencies to it because of the high number of cycles of the dependency 
network involving it. We included these pruned dependencies in the dataset for the sake of completeness, but we 
flagged them for easy removal, or for letting the possibility to investigate other link removal policies. We guar-
antee absence of cycles for the state of the dependency network at the end of the dataset (2022-09-07) and at the 
end of the preceding year (2021-12-31) in both spaces, but not at any arbitrary timestamp.

Merging of developer identities.  There are many potential ways to disambiguate the identities of contributors12,13, 
each presenting tradeoffs. In general, Git commits are signed by an email address, not a platform-specific user-
name. Developers often commit code from different computers or environments with different email addresses 
in their configuration files, and this can result in a significant disambiguation problem. Rather than attempting 
to infer which email addresses potentially refer to the same person, we query the GitHub API for the GitHub 
account linked to each commit35. While this ignores the potential that developers use multiple accounts, we 
argue that it makes a larger amount of highly justifiable merges among commit author identities than an email 
address based approach. Email address-based author identity disambiguation would scale better in larger sys-
tems at the cost of accuracy.

For each email address, we carry out this process for the most recent commit registered for that email, and if 
this fails to return an account, we try again with a randomly sampled commit among all those corresponding to 
this email. After doing the same for GitLab, we also merge matching GitHub and GitLab logins (finding 87 such 
cases). An additional step is to parse the emails and spot those obviously belonging to GitHub, following the pat-
terns <login>@users.noreply.github.com or <randomint>+<login>@users.noreply.
github.com.

Bot accounts.  Bots play an important role in modern software development36,37, but need to be handled with 
care in any study of software systems, as they can make orders of magnitude more contributions than any human 
developer. Pooling them and their activity with that of human developers would skew any analysis of social 
cooperation and collaboration11,14. While bots have interesting effects on project evolution36, we chose to detect 
and mark bots and more generally invalid accounts in our dataset with a view to excluding them as we are 
primarily interested in the patterns of contributions of developers. To identify bots, we used a two-step filter-
ing process. First, we extracted all bots on a curated list used as ground truth for bot detection in the software 
engineering community14. We then filtered remaining GitHub accounts with the substrings “*[bot]”, “*-bot”, 
“*-bors”, “bors-*”, “dependabot-*” in their usernames, and finally inspecting manually each individual account 
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with pattern “*bot*”. After filtering out bot accounts labelled this way, a manual inspection of the 100 most 
active remaining accounts was conducted, as well as of all accounts containing the substring “bot”. The manual 
inspection took the following steps: checking the GitHub webpage of a user for a clear name, looking at the 
description, looking at the commit/PR comments. The 100 most active accounts by number of commits across 
the full timespan of the dataset were considered, as well the 100 most active accounts in the year 2020.

For users that could not be associated to a GitHub account, their emails are filtered when the last part of their 
prefix (separated by., − or +) is equal to “bot”, “ghbot”, “bors”, “travis” or “bot”. A few remaining email strings 
without “@“ were discarded, like “localhost”, “N/A” or empty string. Manual inspection of the most active 100 
emails without a GitHub account revealed a few more bots. The list of manually discarded bots is available in the 
file botlist.csv. Our dataset includes the bots among the users, flagged with a Boolean “is_bot” attribute 
to enable filtering.

Data Records
We host our data on Figshare38 and the code used to collect and process the data from our sources on GitHub 
(https://github.com/wschuell/repo_datasets). Both platforms track the history of the data and code, allowing 
researchers to use any version they prefer as we continue to update and extend both. We share data in several 
formats, noting that in no format does the data exceed 6 GB when compressed.

Before we describe the data, we discuss data pseudonymisation. To preserve developer privacy, we provide 
data that is scrubbed of information that can directly be used to identify individuals. We do so in the follow-
ing way: we discard name attributes and hash (via MD5 with a random salt) email addresses and GitHub/
GitLab logins. Researchers interested in studying social or demographic characteristics of developers, such as 
gender39,40, geography41–43, or both44, could adapt our approach to data collection and analyse these attributes. 
However, they should consider potential ethical issues that arise when associating such information to users45.

In Table 1, we list the tables in the database along with a description of their content and purpose. For the 
sake of brevity, we refer the reader to the accompanying materials on Figshare38 for a schema of the database and 
a description of the variables included.

Technical Validation
In this section, we report statistics on the completeness of our data. An advantage of defining the Rust ecosystem 
as all those packages hosted on Cargo, is that we can precisely measure how many packages we can successfully 
integrate into our database. In particular, we can report the share of packages that we can connect to repos on the 
social coding platforms GitHub and GitLab. As we will see below, we have a very high rate of linkage. Moreover, 
the packages that we could not integrate are typically those with very few downloads. This suggests that most 
projects on Cargo that do not appear on GitHub or GitLab are small personal projects or preliminary work.

Package coverage among repositories.  Some Rust packages hosted on Cargo could not be linked to 
repos on GitHub or GitLab. They either are on a different platform, for example on Bitbucket, Google Cloud, 
Sourceforge, or on personal websites. Still others had a link to a GitHub or GitLab domain (i.e. a repo) but could 
not be cloned. This can happen if a link was incorrectly transcribed, if the repo was deleted, or if the package is 
listed only for name squatting or test purposes and does not correspond to any repository. Specifically, out of 
91,437 packages, 74,829 were linked to a repository on GitHub, GitLab or another git platform and 68,239 of 
these were successfully cloned, although only 51,657 packages pointed to distinct URLs (and 46,895 were cloned). 
Hypothesizing that the most important packages are the most downloaded ones, we can see in Fig. 2 that our 
coverage increases among the most important packages, measured by use (downloads).

Across the cloned repos, we gathered 5,656,407 commits, the elemental units of contribution in the git ver-
sion control system. Excluding 219 bots identified among the GitHub accounts, these contributions were made 
by 58,329 GitHub users and 450 GitLab users. The raw data contains 89,399 identifying email addresses, high-
lighting the significant amount of disambiguation of author identities our pipeline implements. 14,266 of them 
could not be associated to a GitHub or GitLab account.

Comparison with other data sources.  We first compare our data with data collected in the GHTorrent 
project15. The GHTorrent project aims to collect all activity on GitHub for use in research. As we have already 
noted, most activity in the Rust ecosystem takes place on GitHub, with a small but significant share taking place 
on GitLab. Besides the inclusion of GitLab data, we observed that our data contains a significant amount of 
activity hosted on GitHub that is missing from the GHTorrent database (the SQL version), when comparing the 
data in our dataset tagged as happening before the last date of user creation in the GHTorrent database–May 31st 
2019, just before midnight–and corresponding to the repositories that could be cloned. Specifically, we found only 
14,563 unique users (vs. 21,989 GitHub users in our database), 13,623 unique repos (vs. 16,069 identified GitHub 
repos in our database), and 1,299,414 unique commits (vs. 1,942,997 GitHub hosted commits in our database 
before the last date of GHTorrent). The GHTorrent project uses the GitHub REST API and collects data from the 
public event timeline using user-donated API keys. Outages on either the GHTorrent side or on the GitHub REST 
API, or rate limited API keys may explain missing data. While GHTorrent remains an excellent source of dataset 
for all of GitHub, these comparisons suggests that for a focused look at a single ecosystem, a customised pipeline 
can significantly increase data coverage. More detailed statistics concerning the comparison can be found on 
Figshare38 in the file ghtorrent_comparison.yml.

We also note that our data collection pipeline is not the only way to collect similar data on OSS ecosystems. 
For example, the GrimoireLab toolchain is a collection of tools to gather and analyze data on software46. These 
tools provide users with sophisticated analyses of the health and activity levels of particular projects, and groups 
of projects. In particular its Perceval data retrieval module can do many of the same things as our collection 
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pipeline. Our tool focuses rather on one thing: collecting a nearly complete dataset on the Rust ecosystem 
quickly (i.e. maximizing GraphQL API calls vs. REST API calls), with minimal requirements for users seeking 
to replicate or refresh the dataset. In this sense the two can be considered as potential complements, rather than 
substitutes: an analyst studying specific libraries in the Rust ecosystem can easily use the GrimoireLabs to obtain 
metrics on those libraries and additional data about them, for example from Jira or Twitter.

Usage Notes
To demonstrate how to read in and analyse the database, we provide short Jupyter notebooks that extract data 
and carry out elementary data manipulations, with the data aggregated at the monthly level. These notebooks 
are included with the other software in our materials. In one, we create the dependency network of the Rust 
ecosystem at different times and measure its growth. This data can be used to study ecosystem health, as errors 
and issues are known to spread through these networks6. In another, we plot the time series of downloads and 
new pull requests to specific repositories over time. Such time series can be used to study the dynamics of col-
laboration, use, and success at a fine-grained level8. In a third, we show how to load in the data of developers 
and packages as a rectangular matrix, which can be analysed as a bipartite network or, after a projection, as a 
developer-developer collaboration network. The bipartite network could be used to study the overall complexity 

Table Name Description

commit_comment_reactions Individual emoji reactions to commit comments

commit_comments Comments to commits

commit_parents Parenthood relationships between commits. Typically one per commit, can be 0 or more.

commit_repos Repos to which commits belong. At least one, but can be several (e.g. with forks).

commits Listing metadata about specific commits

filtered_deps_package Packages wich are filtered when appearing as a dependency to avoid cycles

filtered_deps_packageedges Dependency edges between packages filtered to avoid cycles

filtered_deps_repo Repositories wich are filtered when appearing as a dependency to avoid cycles

filtered_deps_repoedges Edges directly discarded in the dependency graph

followers Listing followers of GitHub accounts

forks Listing forks declared on GitHub

identities Listing each individual identity of the developers (email, GitHub account, Gitlab account)

identity_types Listing of identitiy types (email, GitHub account, Gitlab account)

issue_comment_reactions Individual emoji reactions to issue comments

issue_comments Comments to issues

issue_labels Individual labels of each issue

issue_reactions Individual emoji reactions to each issue

issues Listing of issues per repository

merged_identities Keeping track of identities having been merged, for information purposes

merged_repositories Repositories having been merged (after identifying renaming or typo in URL)

org_memberships Membership of organization declared on GitHub for GitHub users.

organizations Organizations or work groups as declared on GitHub

package_dependencies Listing package dependencies (version to package with semver)

package_version_downloads Listing daily downloads of package versions

package_versions Listing versions of packages

packages Listing packages

pullrequest_comment_reactions Individual emoji reactions to each pull request

pullrequest_comments Comments to each pull request

pullrequest_labels Individual labels of each pull request

pullrequest_reactions Individual emoji reactions to each pull request

pullrequests Listing of pull requests per repository

repo_languages Listing language composition of repositories (GitHub)

repositories Listing repositories

sources Listing data sources

sponsors_user Listing sponsorships of developers

stars Listing starring events of repositories

urls Listing retrieved URLs, and their parsed equivalent

user_languages Language composition of contributions of GitHub users (year before collection).

users Listing users (who can have several identities: email, GitHub, Gitlab)

watchers Listing watchers (developers being notified of changes) of each repository

Table 1.  Table of tables in the database. A full database schema is available at the Figshare repository and at 
https://github.com/wschuell/repo_datasets.
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of the ecosystem47,48, while the developer network reveals patterns of collaborations between projects49. In Fig. 3 
we present several illustrative examples of descriptive analyses resulting from the demonstration notebooks.

Our dataset can also be used as an input to study current themes of the empirical software engineering 
community. For example, our data can extend in time the work of Decan et al.6 on transitive dependencies and 
library centrality in Rust. These measures themselves provide interesting ways to quantify success and impor-
tance of libraries.

Another interesting area of research that our data might be applied to is the concept of code smells, in par-
ticular community smells50. Code smells are problematic kinds of patterns in software, while community smells 
refer to such sub-optimal patterns on the social and collaborative levels of collective software development. For 
example, Tamburri et al.50 describe several community smells such as the “lone wolf ” - when a single developer 
acts in a unilateral and inconsiderate way - or the “organizational silo” - when developer teams working on dif-
ferent parts of a codebase only communicate through one or two team members. These smells are quantified in 
part by considering the collaboration and communication networks of developers. Our dataset can be used to 
calculate many of these concepts including collaboration network measures and socio-technical congruence9 
at the ecosystem level by considering which developers contribute to which libraries and their interactions in 

Fig. 2  Data coverage: we check the number of Rust packages for which we could identify and download a 
corresponding Git repo (from GitHub or GitLab) in terms of their use, measured in downloads. We could link a 
large majority of packages to repos, and have a significantly higher success rate if we consider packages that have 
been downloaded more often.

Fig. 3  Illustrative plots from demonstration notebooks indicating potential data-processing workflows.  
(A) Average number of dependencies per package at the beginning of each year. (B) Evolution of the number of 
transitive dependencies per package. (C) The dependency network of the 100 most downloaded Rust packages in 
September 2022. (D) Time series of monthly downloads of three successful Rust packages. (E) Bipartite adjacency 
matrix of users/developers and the repos they work on in the year 2021, lightly filtered. (F) Developer-developer 
collaboration network in 2021, filtered for developers collaborating on at least three repos. (G) Monthly time 
series of new pull requests to two initially successful Rust libraries.
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dealing with issues and pull requests. Social outcomes like turnover, which are used to test and validate measures 
of community smells, can also easily be measured.

A third line of software engineering research which our data can complement is the question of use and 
success of software. As mentioned earlier, GitHub stars are imperfect indicators of successful or high-quality 
software30. Recent work has sought to refine measure of software success by studying why users adopt specific 
software51. In other words: what factors and metrics do users take into account when picking an OSS solution for 
a problem? Beyond the metrics reported in our data such as stars, downloads, and watchers, many others men-
tioned in this literature can be calculated. These include metrics of community support and adoption (number 
of contributors, issue and pull request response times) and maturity (releases, number of forks, age), and to some 
extent quality (code size and rate of issue resolution).

More generally, that is beyond the broad research field of empirical software engineering, our dataset can 
be used to explore the interactions between social collaboration, technical dependencies, and the visibility and 
usage of components of a large software system. The dynamic interactions between these layers of the data offer 
significant potential for research relating to massive decentralized cooperation (similar to Wikipedia52,53), the 
dynamics of teams and their success in digital communities21, and the evolution of software systems54.

Code availability
Code to recreate the database is included in our Figshare upload38 and can also be found in a dedicated repository 
https://github.com/wschuell/repo_datasets. The software is written in the Python programming language. The 
database can be created as either PostgreSQL or SQLite database. Version requirements are recorded in the 
project’s Readme file.
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