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City- and county-level spatio-
temporal energy consumption and 
efficiency datasets for China from 
1997 to 2017
Jiandong Chen1, Jialu Liu1, Jie Qi1, Ming Gao  1, Shulei Cheng  1 ✉, Ke Li2 & Chong Xu1

Understanding the evolution of energy consumption and efficiency in China would contribute to 
assessing the effectiveness of the government’s energy policies and the feasibility of meeting its 
international commitments. However, sub-national energy consumption and efficiency data have not 
been published for China, hindering the identification of drivers of differences in energy consumption 
and efficiency, and implementation of differentiated energy policies between cities and counties. 
This study estimated the energy consumption of 336 cities and 2,735 counties in China by combining 
Defense Meteorological Satellite Program/Operational Line-scan System (DMSP/OLS) and Suomi 
National Polar-Orbiting Partnership/Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) satellite 
nighttime light data using particle swarm optimization-back propagation (PSO-BP). The energy 
efficiency of these cities and counties was measured using energy consumption per unit GDP and data 
envelopment analysis (DEA). These data can facilitate further research on energy consumption and 
efficiency issues at the city and county levels in China. The developed estimation methods can also be 
used in other developing countries and regions where official energy statistics are limited.

Background & Summary
China has been the world’s highest energy consumer since 2007, followed by the United States1–3. Optimizing the 
energy mix and improving energy efficiency is crucial for China itself and the world response to climate change. 
Accurate measurement of China’s energy consumption and efficiency, particularly at the sub-national level, is 
essential to accelerate the achievement of the energy transition and energy efficiency improvement goals.

China’s national energy consumption data is published by the Chinese National Bureau of Statistics (CNBS)4–

6, International Energy Agency (IEA)7–9, British Petroleum (BP)10–12, Energy Information Administration 
(EIA)13–15, World Bank16,17, and other international organizations, while China’s provincial-level energy con-
sumption data is mainly published by the CNBS18–20. These widely accepted energy consumption data have 
substantially contributed to research on international energy consumption comparisons13,15,21, overall and 
inter-provincial energy consumption drivers22–24, and socioeconomic effects of overall and inter-provincial 
energy consumption in China5,25,26.

The availability of China’s national and provincial-level energy consumption data also indirectly provides 
key support for energy efficiency studies. Energy efficiency not only reflects the coupling relationship between 
energy consumption and economic development, but also implies the energy policy appeal to maximize eco-
nomic output based on energy input. To deal with climate change under the sustainable development goals, it is 
necessary to drive sustained economic development with as little energy consumption as possible. The measure-
ment of energy efficiency can be classified into three categories:

First, the indicator measurement analysis (IMA) is used to measure energy efficiency by energy consumption 
per unit GDP4. The advantages of this measurement are mainly reflected in its low requirements for other socio-
economic data, simple calculation and easy to be regarded as a policy target17. Most countries, including China, 
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have set reducing energy consumption per unit GDP as a government policy target to tackle climate change17. 
However, it cannot reveal the improvement path of energy efficiency.

Second, the non-parametric method, in which energy, capital and labor are regarded as inputs, GDP and 
pollutants are regarded as expected output and undesirable output respectively, is applied to obtain energy 
efficiency. Energy efficiency means that reducing energy consumption as much as possible in exchange for 
increased economic output and fewer pollutants24. The closer the actual output increase and pollutant reduction 
in exchange for the reduction of energy consumption are to the theoretical potential output increase and pollut-
ant reduction, that is, the closer the actual energy performance is to the potential energy performance, the higher 
the energy efficiency will be. The data envelopment analysis (DEA) is the most widely used non-parametric 
method24. The advantages of this measurement are mainly reflected in the convenience of locking the drivers 
of energy efficiency improvement, the ease of comparison of the relative energy efficiency between regions, and 
the need for no prior setting of the estimation function. However, it not only requires more socioeconomic data 
except energy consumption, but also is relatively complicated to calculate.

Third, the parameter method, which takes energy, capital and labor as independent variables and GDP as 
dependent variable, is chosen to estimate energy efficiency24. The stochastic frontier analysis (SFA) is the most 
widely used parameter method27. However, because of relying on the prior setting of the regression function and 
requiring more socioeconomic data except energy consumption, this measurement is relatively few adopted.

Although research on energy efficiency has practical values, unlike energy consumption data, neither 
Chinese officials nor other international organizations have published energy efficiency data. This is mainly 
because energy efficiency data is the use of energy consumption data. If Chinese officials and other interna-
tional organizations publish energy consumption data, scholars and institutions can use the above methods to 
obtain energy efficiency data. However, the widely accepted energy efficiency data only focus on the national 

Satellite Year d e R2

F10 1992 1.158 1.17 0.7955

F10 1993 2.105 0.896 0.8103

F10 1994 1.264 1.127 0.9093

F12 1994 3.074 0.765 0.8909

F12 1995 1.300 1.073 0.9151

F12 1996 1.491 1.029 0.9018

F12 1997 0.947 1.192 0.8952

F12 1998 0.884 1.167 0.8220

F12 1999 1.473 1.008 0.8657

F14 1997 2.264 0.97 0.8619

F14 1998 1.485 1.077 0.8629

F14 1999 1.454 1.137 0.8395

F14 2000 1.282 1.108 0.8628

F14 2001 1.179 1.129 0.8978

F14 2002 1.598 0.987 0.9242

F14 2003 1.394 1.038 0.8729

F15 2000 1.196 1.075 0.8514

F15 2001 1.341 1.033 0.8423

F15 2002 0.889 1.151 0.8411

F15 2003 1.824 0.974 0.8427

F15 2004 1.236 1.07 0.8838

F15 2005 1.764 0.937 0.8564

F15 2006 1.225 1.061 0.9066

F15 2007 1.324 1.067 0.9103

F16 2004 0.807 1.143 0.8790

F16 2005 1.058 1.119 0.9191

F16 2006 1.005 1.117 0.9352

F16 2007 0.965 1.109 0.8911

F16 2008 0.855 1.108 0.9480

F16 2009 0.543 1.175 0.9176

F18 2010 0.273 1.304 0.8914

F18 2011 0.694 1.09 0.8351

F18 2012 0.474 1.179 0.8743

F18 2013 0.418 1.153 0.8501

Table 1. Coefficients of the power function for nighttime light data (RCNTL in 2006 as a reference image). 
Note: d, e, and R2 represent the constant term, index, and coefficient of determination, respectively.
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and provincial levels, because the energy consumption data published by the CNBS and other international 
organizations is at national and provincial levels24,27.

Socioeconomic development and energy consumption vary considerably between cities and counties 
in sub-provincial China27–29. For example, in 2010, energy consumption was approximately 30 times higher 
in Tangshan than in Suqian30. Meanwhile, even cities with similar scales of energy consumption have differ-
ent levels of economic development. For example, in 2010, the energy consumption of Wenzhou is similar to 
that of Jiayuguan, the GDP of the former is nearly 15 times that of the latter30. However, official data are una-
vailable on city-and-county-level spatio-temporal energy consumption and efficiency in China. This hinders 
microscopic-level research on the drivers of energy consumption and assessment of energy efficiency in China. 
Moreover, this limits central and provincial governments in setting differentiated energy efficiency targets and 
city and county governments in adopting targeted energy efficiency improvement initiatives. Therefore, numer-
ous studies have recently attempted to overcome these research constraints. These studies can be broadly classi-
fied into the following three categories.

First, city-level energy consumption data are collated from provincial and city statistical yearbooks31–33. 
Although the data from these studies are highly reliable as they are published by official agencies, they lack 
annual energy consumption data for all cities, and the energy types counted by some city statistics departments 
vary. This is mainly because the lower the government level, the less efficient their data disclosure34 and the 
weaker the accounting capacity of energy statistics departments, particularly in developing cities.

Second, city-and-county-level energy consumption surveys are conducted to obtain energy consumption 
data at these levels, and at the enterprise and household levels35–38. The data obtained from these surveys are 
more microscopic, accurate, and complete; however, annual energy consumption data cannot be obtained for 
all cities and counties, and the energy consumption status and change characteristics for both cities and coun-
ties cannot be directly generalized. This is primarily due to the high labor and financial resources required to 

Fig. 1 Differences before and after pre-processing of DMSP/OLS and NPP/VIIRS data. (a) The orginal DMSP/
OLS images in 2013 before pre-processing, (b) the DMSP/OLS images in 2013 after pre-processing, (c) the 
original NPP/VIIRS images in 2017 before pre-processing, (d) the NPP/VIIRS images in 2017 after pre-
processing.
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conduct these surveys35, the difficulty of including all cities and counties, and the difficulty of conducting annual 
surveys.

Third, satellite data and machine learning methods are used to determine city-level CO2 emissions related 
to energy consumption. For example, Chen et al.39,40 employed particle swarm optimization-back propagation 
(PSO-BP) to construct quantitative relationships between provincial nighttime light data and statistical provin-
cial CO2 emission data in China, and applied top-down data inversion to derive CO2 emission data for all cities 
and counties in China, by using the total lighting brightness in these cities and counties as weights. Yue et al.41 
used econometric regression and two nighttime light data to obtain a 1-km resolution energy consumption data 
on the regional scale for China. Although these studies do not provide energy consumption data at the city and 
county levels, they provide a useful way to obtain annual energy consumption data for cities and counties in 
China.

Our study filled this gap through inversion of satellite data and machine learning methods to obtain 
spatio-temporal energy consumption data for 336 cities and 2,735 counties in China from 1997 to 2017 by 
combining Defense Meteorological Satellite Program/Operational Line-scan System (DMSP/OLS) and Suomi 
National Polar-Orbiting Partnership/Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) satellite night-
time light datasets using PSO-BP. Based on these energy consumption and related socioeconomic data, the 
study also provides spatio-temporal energy efficiency data at the city and county levels by using the energy 
consumption per unit GDP and the ratio of actual to potential energy performance in the non-radial directional 
distance function (NDDF) derived from DEA. The proposed methodology and datasets can be widely used in 
energy consumption and efficiency studies at the city and county levels in China, and can provide a reference 

Fig. 2 County-level energy consumption in China (unit: million tons of coal equivalents). (a) The energy 
consumption in 1997, (b) the energy consumption in 2003, (c) the energy consumption in 2010, (d) the energy 
consumption in 2017.
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for other developing countries and regions with limited energy statistics to analyze their sub-national energy 
consumption and efficiency.

Methods
Data scopes. In this study, the measured energy consumption and efficiency datasets were based on city 
and county levels in China. Cities and counties are the grassroot administrative regions in China and the basic 
units in the implementation of energy policies by the Chinese government23,42,43. Energy consumption at city-
and-county-level excludes the production side of the jurisdiction and the energy consumption transferred across 
administrative regions.

Our study provides data on energy consumption for 336 cities (including 332 prefecture-level cities and 
4 municipalities) and 2,735 counties in mainland China from 1997 to 2017 (excluding Hong Kong, Macau, 
Taiwan, and Tibet) based on the accessibility of the identifiable satellite nighttime light data with a certain reso-
lution, which covers approximately 87% of the land area, over 90% of the population, and 90% of the GDP. The 
definitions of cities and counties are published in 2010 by the Ministry of Civil Affairs of China. Considering the 
names of some cities and counties have changed after 2010, our study used their names of 2010 to keep consist-
ency. More detailed explanation was shown in the data files44.

Our study also provides two energy efficiency datasets: First, energy efficiency data was calculated by energy 
consumption per unit GDP, which covered 336 cities and 2,489 counties (1997–2017). It includes fewer cities 
and counties in some years, due to the lack of GDP data. Second, energy efficiency data was calculated by the 
ratio of actual to potential energy performance (also known as energy efficiency performance index, EEPI) using 

Fig. 3 City-level energy consumption in China (unit: million tons of coal equivalents). (a) The energy 
consumption in 1997, (b) the energy consumption in 2003, (c) the energy consumption in 2010, (d) the energy 
consumption in 2017.
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the NDDF of DEA, which covered 189 cities (2003–2016). It includes fewer years and cities, and none counties, 
mainly due to the lack of basic socioeconomic data considered as input variables of the NDDF, for example, fixed 
asset investment and fixed asset investment price index.

Matching nighttime light data from two types of satellites. The city-and-county-level energy con-
sumption data in this dataset were inferred from two satellite nighttime light datasets: the DMSP/OLS and the 
NPP/VIIRS45. The DMSP/OLS data are derived from the OLS scanners from 1992 to 201345,46, and NPP/VIIRS 
data from the VIIRS scanners from 201247. Although the above two accessible nighttime light data have the 
advantages of long time span and wide space coverage, and are widely accepted and applied, they cannot be 
directly mixed together. It is mainly because the two nighttime light images belong to different sensors, different 
time and space of nighttime light image collection and differences in pixel levels. For example, the inconsistencies 
in the acquisition time and cloud cover of nighttime light images in 2013 resulted in a large gap between DMSP/
OLS and NPP/VIIRS images at the pixel level. Moreover, the two nighttime light data also have the different 
discontinuities and saturation levels, and the differences in spillover and white noise. Thus, to obtain a long and 
continuous nighttime light data (including those before and after 2013), we spliced the two satellite nighttime 
light datasets following the procedures adopted by Liu et al.48, Lv et al.49, and Chen et al.39.

First, inter-calibration50, radiometric calibration51, intra-annual composition52,53 and inter-annual series cor-
rection methods53 were adopted for correcting DMSP/OLS data to eliminate pixel under-saturation and spillover 
as well as discontinuities, incomparability, and instability. Inter-calibration method is an on-board calibration 
and additional processes on the annual composites of nighttime light data. Considering both satellite sensors 

Fig. 4 City-level energy efficiency in China obtained using DEA. (a) The energy efficiency in 2003, (b) the 
energy efficiency in 2007, (c) the energy efficiency in 2012, (d) the energy efficiency in 2016.
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transferring nighttime light data in the same year, such as F14 and F15 in 2001, we applied the intra-annual 
composition and to improve the stability of lit pixels, as follows:
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where DN n i( , )  represents the digital number (DN) values of lit pixel i from two types of satellite sensors in year n.
Radiometric calibration method is used for eliminating the differences between nighttime light data in the 

same year from two satellites when conducting comparative time series analysis. We applied the invariant region 
method to inter-calibrate DMSP/OLS images, which is consistent with Wu et al.51. It has better inter-calibration 
accuracy. Power function form was chosen and the global radiance calibrated nighttime light (RCNTL) in 2006 
was treated as a reference image. The estimated parameters are shown in Table 1.

Inter-annual series correction method is used for stabilizing the inter-annual variability of the same satel-
lite. According to Hu & Huang53, it was performed by assuming that the DN value of each lit pixel would not 
decrease over time with the economic development, as follows:

Fig. 5 County-level energy efficiency in China obtained from energy consumption per unit GDP. (a) The 
energy efficiency in 1997, (b) the energy efficiency in 2003, (c) the energy efficiency in 2010, (d) the energy 
efficiency in 2017.
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Moreover, as the higher intensity summer light in high latitudes can cause increased interference with the 
accuracy of the NPP/VIIRS data49, the monthly NPP/VIIRS data for June, July, and August were excluded and 
the annual data was synthesized as an arithmetic mean based on the nighttime light data for the remaining nine 
months. To avoid the influence of deleting abnormal nighttime light data of the above three months on the accu-
racy of matching, noise pollution was removed in the process of converting NPP/VIIRS data into NPP/VIIRS 
data, which is consistent with Lv et al.49. Accordingly, we used a Gaussian low-pass filter with a 5 × 5 pixel win-
dow to smooth the NPP/VIIRS annual data and reduce spatial variability54 for better matching with the DMSP/
OLS annual data. The Gaussian low-pass filter δ was set to 1.7554,55 and the negative value was replaced with zero. 
To further reduce the effect of white noise, a threshold . − −nWcm sr0 3 2 1 was set in the annual image, and data 
smaller than this threshold were excluded52. Fig. 1 reported the differences by comparing the DMSP/OLS images 
in 2013 and the NPP/VIIRS images in 2017 before and after pre-processing, respectively. By comparing Fig. 1a 
and 1b, the processed images have solved the saturation issue of the original images that all DN values of these 
saturated pixels were 63. Meanwhile, compared to Fig. 1c, the processed images in Fig. 1d have eliminated neg-
ative values and maintained better matching with the DMSP/OLS images in terms of the distribution of night-
time light values.

Fig. 6 City-level energy efficiency in China obtained from energy consumption of per unit GDP. (a) The energy 
efficiency in 1997, (b) the energy efficiency in 2003, (c) the energy efficiency in 2010, (d) the energy efficiency in 2017.
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Second, PSO-BP was used to match the DMSP/OLS, which has differences in sensors and resolution, with 
the NPP/VIIRS satellite nighttime lighting dataset. The PSO, proposed by Kennedy & Eberhart56, is an intelli-
gent global optimization algorithm based on the laws of collaborative mechanisms in bird populations. Each 
particle in the swarm represents a possible solution to the problem, and each particle corresponds to a fitness 
value whose position and velocity will be determined by the optimal position57. After each position is updated, 
its fitness value is recalculated, and its position and velocity are updated again, so that all particles reach the opti-
mal solution after repeated iterations57. Rumelhart et al.58 developed a multilayer feedforward neural network 
algorithm with a three-layer network topology, also known as BP network algorithm, which included an input 
layer, an output layer, and an implicit layer. The number of neurons in the implicit layer and the transfer function 
between the nodes are related to the specific object under study, and there is no unified principle for selecting 
them59,60; however, they can generate local data at local extremes and cause training failures61. The BP algorithm 
is a local algorithm with good performance in constructing regressions and obtaining local optimum optimistic 
results, however, data at local extremes and training failures may occur. The PSO algorithm is a global algorithm 
which has the potential to explore the global optimistic results62. The combination of these two algorithms helps 
to improve the computational effectiveness63. Ismail et al.64, Mohamad et al.63, Lee & Cheng57, and Wang et al.28 
have successively combined these two algorithms and proposed the PSO-BP neural network algorithm. This 
improved algorithm can overcome the shortcomings of the traditional BP neural network, such as poor learning 
stability, low reliability, and easily attained local minima. The specific steps are as follows63,65:

To build the neural network model, we set the county-level NPP/VIIRS pixel averages for 2013 as input 
parameters, and derived the central geographical coordinates of each county in China using the minimum 
boundary method, following Chen et al.40. By applying the Lambert projection and the ArcGIS zone statistics, 

Fig. 7 Test results for the mean pixel values in 2013. Data represent (a) the results with the supplementary 
input parameters based on the PSO-BP algorithm, (b) the results for only the mean pixel values of nighttime 
light values based on the PSO-BP algorithm, (c) the results with the supplementary input parameters based on 
the BP algorithm, and (d) the results with only the mean pixel values of nighttime light values based on the BP 
algorithm.
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we obtained the area of each county using Arcmap 10.5, and used the abovementioned coordinate data as well 
as the area data of each county as supplementary data parameters. This approach reduces matching errors and 
improves the integration accuracy of the two sets of satellite nighttime lighting data. We logarithmized the input 
parameters according to Li et al.54. When setting the output parameters, the 2013 county DMSP/OLS pixel aver-
ages are used as the output parameters.

The computational program developed by Ismail et al.64 and Mohamad et al.63 was used as a reference for the 
inter-calibration of the night-light data from DMSP/OLS and NPP/VIIRS. The number of layers of BP neural 
network is set to three, in which the hidden layer is set to five nodes, the maximum number of iterations is set 
to 50, and the population size is 2054. There are 2,735 counties in the Chinese mainland; therefore, we randomly 
selected 2,000 counties as our training set and 735 counties as our test set. However, even though the algorithm 
results obtained a high coefficient of determination, a large amount of data might also cause problems such 
as anomalous value, fluctuations, and jumps and faults in the conversion process. Thus, continuous satellite 
nighttime light data might not be obtained, leading to large errors in the estimated energy consumption data. 
To reduce this error, we further converted NPP/VIIRS data from 2013 to DMSP/OLS data, and calculated the 
annual growth of NPP/VIIRS data from 2013 to 2017 after conversion. For example, the annual growth of NPP/
VIIRS data for 2014 and the existing DMSP/OLS data for 2013 provided the simulated 2014 DMSP/OLS data. 
Then, we can calculate the smooth DMSP/OLS data obtained from the 2014–2017 simulation40, as shown in the 
following equations.

DV DV DV (3)i t i t i t, , , 1∆ = − −

∆= +−D D DV (4)i t i t i t, , 1 ,

where Di t,  is the nighttime light data of DMSP/OLS, DVi t,  is the DMSP/OLS nighttime light data transformed by 
NPP/VIIRS nighttime light data, ∆DVi t,  is the annual increment of NPP/VIIRS nighttime light data after trans-
forming, i represent counties (i=1, 2, 3,…, 2735), and t represent years ( =t 2014, 2015, 2016, 2017).

Estimation of satellite-based energy consumption at the city and county levels. For the inver-
sion of county-level energy consumption data, the provincial energy balance sheet data published in the China 
Energy Statistics Yearbook and the previously mentioned PSO-BP neural network algorithm were used to estab-
lish the quantitative relationship between provincial energy consumption data and provincial nighttime light 
data. The values of sum of the DN (SDN) value, and dummy variables of identity and year were selected as input 
parameters, and the provincial energy consumption were selected as output parameters. The reason why dummy 
variables of identity and year were selected in addition to the SDN values is to control the influence of province 
differences that do not change with time and time differences that do not change with time on provincial energy 
consumption. For example, although the DN values of two provinces are the same in a certain year, the different 
levels of energy consumption may still occur because of other parameters that have not been observed and vary 
with provinces. Similarly, although a province has the same DN value in two years, it may still have different 
energy consumption due to other parameters that have not been observed over time. The total energy consump-
tion sample was 630 (21 years × 30 provinces), of which 400 samples were randomly selected as the training set, 
and the remaining 230 samples were selected as the test set. County energy consumption data66–68 were obtained 
using the top-down method and a DN value-based weighted-average strategy. Finally, 2,735 county-level energy 
consumption data were aggregated to obtain 336 city-level energy consumption data. The equation is as follows:

Fig. 8 Training and test results for the relationship between provincial energy consumption and the sum of DN 
values of provincial night-light data (unit: million tons of coal equivalents).
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where CEi t,  represents county energy consumption, SDNi t,  represents county lighting brightness, SDNj t,   
represents province lighting brightness, PEi t,  represents province energy consumption, i represents  
county ( = …i 1, 2, 3, , 2735), j  represents province ( = …j 1, 2, 3, , 30), and t  represents year 
(t 1997, 1998, 1999, , 2017= … ).

Calculation of energy efficiency based on two methods. This dataset uses the DEA and the IMA to 
measure the energy efficiency data at the city and county levels in China. DEA is a non-parametric method widely 
used to measure efficiency69–71. Researchers worldwide have adopted and constantly improved this approach in 
their studies on energy efficiency72–75. The energy efficiency can be calculated using this method without setting 
the production function between input and output, which could be regarded as its advantage. According to the 
studies by Chen et al.76, Jebali et al.77, Wang et al.78, and Wu et al.79, we selected labor, capital, and energy as input 
variables; GDP as expected output variable; and particulate matter (PM2.5) as undesirable output variable.

We chose the NDDF with an undesired output as the non-parametric functions. This is because, unlike the 
traditional Sheppard distance function, the NDDF with undesirable output considers both the expected output 
and the undesirable output (usually the pollutant), and it does not require price-specific data. Moreover, com-
pared with the traditional directional distance function, NDDF with undesired output can avoid the problem of 
overestimating efficiency due to the existence of slacks. Furthermore, NDDF can calculate the inefficiency value 
of each input and output factor80–82. Therefore, the use of NDDF is widely accepted in measuring energy effi-
ciency83–85. By referring to the studies by Zhou et al.86, Zhang et al.87, and Lin & Chen88, we set the collection of 
weights for energy efficiency EEPI as (0, 0, 0, 1/3, 1/3, 1/3)  and the set of directions as (0, 0, 0, 0, 0, 0) , 
details as follows:
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where ( )
DE
→ ⋅  represents the directional distance function; and K represents the capital stock, which is calculated 

by adopting perpetual inventory method based on the fixed asset investment data in the China City Statistical 
Yearbook: K I K(1 )t t t t 1α= + − − , where It is the current fixed asset investment, and tα  is the depreciation rate 
of fixed assets. Referring to the set of Meng et al.89, tα  is assumed to be 9.6%, and Kt 1−  is the capital stock of the 
previous period. After using the fixed asset investment price index to deal with the fixed asset investment, the 
capital stock at the beginning of the period is set as α= +K I p/ ( )t n2003 2003  according to Li90, where K2003 is the 
capital stock at the beginning of 2003, I2003 represents the value of fixed asset investment in 2003 after adjusting 
for prices, and pn

 is the geometric mean of the growth rate of real fixed asset investment. L represents the labor, 
as measured by the number of employees in urban units in the China City Statistical Yearbook; E represents 
energy consumption; Y represents the gross product of a city, derived from the China City Statistical Yearbook 
and the provincial statistical yearbooks; B represents PM2.5, derived from the real time air quality release system 
of the Ministry of Environmental Protection of China, that is the National Control Site Hour Overall Data. We 
first found the average daily concentration of PM2.5 per hour, then multiplied the hourly concentration of PM2.5 
by 24 to get the daily concentration of PM2.5, and finally divided the total daily concentration of PM2.5 by 365 to 
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get the annual concentration of PM2.5. g is direction vector; wE, wY , and wB represent the city’s energy consump-
tion, GDP, and the standardized weight vector for PM2.5, respectively. βE, βY , and βB represent energy consump-
tion, GDP, and level factor vector of PM2.5 in cities, respectively. In the constraint conditions represented by s t. ., 
Zn is the weight coefficient; n is the city; and β *E , β *Y , and *Bβ  are the energy consumption, GDP, and the ineffi-
ciency value of PM2.5, respectively.

The energy efficiency derived from the DEA method is generally considered as more scientific and reliable; 
however, its calculations must be supported by other socioeconomic data, such as the capital stock and labor. 
These data are not published by the statistical agencies of some cities and counties. Therefore, we could only 
provide energy efficiency data for 189 cities using the DEA.

Energy consumption per unit GDP has also been used to approximately represent energy efficiency by some 
studies, such as Bor91, Duro & Padilla92, Cheng et al.93, and Cheng et al.94. Lower energy consumption, which 
drives economic growth, is often considered to be more energy efficient. Accordingly, we used the energy con-
sumption per unit GDP to estimate the energy efficiency of 336 cities and 2,489 counties in China.

Data Records
This dataset provides a total of 6,085 data records (energy consumption and energy efficiency)44. These include: 
336 city energy consumption data (1997–2017), 2,735 county energy consumption data (1997–2017), 189 city 
energy efficiency data (2003–2016) based on DEA, 336 city energy efficiency data (1997–2017) based on energy 
consumption per unit GDP, and 2,489 county energy efficiency data (1997–2017). The datasets and figures pub-
lished herein are publicly available in the data files. Energy consumption data was measured in million tons of 
coal equivalents. The spatial and temporal distribution of energy consumption and energy efficiency at the city 
and county levels in China are shown in Figs. 2–6.

Technical Validation
Validity testing for energy consumption based on nighttime light data from satellites. The 
fitting results of PSO-BP neural network algorithm are shown in Fig. 7. The coefficient of determination of the 
training set was 0.999, while that of the test and verification sets were 0.989 and 0.991, respectively. This shows 
that the model has good fitting effect and validity in the training, testing, and verification stages, and the overall 
coefficient of determination of the model was high at 0.9956, which is higher than that of Yue et al.41. In their 
work, the coefficient of determination using the econometrics estimation method was 0.734.

Furthermore, we fit the county-level energy consumption data according to the province-level division by 
using the sum of the provincial simulated energy consumption, and the results were compared with official 
statistical provincial energy consumption data in the China Energy Statistics Yearbook from 1997 to 2017. The 
latter was published by the Chinese official agency, CNBS, and was used as the validation data for comparisons, 
as shown in Fig. 8. The provincial energy consumption data fitted in this study was highly correlated with the 
official statistical provincial energy consumption data, and the decisive coefficient was 0.9851. This shows that 
the energy consumption data obtained from fitting of satellite nighttime light data is reliable.

Limitations and future work. There are three deficiencies in our datasets, which will provide future ave-
nues for more accurate estimates of energy consumption and efficiency at the city and county levels in China. 
First, the city-and-county-level energy consumption data retrieved from satellite nighttime light data only com-
prises the total energy consumption data, and cannot identify the change of energy mix. Second, the provincial 
energy consumption data spliced using satellite nighttime light data do not include energy consumption data 
from land-use change and use of non-commercial biomass fuels, which results in underestimation of the energy 
consumption data of cities and counties. Third, considering the unavailability of socioeconomic data for some 
cities and all counties, such as labor and capital stock, even though data on energy consumption was provided for 
336 cities and 2,735 counties from 1997 to 2017, the energy efficiency data based on the DEA included only 189 
cities between 2003 and 2016.

Therefore, our future studies will focus on three aspects: First, in the retrieval of city-and-county-level energy 
consumption data, the disaggregated energy consumption data and other socioeconomic variables should be 
explored and introduced. Second, a provincial total energy consumption data covering more energy types 
should be obtained before comprehensively inverting the city and county energy consumption data through 
investigation. Third, the socioeconomic data of cities and counties should be obtained to support the use of DEA 
in evaluating the energy efficiency of all cities and counties in China.

Usage Notes
The data of city-and-county-level energy consumption and efficiency provided in this study are valuable 
with practical applications in the field of energy economics, management, and policy, including the follow-
ing: First, the provided data have the characteristics of wide spatial coverage and long time span. This unique 
panel-structured dataset can be used to observe the trajectories and spatial differences of energy consump-
tion and efficiency on a micro-level than at national and provincial levels. Therefore, it can also be used to 
analyze the factors driving the changes and spatial differences of energy consumption and efficiency in cities 
and counties. Second, the panel-structured dataset of energy consumption and efficiency can be used to match 
other socioeconomic data at the city and county levels, and studies such as the economic effects of energy con-
sumption, the environmental and social effects of energy consumption, and the coupling relationship between 
energy efficiency and economic development may be conducted. Third, the development of energy consumption 
and efficiency data at the city and county levels can not only contribute to the energy management at China’s 
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grassroot-level governments, such as in the formulation and implementation of road maps for energy transition 
and energy efficiency improvement, but also provide a basis for the central and provincial governments to allo-
cate the energy rights of cities and counties under the constraints of “carbon peak” and “carbon-neutral” targets. 
Fourth, the development of energy consumption and efficiency data at city and county levels could provide a 
more accurate assessment of the impact of the central government’s energy saving, emissions reduction, and 
low-carbon green policies, as well as other socioeconomic policies, for example, assessment of the impact of the 
“central heating,” “coal to electricity,” low-carbon pilot city, and carbon emissions trading right pilot policies on 
energy consumption and energy efficiency. Fifth, the method of retrieving micro-level energy consumption data 
by using satellite nighttime light data can also provide a reference for other developing countries and regions 
with limited energy statistics to evaluate their energy consumption and efficiency at the sub-national level.

Code availability
MatLab (R2017b), STATA (16), and ArcGIS (10.5) are the major applications used to obtain the energy 
consumption and efficiency data. The code for PSO-BP matching the relationship between the two sets of satellite 
nighttime light data and the inversion of city and county energy consumption is provided in the Appendix. 
Codes and datasets for the DEA method, which measures energy efficiency in 189 cities, are also provided in the 
Appendix.
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