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Organic materials repurposing, a 
data set for theoretical predictions 
of new applications for existing 
compounds
Ömer H. Omar1, Tahereh Nematiaram1, Alessandro Troisi1 ✉ & Daniele Padula   2 ✉

We present a data set of 48182 organic semiconductors, constituted of molecules that were prepared 
with a documented synthetic pathway and are stable in solid state. We based our search on the 
Cambridge Structural Database, from which we selected semiconductors with a computational funnel 
procedure. For each entry we provide a set of electronic properties relevant for organic materials 
research, and the electronic wavefunction for further calculations and/or analyses. This data set has 
low bias because it was not built from a set of materials designed for organic electronics, and thus it 
provides an excellent starting point in the search of new applications for known materials, with a great 
potential for novel physical insight. The data set contains molecules used as benchmarks in many 
fields of organic materials research, allowing to test the reliability of computational screenings for the 
desired application, “rediscovering” well-known molecules. This is demonstrated by a series of different 
applications in the field of organic materials, confirming the potential for the repurposing of known 
organic molecules.

Background & Summary
High Throughput Virtual Screenings (HTVSs)1,2 have recently been exploited to a great extent to identify 
promising materials in the domain of organic electronics. This powerful technique has often been used in com-
bination with domain knowledge of the problem, carrying out screenings of modifications of known motifs 
or architectures known to work for a specific problem e.g. functionalisation for dye-sensitized solar cells3, 
donor-acceptor motifs for thermally activated delayed fluorescence (TADF)4, singlet fission (SF)5, and for gen-
eral photovoltaic architectures6. This strategy translates in computational terms the process of experimental 
discovery exploiting chemical intuition7,8, and allows the reduction of the chemical space to explore9. However, 
the findings are bound to fall within the domain of what is already known and prevent the discovery of new 
motifs and design rules. Studies based on exploiting domain knowledge like biradical character for SF10,11 or 
donor-acceptor motifs for TADF12,13 will not find new design rules. Generative models also tend to find motifs 
similar to those already known14. Additionally, the identified candidates may not be easy to synthesise in the lab-
oratory or be stable enough to be characterised, despite recent progresses in introducing measures of synthetic 
accessibility in HTVSs15.

In this study, we aim at providing a starting point for computational searches overcoming the mentioned 
limitations by presenting a data set of 48182 organic semiconductors (OSCs) constituted of molecules that were 
prepared with a documented synthetic pathway, and are stable in solid-state, enabling their crystallographic 
characterisation. The data set is therefore an excellent starting point to identify OSCs for various applications 
that can guide experimental research. We based our search on the Cambridge Structural Database (CSD)16, from 
which we selected OSCs with a computational strategy described in the following sections. The CSD dates back 
to the 60–70s, and contains crystal structure data for > M1  samples prepared for various purposes. Excluding 
polymorphs17–19 or samples measured in different experimental conditions20, the vast majority of molecules in 
the data set has characterisation data available. As it was not built with organic materials applications in mind 
though, of course, it does contain entries related to this field, any data set derived from the CSD21 is, therefore, 
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unbiased with respect to the application, though some bias is present due to choices of research groups in the 
study of a certain molecule or experimental contraints with respect to the ability to crystallise the sample and 
characterise it. This low bias provides a great potential for novel physical insight: setting different criteria for the 
ideal candidates based on experimental benchmarks, the more stringent ones (i.e. more rare) can be used to 
translate results into design principles. Additionally, the fact that it contains molecules used for benchmarks in 
many fields of organic materials research allows testing the reliability of computational screenings for the desired 
application, “rediscovering” well known molecules.

Studies of OSCs for technological applications exploit the analyses of various electronic properties, ranging 
from frontier orbital energies to excited state energies and oscillator strengths. For instance, early searches of 
materials for organic photovoltaics exploited HOMO and LUMO energies22–25, high performance non-fullerene 
acceptors are known to possess a low LUMO-LUMO + 1 gap26,27, luminescent materials for new generation 
organic light emitting diodes (OLEDs) based on TADF28,29 as well as singlet fission candidates30 have been iden-
tified by calculating the S1-T1 gap (∆EST), and high mobility semiconductors were discovered by looking at 
electronic couplings, reorganisation energies and electron-phonon couplings31–33. Providing wavefunctions and 
basic excited state properties for the first few states will enable other researchers to carry out systematic investi-
gations for applications that, to the best of our knowledge, are yet to be explored through computational screen-
ings, such as aggregation induced emitters (AIEgens)34, but also for extremely innovative applications based on 
higher excited states, for which chemical intuition is still limited, e.g. designing anti-Kasha fluorophores35, even 
displaying delayed fluorescence36.

The data set presented in this work thus contains a collection of simulated spectroscopic properties on the 
X-ray geometries of existing organic molecules, showing a simulated HOMO-LUMO gap (Egap) falling below 
4 eV, which we therefore define as organic semiconductors, and can be searched for relevant properties in vari-
ous technological applications. Some data sets offer interesting properties for OSCs relevant for specific applica-
tions, e.g. the HOPV for organic photovoltaics37, but they are limited to boundaries within the chemical space, 
i.e. they exploit domain knowledge about what is known to work. Other data sets offer spectroscopic properties 
of molecules, such as e.g the QM838 or the OE6221 data sets, but the former is limited in the number and type of 
heavy atoms and excited states considered, while the latter provides spectroscopic data only for a small fraction 
of the data set ( K5≈  entries). The data set we present in this work is thus aimed at complementing the currently 
available ones in these aspects, which we describe in more detail in the following sections.

Methods
The data set of OSCs we present here has been built starting from the python application programming interface 
provided within the CSD distribution. To identify OSCs, we started by removing polymeric molecules, disor-
dered solids, and co–crystals from the entries containing X-ray structures. We further reduced the structures to 
be retained by:

	 1.	 including only the most commonly used elements in typical OSCs in the selection of molecules (H, B, C, 
N, O, F, Si, P, S, Cl, As, Se, Br, I);

	 2.	 removing entries with more than one molecule type in the unit cell;
	 3.	 removing duplicate entries

X-ray geometries include all heavy atoms, while hydrogen atoms are added and normalised (i.e. placed at 
a typical X-H distance using statistical surveys of neutron diffraction data) using the CSD library’s built-in 
functions exploiting such literature data39,40. Due to errors in the procedure, e.g. missing hydrogens in diborane 
moieties, the structurally erroneous entries are filtered out by comparing the heavy atom connectivity layer of 
InChI41 strings of the CSD entry and the extracted geometry, followed by comparison of the chemical formulae 
between the CSD entry and the extracted geometry. The data set is up to date with the 2020 version of the CSD, 
thus updates starting from the 2021 version are possible.

This procedure resulted in a reduction of the data set from ≈ M1  to ≈ K265  molecules. To identify OSCs we 
adopted a three-step computational funnel strategy in combination with a calibration procedure, aimed at esti-
mating the HOMO-LUMO gap (Egap) with quantum mechanical (QM) methods of reasonable accuracy. First of 
all, we selected three methods of increasing accuracy for our computational funnel: PM7, B3LYP/3 – 21 G*, and 
B3LYP/6–31 G*. Second, we picked a subset of 550 molecules on which we performed single point calculations 
on the X-ray geometries provided within the CSD, obtaining orbital energies with all three methods. This 
allowed us to compute calibration curves to estimate the B3LYP/6-31 G* HOMO-LUMO gap (Egap

� ) from low 
accuracy ones (see panels b), c), e), and f) in Fig. 1), and the associated error distribution. With calibration 
curves available, we proceeded to compute HOMO-LUMO gaps (Egap

� ) for the entire data set of K265≈  mole-
cules (panel d) in Fig. 1), estimating the gap that we would obtain if we ran a higher level calculation. 
Considering the distribution of errors of the calibration curve, at the PM7 level we retained any molecule show-
ing E 5 5gap ≤ .�  eV as a potential OSC, reducing the data set from ≈ K265  to ≈ K200  molecules. On these mole-
cules, we recomputed the gap at the B3LYP/3-21 G* level (panel g) in Fig. 1), considering any molecule showing 
�E 4gap ≤  eV as an OSC, resulting in the K50≈  molecules that constitute the data set presented here. 4 eV is a 
conventional upper limit for semiconductors42, and all the best performing molecules across various applica-
tions have a smaller gap. On these molecules, we computed excited states properties at TD-DFT/M06-2X/
def2-SVP (see Fig. 2), releasing, as part of the data set, the converged ground state wavefunction, and the results 
for the first three singlet (S1-S3) and triplet (T1-T3) states. A calibration of the TD-DFT method for S1 and  
T1 excitation energies for ≈100 data points with available experimental data is presented elsewhere30,  
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and guarantees the reliability of the method (RMSE 0 05≈ .  eV). All QM calculations were carried out with the 
Gaussian16 software43, and the data provided as part of this release were extracted from output and checkpoint 
files using the Multiwfn software44 and the CClib python library45.

These calculations allow for interesting analyses regarding the time evolution of the CSD. For instance, since 
the deposition date of each entry is known, it is possible to follow how many OSCs were deposited over time, 
both in absolute and fractional terms. From these analyses (see Fig. 3) we see that, while the absolute number is 
naturally increasing over time, the fractional number of OSCs within the CSD is constant until ≈2010, and since 
then it has basically doubled, rising from ≈3–4% to ≈7%, which is in agreement with the evolution of research 
in the organic materials field.

Data Records
The curated data set is available from DataCat, the University of Liverpool repository46:

	 1.	 data extracted from QM calculations are provided at the University of Liverpool repository46 in comma- 
separated values (.csv) format, which can be easily read through common programs or programming 
languages. A description of the provided data is given in Table 1;

Fig. 1  (a) Computational strategy used to identify OSCs starting from the CSD. (b) Calibration curve to 
estimate B3LYP/6-31 G* HOMO from PM7 HOMO. (c) Calibration curve to estimate B3LYP/6-31 G* LUMO 
from PM7 LUMO. (d) distribution of estimated B3LYP/6-31 G* HOMO-LUMO gap from PM7 energy levels. 
(e) Calibration curve to estimate B3LYP/6-31 G* HOMO from B3LYP/3-21 G* HOMO. (f) Calibration curve 
to estimate B3LYP/6-31 G* LUMO from B3LYP/3-21 G* LUMO. (g) distribution of estimated B3LYP/6-31 G* 
HOMO-LUMO gap from B3LYP/3-21 G* energy levels.

Fig. 2  Distributions of energy levels computed on X-ray geometries for all entries in the database. Left: frontier 
molecular orbitals computed at the DFT/M06-2X/def2-SVP level. Right: singlet (S1, S2) and triplet (T1, T2) 
excited state energies computed at TD-DFT/M06-2X/def2-SVP level.
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	 2.	 the wavefunctions for each entry are provided in a set of 31 sequential archives at the University of 
Liverpool repository46 allowing for sequential or partial download. Geometries are also given to facilitate 
analyses. Data are made available in .wfn format;

	 3.	 Gaussian16 QM calculations output files are provided at the University of Liverpool repository46 to allow for 
additional wavefunction analyses, with the aim to characterise electronic states or transitions, as mentioned 
in the following sections.

Geometries and wavefunctions are provided in .wfn format, the AIM traditional format. We chose this 
format to provide interested users data for analyses or subsequent calculations that would be independent of the 
software we used. In fact, .wfn files can be generated or processed with a multitude of tools, among which the 
popular software Multiwfn44, the python library IOData47, ORCA48,49 and others50,51. Each .wfn file contains 
the molecular geometry, as well as occupied molecular orbitals expressed in the atomic basis and their energies. 
These data can be used for visualisation of e.g. geometries, occupied orbitals, but also to run QM calculations 
with an initial guess to obtain refined properties for applications of interest.

Gaussian16 output files are provided to allow for additional wavefunction analyses on electronic excitations, 
allowing interested users to avoid repeating calculations that we have already performed.

Technical Validation
The key idea is that new applications of existing molecules can be discovered by searching for useful properties 
computed for a large data set, thanks to a robust calibration between predicted and experimentally validated 
data. Crucially, the data set should be totally unbiased and not related to the property of interest: this way, dis-
coveries are truly unexpected and have a large applicative and commercial value. We proved this concept 
through a range of demonstrations in recent works, covering various applications areas. These demonstrations 
considered an outdated data set consisting of K40≈  OSCs. The data set presented here is up to date with the 2020 

Fig. 3  Time evolution of OSCs within the CSD. Left: total number of OSCs deposited each year. Right: fraction 
of OSCs deposited each year.

Column name Unit Method Description

ID — — unique CSD identifier

doi — — doi of the experimental paper characterising the X-ray 
structure

formula — — chemical formula

NAts — — number of heavy atoms

SMILES — — the SMILES string67–69

HOMO eV TD-DFT/M06-2X/def2-SVP computed HOMO energy on the X-ray geometry

LUMO eV TD-DFT/M06-2X/def2-SVP computed LUMO energy on the X-ray geometry

E(S1) eV TD-DFT/M06-2X/def2-SVP computed S1 energy on the X-ray geometry

f(S1) — TD-DFT/M06-2X/def2-SVP computed S1 oscillator strength on the X-ray geometry

E(S2) eV TD-DFT/M06-2X/def2-SVP computed S2 energy on the X-ray geometry

f(S2) — TD-DFT/M06-2X/def2-SVP computed S2 oscillator strength on the X-ray geometry

E(S3) eV TD-DFT/M06-2X/def2-SVP computed S3 energy on the X-ray geometry

f(S3) — TD-DFT/M06-2X/def2-SVP computed S3 oscillator strength on the X-ray geometry

E(T1) eV TD-DFT/M06-2X/def2-SVP computed T1 energy on the X-ray geometry

E(T2) eV TD-DFT/M06-2X/def2-SVP computed T2 energy on the X-ray geometry

E(T3) eV TD-DFT/M06-2X/def2-SVP computed T3 energy on the X-ray geometry

Table 1.  Description of metadata and electronic properties gathered in the database.
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version of the CSD, thus containing entries that were not the objects of our previous studies; the same strategies 
can be used on the fraction of molecules not previously considered to discover more potential candidates, in line 
with our previous findings.

The key applications demonstrated in our previous works are the following:

	 1.	 we showed that it is possible to identify completely new molecules that undergo singlet fission (a property 
of relevance for solar cells) by calibrating a computational method to yield accurate energies of singlet and 
triplet excited states and found molecules with the ideal energy level alignment30. The method rediscovered 
known molecules for singlet fission (true positives), and identified several different families of known 
compounds with this desirable property;

	 2.	 we proposed a related screening protocol to identify molecules undergoing TADF28, a relevant property  
in the area of display technologies. The protocol indicated without any adjustable parameter that .0 3%  
of the ≈ K40  molecules considered may undergo TADF. About half of them were known TADF emitters, 
providing great confidence in the quality of the prediction. The other half of the hits were totally unknown 
to the field, illustrating in parallel how this approach can lead to completely novel design rules;

	 3.	 we showed that a similar approach can be used to identify novel electron acceptors to be used in organ-
ic solar cells to replace expensive and inefficient fullerene derivatives52. Also in this case, about half of 
the “discovered” molecules were known, the other half being totally novel ones. This work showed that 
database searching is only the first step and it is possible to modify lead compounds to have other desirable 
properties, like solubility;

	 4.	 we showed that we can screen for luminescent crystals displaying superradiance or near IR emission53, 
properties of interest in the areas of light-emitting diodes, organic lasers, and biological imaging. A common 
theme of all applications particularly well exemplified by this one is the ability of large screenings to identify 
plausible optima for any properties; in this case, what is the maximum red shift that can be observed when a 
particular molecule is studied in its crystal.

The basis of similar studies can be laid by analysing properties provided in this database similarly to what is 
shown in Fig. 4. In the left panel, we report T1 vs S1 energies. Potential singlet fission materials fall to the left of 
the dashed black line, representing the main singlet fission criterion, i.e. S1 = 2 T1. Similarly, potential TADF 
materials fall in the proximity of the dashed blue line, representing the main TADF criterion, i.e. S1 = T1. 
Colours encode the S1 oscillator strength ( fS1

) through a logarithmic scale, since one would be interested in 
materials able to absorb (singlet fission) or emit (TADF) light with a good performance. These types of analyses 
led us to the work shortly described in points 1 and 2, where we have “rediscovered” well known singlet fission 
and TADF materials, proving that the starting point, i.e. a reduced version of the data set presented here, is reli-
able. The same, however, can be done for other properties yet to be studied: for instance, in the right panel of 
Fig. 4, we report S1 vs S2 energies, useful to identify potential anti-Kasha materials, falling in the proximity of the 
dashed black line, representing S2 = 2 S1. This is a reasonable criterion according to domain knowledge regarding 
the role of kinetics in anti-Kasha photoreactions54,55. In this case, colours encode the S2 oscillator strength ( fS2

) 
through a logarithmic scale, since in anti-Kasha materials the fluorescence is expected from a higher excited state.

Fig. 4  Relationships between relevant excited states energies to identify promising materials within the 
database. Left: T1 vs S1 energies. Potential singlet fission materials fall in proximity of the dashed black line, 
representing S1 = 2 T1. Potential TADF materials fall in proximity of the dashed blue line, representing S1 = T1. 
Colours encode the S1 oscillator strength ( fS1

) through a logarithmic scale, assuming bright states are desirable. 
Right: S1 vs S2 energies. Potential anti-Kasha materials fall in proximity of the dashed black line, representing  
S2 = 2 S1. Colours encode the S2 oscillator strength ( fS2

) through a logarithmic scale, assuming bright states are 
desirable.
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Usage Notes
Above, we have listed some applications deriving from the data presented here. In general, the starting point for 
each of those applications consisted of a calibration of the computational method used to carry out further anal-
yses with available experimental data. Thanks to the fact that we provide the ground state wavefunction for each 
of our entries, not only will these calibrations be faster because we provide an initial guess for QM calculations, 
but also many more analyses are accessible. For instance, electronic states or transitions can be thoroughly char-
acterised with packages such as Multiwfn44 or TheoDORE56, which can provide detailed information regarding 
the nature of an electronic transition (e.g. Charge Transfer metrics57,58, ghost states59, electronic density differ-
ence60, exciton delocalisation61,62 etc). Additionally, this data set can form the basis for training sets to Machine 
Learning models aiming at reproducing the electronic density of molecules63,64, based on experimental X-ray 
geometries. The availability of CSD identifiers enables the expansion of analyses to molecules in their crys-
tals32, which is fundamental for technological applications of organic semiconductors. Finally, the synthetic 
approaches that make molecules within the CSD accessible can be easily tracked down thanks to references 
provided within the data set. This allows not only for a prompt source of synthetic routes to be exploited in 
case of experimental validation of the results, but is also useful in combination with retrosynthetic planning 
strategies65,66.

Code availability
Scripts to obtain plots starting from the database are available at the University of Liverpool repository46.
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