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a merged microarray meta-dataset 
for transcriptionally profiling 
colorectal neoplasm formation and 
progression
Michael Rohr  1, Jordan Beardsley1, Sai Preethi Nakkina1, Xiang Zhu1, Jihad aljabban2, 
Dexter Hadley3 & Deborah altomare1 ✉

Transcriptional profiling of pre- and post-malignant colorectal cancer (CRC) lesions enable temporal 
monitoring of molecular events underlying neoplastic progression. However, the most widely used 
transcriptomic dataset for CRC, TCGA-COAD, is devoid of adenoma samples, which increases reliance 
on an assortment of disparate microarray studies and hinders consensus building. to address this, 
we developed a microarray meta-dataset comprising 231 healthy, 132 adenoma, and 342 CRC tissue 
samples from twelve independent studies. Utilizing a stringent analytic framework, select datasets 
were downloaded from the Gene Expression Omnibus, normalized by frozen robust multiarray 
averaging and subsequently merged. Batch effects were then identified and removed by empirical 
Bayes estimation (ComBat). Finally, the meta-dataset was filtered for low variant probes, enabling 
downstream differential expression as well as quantitative and functional validation through cross-
platform correlation and enrichment analyses, respectively. Overall, our meta-dataset provides a 
robust tool for investigating colorectal adenoma formation and malignant transformation at the 
transcriptional level with a pipeline that is modular and readily adaptable for similar analyses in other 
cancer types.

Background & Summary
Throughout the past decade, bioinformatics-based analyses have become a popular means for testing in vitro and 
in vivo results against data from human tissue samples vis-à-vis publicly accessible microarray and RNAseq data-
sets. This has been especially true in the cancer research field, which has leveraged a growing amount of available 
data from repositories such as the Gene Expression Omnibus (GEO)1, ArrayExpress2, and cBioPortal3 to facilitate 
pre-clinical modelling, delineate novel pathways involved in tumorigenesis, and discover clinically-relevant bio-
markers. When such data is used in conjunction with third-party software such as Gene Set Enrichment Analysis 
(GSEA)4 and Ingenuity Pathway Analysis (IPA)5, transcriptome-wide analysis can provide a powerful tool for 
generating and testing hypotheses. However, because analytic performance depends on the quality and quantity 
of tissue samples, a plurality of investigations preferentially utilize datasets supplied by The Cancer Genome Atlas 
(TCGA) as they have been extensively validated and are robust in terms of sample number and included clinico-
pathology meta-data. Despite this, many TCGA datasets remain unsuitable for more specialized areas of cancer 
research. For example, tracking neoplasm development and progression using in silico approaches is constrained 
due to the lack of pre-malignant sample representation within TCGA datasets, a fact that is especially apparent 
for colorectal cancer (CRC)-related research6.

CRC serves as an exemplary model for investigating neoplastic progression as molecular events contributing 
to adenoma formation and progression are well described7 and are readily testable in vitro and in vivo8. Although 
much focus has been directed towards dissecting mechanisms related to genomic alterations, a paradigm shift 
has occurred in the form of transcriptional profiling for elucidating key drivers and suppressors of early tumori-
genesis. The relative ease of tissue acquisition combined with the development of more reliable and cost-effective 
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array platforms has contributed to the considerable rise in the number of publicly available datasets containing 
adenoma samples. However, this rise has resulted in the publication of many discordant results for essentially 
the same underlying biological process, thereby posing major challenges for establishing consensus9. Because 
inter-study heterogeneity caused by differences in study design, sample preparation, patient cohorts, and choice 
of array platform (amongst others) further complicates this process, using conventional meta-analytic techniques 
such as random-effects modelling to generate consensus has proven insufficient as results are limited to gene-level 
summaries10. In contrast, merging pre-processed datasets followed by batch correction and gene filtering effec-
tively enables more complex meta-transcriptomic analyses, even demonstrating results comparable in robustness 
to TCGA datasets in terms of included clinicopathologic meta-data10–12.

Here, we developed a merged Meta-dataset containing 231 normal, 132 adenoma, and 342 colon cancer tissue 
samples across twelve independent studies to serve as a central compendium for in silico modelling and bioinfor-
matic analyses of colorectal neoplastic progression. The overall study design including our pipeline and technical 
validation is outlined in Fig. 1. We implemented a modified analytic framework based on a previously established 
workflow13 to enable Meta-dataset construction without the use of the inSilicoDB R package. Briefly, microarray 
studies of the same chip platform (GPL570) and annotation package (hgu133plus2) meeting our inclusion cri-
teria were identified using the Search Tag Analysis Resource for GEO (STARGEO) as a search proxy for GEO14. 
Pre-processing included downloading raw data from GEO followed by background correction, expression nor-
malization, and log2 transformation via frozen Robust Multiarray Averaging (fRMA)15. The Meta-dataset was 
then generated by merging all pre-processed datasets by matching probe sets and then batch corrected using 
the empirical Bayes estimation method, or ComBat9. Thereafter, low variant probes were filtered from the 
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Fig. 1 Study Design. Schematic detailing data selection, acquisition, pre-processing, merging, and technical 
validation.
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Meta-dataset to facilitate technical validation and downstream differential expression analysis. We implemented 
two metrics to validate the reliability, accuracy, and robustness of the Meta-dataset. First, quantitative validation 
was performed via cross-platform correlation of gene trends with the TCGA colon adenocarcinoma (COAD) 
dataset6 and five external GEO datasets for all pairwise comparisons corresponding to normal versus adenoma 
(AvN), CRC versus adenoma (CvA), and CRC versus normal (CvN) signatures. Differentially expressed genes 
were then compared to four additional studies to assess overlap and consistency. Second, all signatures were func-
tionally validated through integrative use of functional enrichment analyses using gene ontology (GO), gene set 
variance analysis (GSVA), and IPA with results being compared internally and to the literature.

Ultimately, our Meta-dataset represents a centralized dataset for studying early colorectal neoplasm dynamics 
with a straightforward workflow that is readily adaptable for other types of cancer.

Methods
Selection of microarray studies. To minimize the number and impact of batch effects, Minimum 
Information About a Microarray Experiment (MIAME)-compliant microarray studies sourced from GEO were 
selected based on predefined inclusion/exclusion criteria including: A) having either freshly prepared or frozen 
human tissue samples, B) a minimal number of four samples per tissue type, C) use of the GPL570 platform 
(Affymetrix Human Genome U133 Plus 2.0 array) for matching probe sets, and D) includes two of either nor-
mal, adenoma, or CRC tissue samples (Fig. 1). To ensure a robust number of probes and genes are represented 
in the Meta-dataset, studies utilizing base hgu133-based platforms (GPL96 and GPL97) were not included as the 
transcriptome coverage is substantially less than that provided by GPL570 despite the use of identical probes. We 
then used the STARGEO tool developed by our collaborator14, to efficiently parse sample characteristics to iden-
tify studies meeting these criteria. Overall, twelve independent studies were chosen out of an initial list of 256 to 
be used in the construction of the Meta-dataset (Table 1).

Data acquisition and pre-processing. Raw data contained in zipped .TAR packages were downloaded 
from GEO using the getGEOSuppFiles function in the GEOquery (version 2.58.0) R package16. Individual .CEL 
files for each study were unpacked using the untar function in base R, loaded using the ReadAffy function part 
of the affy (version 1.68.0) package17, and subsequently background corrected and log-transformed by frozen 
Robust Multiarray Averaging (fRMA) using the frma (version 1.42.0) package15. Compared to traditional RMA, 
fRMA utilizes pre-computed probe variances to normalize raw microarray data and was shown to outperform 
RMA when pre-processing individual datasets for grouped analyses15.

Meta-dataset construction. Following fRMA normalization, arrays from individual datasets were merged 
by matching probe.s Interstudy batch effects were identified by Uniform Manifold Approximation and Projection 
(UMAP) using the umap (version 0.2.7.0) package18 and removed using the original parametric iteration of 
ComBat within the sva (version 3.38.0) package19. UMAP was used over traditional principal component anal-
ysis (PCA) to identify batches due to its ability to better represent local relationships whilst preserving global 
structure, thereby accentuating non-biological batch clusters for rapid identification and confirmation of their 

Datasets used for Meta Dataset construction

Accession # Samples Platform

GSE4183 38 GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

GSE8671 64 GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

GSE9348 82 GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

GSE15960 18 GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

GSE20916 125 GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

GSE21510 44 GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

GSE22598 34 GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

GSE23194 17 GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

GSE23878 59 GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

GSE32323 34 GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

GSE33113 96 GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

GSE37364 94 GPL570, [HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array

Total 705

Datasets used for technical validation

GSE41657 88 GPL6480, Agilent-014850 Whole Human Genome Microarray 4x44K G4112F

GSE50114 46 GPL6480, Agilent-014850 Whole Human Genome Microarray 4x44K G4112F

GSE68468 387 GPL96, Affymetrix Human Genome U133A Array

GSE100179 60 GPL17586, [HTA-2_0] Affymetrix Human Transcriptome Array 2.0

GSE117606 208 GPL25373, [HT_HG-U133_Plus_PM] Affymetrix HT HG-U133 + PM Array Plate

TCGA-COAD 519 Illumina HiSeq

Table 1. List of studies meeting our inclusion/exclusion criteria used for Meta-dataset construction and 
technical validation. Sample number and array platforms are provided for each study.
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removal post-processing18. For batch correction, ComBat was chosen due to its flexibility, reliability, and ability 
to set covariates of interest. Because ComBat assumes that differences in batches are non-biological9, biological 
covariates corresponding to normal, adenoma, and colon cancer samples can be specified and preserved to pre-
vent over-normalization and loss of natural variance; a feature that was readily validated by UMAP.

Next, probes with an expression variance in the lower 75th percentile were filtered from the Meta-dataset 
using the genefilter function in the oligo (version 1.54.1) package20. Previous reports have suggested the utility of 
filtering datasets for low variant probes, especially for differential expression (DE) analysis as significance arising 
from low variance and not magnitude of change impedes meaningful data interpretation21. Finally, redundant 
probes were collapsed to their corresponding human gene symbol by maximum average expression using the 
hgu133plus2.db (version 3.2.3) package. Collectively, the constructed Meta-dataset contains a total of 705 samples 
including 231 normal, 132 adenoma, and 342 CRC tissue samples across 12 independent studies. A complete list 
of clinical and histological meta-data can be found in Table 2.

TCGA and other GEO datasets. Raw data from TCGA-COAD dataset was downloaded using the 
TCGAbiolinks (version 2.18.0) package22. Data was pre-processed by within-lane normalization using the “GC 
content” option which includes loess robust local regression followed by global scaling and quantile normaliza-
tion23. Thereafter, genes with row averages less than 0.25 were filtered out of the dataset and results were returned 
as counts per million (CPM). Finally, the TCGA dataset was prepared for DE analysis using the voom function 
and annotated to human gene symbol from ensemble ID.

Data from GEO studies not using the GPL570 platform but still meeting the other inclusion criteria were also 
used for Meta-dataset validation and downloaded in their pre-processed state using the getGEO function in the 
GEOquery package. Redundant probes were collapsed and annotated to human gene symbols prior to analysis.

UMaP, variance stabilization, and sample co-clustering analysis. UMAP was performed to identify 
batches, validate their removal, and ensure the preservation of biological signature post-batch correction. UMAP 
was run using twenty nearest neighbors for each for pre- and post-batch corrected data after which coordinates 
from the top two UMAP components were extracted to be visualized and color-coded either by study or sample 
using the ggplot function within the ggplot2 (version 3.3.3) package24. To determine the overall effect of batch 
correction on the Meta-dataset, variance stability was compared between batch corrected and batch uncorrected 
Meta-datasets. Column (array) variances were determined using the colVars function within the Rfast (version 
2.0.1) package25 and compared via boxplot to map cumulative distributions. Statistical analysis was performed 
using a Wilcoxon signed-rank test.

To assess the consistency of clustering results and its potential impact on downstream analyses, we performed 
unsupervised density-based consensus clustering26. Specifically, sample types were predicted based on their 
UMAP clustering coordinates from 1,000 bootstraps of the density-based UMAP (DBU) cluster algorithm27 
within the fpc (version 2.2.9) package28 with the reachability distance epsilon (eps) set to 0.45 and reachability 
minimum number of points (MinPts) set to 5 (both determined empirically). Co-clustering was then determined 
by comparing the consensus sample predictions to the actual sample types and presented via confusion table.

Gender Average Age Tissue Sample Clinicopathology Metastasis/ Recurrence Anatomical Location

Male 179 66.54 ± 11.72 Normal 31 Pathologic Stage II 42 M0 65 Cecum 5

Adenoma 27 M1 9 Ascending Colon 4

CRC 121 Recurrence 8 Transverse Colon 8

Descending Colon 1

Sigmoid 21

Rectosigmoid 1

Rectum 11

Female 194 66.19 ± 11.20 Normal 51 Pathologic Stage II 48 M0 58 Cecum 4

Adenoma 23 M1 9 Ascending Colon 9

CRC 120 Recurrence 10 Transverse Colon 1

Descending Colon 7

Sigmoid 21

Rectosigmoid 1

Rectum 11

Unidentified 332 n/a Normal 149 Low Grade Polyp Dysplasia 16 M0 68 Cecum 0

Adenoma 82 High Grade Polyp Dysplasia 13 M1 18 Ascending Colon 8

CRC 101 Dukes A/B 14 Recurrence 26 Transverse Colon 2

Pathologic Stage I 10 Descending Colon 8

Pathologic Stage II 37 Sigmoid 32

Pathologic Stage III 23 Rectosigmoid 0

Pathologic Stage IV 18 Rectum 14

Table 2. Clinicopathologic information. Breakdown of clinical and pathologic characteristics stratified by 
gender in the Meta-dataset. The number of samples (n) are given to the right of each variable.
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Cross-platform correlation analysis. Cross-platform correlation was used to quantitatively validate the 
Meta-dataset. Because gene expression results obtained from different array platforms cannot be directly com-
pared, we opted instead for comparing the log2 fold change (LogFC) values, or expression trends of genes com-
mon between the Meta-dataset and six external datasets. Previous studies have shown this method to be a robust 
means of validation as global gene expression trends are generally preserved across tissue types despite sample 
and study heterogeneity12,13. In order to accomplish this, the LogFC of genes across adenoma versus normal 
(AvN), CRC versus adenoma (CvA), and CRC versus normal (CvN) comparison groups were computed using 
the limma (version 3.46.0) package. For comparing the Meta-dataset (microarray) with the TCGA-COAD data-
set (RNAseq), the latter was voom-transformed prior to enumerating LogFC values. Cross-platform correlation 
between the LogFC values of common genes was then performed using the Spearman correlation coefficient to 
assess overall relationships.

Differential expression (DE), pathway Enrichment (pE), and Gene Ontology (GO) analysis.  
Differential expression (DE) analysis for AvN, CvA, and CvN comparison groups was carried out using limma. 
Specifically, DE analysis was independently performed on the top 25% most variable genes between each group. 
Genes were considered DE if they met the uniform threshold of having a |LogFC| ≥ 1.0 and False Discovery Rate 
(FDR) q-value < 0.01. Comparison of differentially expressed genes (DEGs) between each contrast was then vis-
ualized by a Venn-diagram using the VennDiagram (version 1.6.20) package29.

Pathway enrichment (PE) analysis for AvN, CvA, and CvN comparison groups was carried out by gene 
set variance analysis (GSVA) using the GSVA (version 1.38.2) package with default parameters30. Specifically, 
all C2 curated gene sets (c2.all.v7.4.symbols), which includes canonical pathways, KEGG, BIOCARTA, and 
REACTOME annotations, was downloaded from MSigDB and used for enumerating PE scores from the top 25% 
variable genes as before. A minimum gene set size was set to 10 genes while the maximum size was set to 1,000 
genes. Differentially enriched pathways (DEPs), or those with a |LogFC| ≥ 0.25 and FDR q-value < 0.01, were 
identified using limma. As before, a Venn-diagram was used to visualize both common and unique pathways 
amongst each contrast.

Gene Ontology (GO) analysis was performed both as a means of validating enriched pathways and to vis-
ually represent up- and downregulated biological processes characteristic of adenoma formation and malignant 
transformation. DEGs identified in the AvN and CvA groups were compared to the full list of genes obtained 
after collapsing and annotating redundant probes. GO terms relating to biological processes were identified using 
the topGO (version 2.42.0) package31. Specifically, analysis was restricted to GO terms of more than 20 genes and 
statistical significance was determined by Fisher’s Exact test of gene ratios, or the number of observed enriched 
genes compared to the number of genes expected to be enriched by chance. Results were visualized as dot plots of 
the top 14 significant GO terms associated with up- and downregulated DEGs.

ingenuity pathway analysis (ipA). Prediction-based IPA analysis was used to functionally validate the 
Meta-dataset in an unbiased way. IPA utilizes advanced literature search techniques from a curated database to 
predict regulators, mechanistic networks, and sample characteristics based upon the magnitudes and directions 
of DEG LogFC values. We therefore used IPA to predict characteristics and potential mechanisms of AvN, CvA, 
and CvN comparison groups to validate that our Meta-dataset indeed represents each sample and potentially 
their progression. To do this, the list of DEGs between each pairwise comparison determined previously were 
used for analysis.

First, three disease and function predictions and their corresponding FDR q-values (determined using Fisher’s 
Exact Test) were used to validate that the signatures corresponded to the correct tissue type and state. Afterwards, 
the top regulatory networks corresponding to adenoma formation (AvN) and malignant transformation (CvA) 
were assessed and visualized. Information from the regulatory network including which upstream regulator and 
downstream pathway was predicted to be active or inhibited was then compared both to the GO analysis (for 
determining internal consistency) and the literature (for assessing whether results are congruent with what is 
known).

Data Records
The Meta-dataset and associated clinical meta-data data are available at ArrayExpress32. Datasheets used through-
out the R code script to perform all the analyses can be found at figshare33. All dataset used in constructing 
the Meta-dataset as well as its technical validation can be found at GEO (https://www.ncbi.nlm.nih.gov/geo/) 
or Genomic Data Commons (https://portal.gdc.cancer.gov/) and include: GSE418334, GSE867135, GSE934836, 
GSE1596037, GSE2091638, GSE2151039, GSE2259840, GSE2319441, GSE2387842, GSE3232343, GSE3311344, and 
GSE3736445, TCGA-COAD6, GSE4165746, GSE5011447, GSE6846848, GSE10017949, and GSE11760650.

technical Validation
Data acquisition and pre-processing. Data selection. An analytic pipeline was used in conjunction 
with inclusion/exclusion criteria for selecting microarray datasets suitable for merging (Fig. 1). To ensure relative 
homogeneity of samples and reduce the multiplicative impact of batch effects, only studies using freshly prepared 
or frozen human tissue were selected. Formalin fixed paraffin embedded (FFPE) tissue samples were excluded due 
to the heterogeneity of microarray efficiency stemming from differing fixation protocols, low nucleic acid purity 
or degradation51. In addition, sessile serrated adenoma samples were excluded when possible. Furthermore, stud-
ies used to construct the Meta-dataset were restricted to those using the GPL570 Affymetrix platform to reduce 
inter-platform batch effects and enable probe-probe matching when merging. Although the rigor of this pipeline 
substantially reduced the total number of candidate studies, we believe minimization of batch effects was a justi-
fied trade-off.
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Data normalization. As explained previously, fRMA was chosen for normalizing raw microarray data due to its 
superior performance against conventional RMA for pre-processing datasets in batches prior to grouped anal-
yses. For example, in the raw log2-transformed data from GSE934836, substantial heterogeneity in global probe 
expression exists between patient microarrays (Fig. 2a, top). Application of fRMA greatly reduced noise and stabi-
lized full-array expression ranges around the median (Fig. 2a, bottom). This procedure was applied to all datasets 
individually using the frma function prior to Meta-dataset construction.

Meta-dataset detailed information. Collectively, the Meta-dataset consists of 231 normal (32.8%), 132 adenoma 
(18.7%), and 342 colon cancer (48.5%) samples for a total of 705 samples. Based on the data available from the 
annotations provided by each of the 12 included studies, tissue from 179 males (25.4%), 194 females (27.5%), and 
332 unidentified genders (47.14%) are represented. The overall mean age was 66.37 ± 11.46 y/o (Table 2). The 
average age for male subjects was 66.54 ± 11.72 y/o and 66.19 ± 11.20 y/o for female subjects, falling within the 
known average age of diagnosis for both genders (68 y/o males and 72 y/o females)52. Histopathologic data was 
more limited based on the studies utilized, including detailed information on 29 adenoma (16 low grade dysplasia 
and 13 high grade dysplasia) and 221 CRC samples (14 Dukes A/B, 10 Stage I, 37 Stage II, 23 Stage III, and 18 
Stage IV). This also included 191 subjects being designated M0, 36 M1, and 44 subjects having recurrent disease. 
Finally, anatomical location was provided in some of the datasets resulting in the representation of 9 cecal, 21 
ascending colon, 11 transverse colon, 16 descending colon, 74 sigmoid colon, 2 rectosigmoid, and 36 rectal sam-
ples. Information regarding other clinicopathologic characteristics and/or treatment status were not reported as 
they were not explicitly detailed in the meta-data of the studies.

Batch identification and removal. Uniform Manifold Approximation and Projection analysis. UMAP 
was used to identify both non-biological and biological sources of variation. Specifically, the umap function was 
used with 20 nearest neighbors to enumerate the first two components explaining the greatest degree of variance 
from the pre- and post-batch corrected meta-datasets. Prior to batch correction, distinct clusters correspond-
ing to both non-biological, or study-related batches (Fig. 2b, top left), and biological, or sample-related batches 
(Fig. 2b, bottom left), were identified. However, batch correction via ComBat resulted in a complete removal 
of non-biological batches (Fig. 2b, top right). Importantly, clusters corresponding to biological batches were 

Fig. 2 Data pre-processing and batch correction. (a) Boxplots showing global array expression distribution in 
GSE9348 before (top) and after (bottom) normalization using frozen Robust Multiarray Averaging (fRMA). 
(b) UMAP plots showing successful identification (left) and removal (right) of inter-study batch effects with 
preservation of normal, adenoma, and colon cancer biological signatures (bottom) through empirical Bayes 
estimation method (ComBat). (c) Confusion table comparing the co-clustering of each known sample type 
(rows) with their predicted clusters (columns) based on 1,000 bootstraps of the density-based UMAP algorithm. 
Both the number of samples and their percentage of total are provided. (d) Boxplot comparing the distribution 
of array variances between the batch uncorrected (fRMA only) and batch corrected (fRMA + ComBat) Meta-
datasets. Statistical significance was determined using a Wilcoxon signed-rank test.
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preserved post-ComBat (Fig. 2b, bottom right), confirming that over-normalization did not occur and inherent 
differences between normal, adenoma, and CRC samples remained distinct. Moreover, we noted a degree of 
overlap (11.4%) between the adenoma and colon cancer clusters which was preserved post-batch correction and 
confirmed using unsupervised density-based clustering of the UMAP projection (Fig. 2c). This was an expected 
finding as expression changes in adenoma samples share more in common with CRC than normal epithelium, 
and serves as a secondary means of validation. Finally, due to the overall minimal amount of sample overlap, we 
did not isolate core samples for downstream analysis as doing so would effectively eliminate the impact of inher-
ent tissue heterogeneity.

Effects of batch correction on array expression distribution. To assess the effect batch correction had on full array 
expression distribution, full-array expression variances between the batch uncorrected (fRMA only) and cor-
rected (fRMA + ComBat) Meta-datasets were compared. As expected, batch correction significantly reduced 
(P < 0.0001) and stabilized array variances as reflected by compressed boxplot interquartile ranges (Fig. 2d).

Validation of meta-dataset biological signatures. Quantitative cross-platform validation. Quantitative  
validation was performed by cross-platform correlation of common genes between the Meta-dataset and six 
external datasets of varying platforms detailed in Table 1. Because direct comparison of gene expression values 
across differing platforms is not possible, we opted instead for correlating gene trends between adenoma and 
normal samples (AvN), CRC and adenoma samples (CvA), and CRC and normal samples (CvA). This method 
has been used previously for confirming meta-dataset accuracy and robustness13. To accomplish this, redundant 
probes for all datasets were first collapsed to gene symbols using their respective annotation package followed by 
enumeration of log fold change (LogFC) values for each pairwise comparison using limma. LogFC values of genes 
common with the Meta-dataset were then correlated using Spearman correlation coefficient (Rs) to account for 
the potential of non-linear relationships. All results, including the number of samples for each comparison and 
the total number of correlated genes, are detailed in Table 3.

Overall, we observed strong gene trend correlations between our Meta-dataset and all external datasets with 
an average Rs of 0.81 ± 0.07 for AvN, 0.70 ± 0.08 for CvA, and 0.82 ± 0.07 for CvN groups. First, we noted that 
cross-platform correlation of CvA gene trends was the lowest across all studies. We believe that this is a result 
of more substantial tissue heterogeneity that exists for adenoma and CRC samples relative to healthy tissue. In 
contrast, we found that comparison of CvN gene trends produced the strongest correlations in almost all cases 
with the greatest association (Rs = 0.90) observed between the Meta-dataset (microarray) and voom-transformed 
TCGA-COAD (RNAseq) datasets, despite their vastly different approaches to expression profiling. This find-
ing was not completely unwarranted as another study comparing merged microarray meta-datasets to the 
TCGA-LUAD and TCGA-LUSC lung cancer datasets observed cross-platform correlation values of 0.92 and 
0.93, respectively13. In fact, we found that correlation performance was independent of platform type with no 
differences observed between Affymetrix- or Agilent-based platforms, providing further evidence of the robust 
nature and general applicability of our Meta-dataset.

Comparison of differentially expressed genes with other meta-datasets. To provide an additional degree of 
quantitative validation, we first identified DEGs, or genes with an absolute fold change of at least 2 (LogFC ≥ 1) 
and FDR q-value < 0.01 between AvN, CvA, and CvN comparison groups (Supplementary File 1), followed 
by cross-examination across four additional studies including three smaller CRC-related meta-datasets. For 
example, Dongmei et al. 2020 constructed a meta-dataset comprising only normal and CRC samples from 4 
independent microarray studies and identified 10 key hub genes closely associated with the pathogenesis of 
CRC53. Of these, 9 (CDK4, CDH3, DKC1, UBE2S, UBE2C, GUCA2A, GUCA2B, TRIP13, and GTF3A) were 
DEGs in our Meta-dataset’s CvN group with the exception of EIF3B. Similarly, Xingjie et al. 2016 constructed a 
3-study meta-dataset and identified 7 important hub genes contributing to the development of CRC54. As before, 
a majority (COL1A1, COL1A2, UGDH, ALDH1A1, FABP4, and MGLL) were differentially expressed in our 
Meta-dataset excluding MMP9.

Study Platform

Samples (n)

Common Genes

Correlation of LogFC to Meta-dataset

Normal Adenoma Cancer AvN CvA CvN

TCGA-COAD Illumina Hi-Seq 41 0 478 7,856  -  - 0.90

GSE41657 Agilent 4 × 44K 12 51 25 7,578 0.72 0.60 0.74

GSE50114 Agilent 4 × 44K 9 37 0 5,979 0.88  -  -

GSE68468 Affymetrix HG U133A 0 13 374 5,912  - 0.78  -

GSE100179 Affymetrix HT Array 2.0 20 20 20 7,989 0.83 0.69 0.79

GSE117606 Affymetrix HT HG-U133+ 65 69 74 7,752 0.79 0.73 0.84

Table 3. Quantitative Validation. Quantitative validation of the Meta-dataset was carried out by comparing 
the LogFC values of common genes across each pairwise comparison, including adenoma vs. normal (AvN), 
CRC vs. adenoma (CvA), and CRC vs. normal (CvN), between the Meta-dataset and six external datasets via 
Spearman correlation. In addition to the spearman correlation coefficient (Rs) given for each comparison, the 
instrument platform, the number of samples for each tissue type, and the number of common genes is provided. 
“-” indicates that no comparison was made due to the lack of tissue type representation. All Rs values are 
significant at P < 0.0001.
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To validate adenoma-based signatures, DEGs in the AvN and CvA groups were compared to those reported 
by Hauptman et al.55. This group not only created a 4-study meta-dataset representing all three sample types, but 
also provided a detailed list of DEGs for each pairwise comparison. We noted excellent concordance between 
our Meta-dataset with a 93% (127/137), 89% (23/26) and 100% (172/172) overlap of DEGs across AvN, CvA, 
and CvN contrasts, respectively. Finally, we opted to compare CvA DEGs with those identified by Druliner et 
al. 2019 as their investigation is one of only a handful providing insight into transcriptome-wide changes driv-
ing malignant transformation of adenomas56. This study is unique in that expression profiles of cancer-free and 
cancer-associated polyps were compared to identify genes directly linked with adenoma neoplastic progression. 
Overall, we found that a substantial number of these driver genes, including GREM1, CXCL5, PLAU, IGF1, IGF2, 
and EREG were identified as CvA DEGs in our Meta-dataset.

Collectively, the strong inter-platform correlation of gene trends combined with the high degree of DEG over-
lap across a variety of independent studies demonstrates the robust nature of our Meta-dataset and suggests that 
results obtained from in-depth analyses have the power and consistency necessary for pre-clinical modelling of 
CRC neoplastic progression.

Functional validation through integrative analyses. In addition to quantitative validation, we also functionally 
validated AvN, CvA, and CvN signatures through integrative use of enrichment- and prediction-based analyses. 
This was done to provide both continuity and context to the quantitative validation results while also demonstrat-
ing the potential utility of our Meta-dataset for unearthing key genes, regulators, and pathways associated with 
early and late phases of colorectal neoplastic progression. Because transcriptome-wide changes are expected to 
be unevenly distributed along the neoplastic progression axis, we first investigated the degree of overlap between 
DEGs of each signature (Fig. 3a, top). Of the 1,318 total DEGs, 738 (48.6%) were unique to each signature, 

a

d
Normal → Adenoma Adenoma → Cancer

Predicted activation

Predicted inhibition

Upregulated

Downregulated
Legend

c

Normal → Adenoma Adenoma → Cancerb
AvN CvA

CvN

DEPs

DEGs

Disease & Function FDR q-Value

Colorectal Adenoma 7.79 x 10-79

Adenoma 8.65 x 10-61

Benign Tumor 1.47 x 10-55

ECM Organization 2.00 x 10-19

Leukocyte Migration 2.56 x 10-17

Inflammatory Response 7.29 x 10-13

Colorectal Tumor 4.76 x 10-35

Colorectal Cancer 2.85 x 10-24

Large Intestine Neoplasm 1.39 x 10-17

117117

248 69
56

28

421

579

365 175
106

88

315

890 183

Fig. 3 Functional validation. Functional validation of the Meta-dataset was carried out in three steps including 
comparison of differentially expressed genes (DEGs), functional enrichment, and prediction-based analyses. 
(a) Venn diagram comparing DEGs (|LogFC| ≥ 1.0 and FDR q-value < 0.01) (top) and differentially enriched 
pathways (DEPs; |LogFC| ≥ 0.25 and FDR < 0.01) (bottom) between AvN, CvA, and CvN contrasts showing 
the presence of genes and pathways that are unique to each phase along the neoplastic sequence. (b) Plots 
detailing representative enriched gene ontology (GO) terms corresponding to the early (normal to adenoma; 
AvN) (left) and late (adenoma to cancer; CvA) (right) phases of neoplastic progression. The color of each point 
is determined by its association to either tissue type based on whether the genes were down- or upregulated. 
The size of each point is determined by the gene ratio, or the ratio of significantly enriched genes to the expected 
number of genes by chance for each term. (c) Prediction-based validation of the AvN (green), CvA (blue), and 
CvN (red) signatures using IPA’s prediction of disease and function from the list of DEGs. (d) Top mechanistic 
networks corresponding to early (left) and late phases (right) of neoplastic progression determined by 
integrating IPAs prediction of upstream regulators (orange or blue) and direction of fold change of DEGs (red 
or green) showing strong agreement with functional enrichment results and what is known in the literature. All 
p-values were determined using Fisher’s Exact test followed by Benjamini-Hochberg correction for multiple 
comparisons.
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752 (49.5%) were common between two groups, and only 28 (1.9%) were common between all three groups. 
Specifically, there were 827 DEGs uniquely involved in adenoma formation (AvN), 186 DEGs involved in malig-
nant transformation (CvA), and 84 DEGs involved in both processes, suggesting that transcriptome-wide changes 
are more prominent during early phases of neoplastic progression.

To provide a functional context to these changes, we performed Gene Set Variance Analysis (GSVA) on the 
top 25% variable genes for each comparison group as well as Gene Ontology (GO) on DEGs. GSVA scores meas-
ures gene set enrichment variation across the entire dataset and provides sample-level enrichment scores based 
on the single sample Gene Set Enrichment Analysis (ssGSEA) algorithm, enabling accurate identification of dif-
ferentially enriched pathways (DEPs) using linear modelling techniques such as limma30. Likewise, we assessed 
the degree of overlap of DEPs which were defined as |LogFC ≥ 0.25|and FDR q-value < 0.01 (Fig. 3a, bottom). 
We found that out of 2,122 DEPs, 815 (38.4%) were unique to each signature, 1,179 (55.6%) were common to two 
groups, and 88 (4.0%) were shared between all three groups (Supplementary File 2). In addition, 1,255 DEPs were 
unique to adenoma formation, 358 DEPs were unique to malignant transformation, and 194 DEPs were associ-
ated with all phases of progression. Of note, the top pathway positively associated with adenoma formation was 
SABATES_COLORECTAL_ADENOMA_UP (LogFC = 0.95, FDR = 1.90 × 10−164) while the top negatively asso-
ciated pathway was SABATES_COLORECTAL_ADENOMA_DN (LogFC = −0.93, FDR = 1.69 × 10−154), both 
of which are derived from GSE867135. Moreover, well known culprits of early neoplastic progression including 
pathways associated with epithelial-mesenchymal transition (EMT), DNA damage and repair, MYC activation, 
and hyperproliferation via cell cycle transition are AvN-associated DEPs. In the same light, pathways known to 
be closely associated with CRC pathogenesis such as TGFβ157, FOXM158, MYC59, angiogenesis and extracellular 
matrix (ECM) remodelling60 are CvA and CvN-associated DEPs. Importantly, DEPs were recapitulated by GO 
analysis of DEGs and collectively show that adenoma formation is marked by loss of cellular functions character-
istic of differentiated tissue as well as hyperproliferation in response to genomic stress and potentially inflamma-
tion (Fig. 3b, left). In contrast, malignant transformation is defined by a loss of specialized metabolic functions 
with stark activation of ECM remodelling, inflammation, angiogenesis, and EMT (Fig. 3b, right).

Finally, we utilized prediction-based analysis via Ingenuity Pathway Analysis (IPA) software to identify key 
sample characteristics and mechanistic pathways as a secondary functional validation metric. IPA is a powerful 
tool that utilizes a curated database of scientific literature to predict regulators, pathways, and associated disease 
and functions from a list of genes and their corresponding LogFC and/or significance level5. To functionally 
validate AvN, CvA, and CvN signatures, we predicted associated disease and functions from DEGs. The analysis 
was based on the direction of the LogFC and FDR values and was restricted to drawing direct relationships from 
the human database. IPA correctly identified the adenoma signature from the AvN DEG list with Colorectal 
Adenoma (FDR = 7.79 × 10−79), Adenoma (FDR = 8.65 × 10−61), and Benign Tumor (FDR = 1.47 × 10−55) being 
top results (Fig. 3c). This was also true regarding the CRC signature, with Colorectal Tumor (FDR = 4.76 × 10−35), 
Colorectal Cancer (FDR = 2.85 × 10−24), and Large Intestine Neoplasm (FDR = 1.39 × 10−17) being predicted 
from the CvN DEG list. Top disease and functions associated with the CvA signature were in line with functional 
enrichment results. For mechanistic networks, we found that adenoma formation was associated with the acti-
vation of known CRC oncogenes FOXM158 and TP6361, which was predicted to be primary regulators governing 
the activation of interphase cell cycle transition and DNA repair pathways (Fig. 3d, left). On the other hand, 
malignant transformation was characterized by activation of EZH262 and JUN oncogenes63, which was predicted 
to enhance tumor cell migration and cytostasis (a known feature of EMT)64 as well as leukocyte chemotaxis and 
adhesion, presumably culminating in tumor infiltration (Fig. 3d, right). Importantly, our results mirrors what is 
known about early and late phases of neoplastic progression65 while also providing a wealth of knowledge that 
could shed light on less-described genes and/or pathways. Ultimately, we provide compelling evidence supporting 
the accuracy of our Meta-dataset and potential use as a powerful investigational tool for in silico modelling of 
colorectal neoplastic progression.

In the present study, we aggregated 705 arrays across 12 independent studies to create a Meta-dataset of nor-
mal, adenoma, and colon cancer samples for the primary goal of studying colorectal neoplasm formation and 
progression. Collectively, results from transcriptional profiling of early and late stages of neoplastic progression 
using our Meta-dataset not only demonstrated results that were generalizable across a variety of studies and array 
platforms, but also strongly agreed with the literature, thereby validating its accuracy and robustness. Moreover, 
by containing a breadth of adenoma samples our Meta-dataset provides distinct advantages over the conventional 
TCGA-COAD dataset, especially for investigating pre-malignant phases of colorectal neoplastic progression. It 
is our belief that this Meta-dataset provides a powerful public tool to facilitate further in-depth in silico analyses, 
biomarker discovery, pre-clinical modelling, and even hypothesis generation and testing. Of course, by making 
our Meta-dataset openly accessible, we invite the scientific community to apply novel tools and techniques to 
further dissect mechanisms associated with adenoma formation and malignant transformation.

Code availability
The R code used to construct and validate the Meta-dataset is available at Data Citation 2. Analyses were executed 
in R within the R Studio desktop (version 1.1.1103) suite. Microsoft’s open R version 4.0.2 (https://mran.
microsoft.com/open) was used to take advantage of a multicore system to improve multithreaded processes and 
reduce computation time.
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