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Scenarios of future Indian 
electricity demand accounting for 
space cooling and electric vehicle 
adoption
Marc Barbar    ✉, Dharik S. Mallapragada   , Meia Alsup & Robert Stoner

India is expected to witness rapid growth in electricity use over the next two decades. Here, we 
introduce a custom regression model to project electricity consumption in India over the coming 
decades, which includes a bottom-up estimate of electricity consumption for two major growth drivers, 
air conditioning, and vehicle electrification. The model projections are available at a customizable level 
of spatial aggregation at an hourly temporal resolution, which makes them useful as inputs to long-
term electricity infrastructure planning studies. The approach is used to develop electricity consumption 
data sets spanning various technology adoption and growth scenarios up to the year 2050 in five-year 
increments. The aim of the data is to provide a range of scenarios for India’s demand growth given 
new technology adoption. With long-term hourly demand projections serving as an essential input for 
electricity infrastructure modeling, this data publication enables further work on energy efficiency, 
generation, and transmission expansion planning for a fast-growing and increasingly important region 
from a global climate mitigation perspective.

Background & Summary
Many assessments of future electricity demand in India project large increases in electricity consumption from 
adoption of air conditioning technologies in the buildings sector over the next two decades1–3. This large growth 
is likely to make India among the top nations in terms of electricity consumption, implying that technology 
choices related to energy consumption and production in India are likely to play a significant impact on global 
climate change mitigation efforts. Additionally, the Indian government has been pushing for the transporta-
tion sector’s electrification, starting with two- and three-wheel vehicles,which is further likely to increase overall 
electricity demand. As of 2020 in India, there are 152,000 registered electric vehicles2. Air conditioning (AC) 
related electricity demand accounted for 32.7 TWh, contributing to less than 2.5% of the total demand in 20193. 
However, both air conditioning and transport electrification are anticipated to introduce structural changes in the 
temporal and spatial trends in electricity consumption patterns, that has important ramifications for long-term 
resource planning for the electricity sector4. This paper presents an bottom-up approach to estimate electricity 
consumption in India for various scenarios of technology and policy adoption with a specific focus on providing 
aggregated consumption estimates as well as spatio-temporally resolved consumption profiles that would be rel-
evant for regional and national electricity system planning studies. The approach enables quantifying the impact 
of various growth and technology adoption scenarios on quantity and pattern in electricity consumption. The 
datasets detailed in this paper include annual energy consumption at India’s state, regional, and national levels as 
visualized in Fig. 1, as well as underlying consumption profiles at an hourly time resolution. The annual energy 
consumption is forecasted on a five-year increment to 2050. Figure 2 shows one scenario of national electricity 
demand forecast. In addition to the snapshot of annual consumption, hourly load profiles are developed at the 
same resolution as seen in Fig. 3.

The forecasting is divided into two steps: business-as-usual and technology. Business-as-usual is a statistical 
model that infers data it can be trained on i.e. historical electricity demand. The technology model is a bottom-up 
approach that adds new loads to the total demand. Among new loads, we focus on residential and commercial 
cooling as well as various electric vehicles (EV). Some key insights from cooling3 and EV2 studies highlighting 
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Fig. 1  State and regional level distribution of annual electricity 2050 for stable GDP growth, baseline cooling, 
and home electric vehicle (EV) charging scenario.

Fig. 2  Summary results of India’s electricity demand forecasting at national level with stable GDP growth, 
baseline cooling, and home electric vehicle (EV) charging.

Fig. 3  2030 Load profile for southern Region across three days in summer. Scenario: stable GDP growth, 
baseline cooling, home electric vehicle (EV) charging.
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peak demand development motivate the need for demand forecasting at the hourly resolution. Cooling demand 
due to mainly split unit air conditioning installation in India is expected to increase the peak to mean ratio (also 
sometimes referred to the “peakiness”) of electricity demand in India as well as shift the timing of peak demand 
from evenings to midnight3. While electric vehicles do not constitute a large portion of the total demand, certain 
charging schemes can contribute significantly to the peak demand2. Numerous energy demand forecast for India 
have recently been published as decadal snapshots1,4,5, however granularity of demand at an hourly resolution has 
not been presented in these studies. Our approach enables quantifying the impact of different technology and 
structural elements, such as adopting energy efficient vs. baseline cooling technology or work-place charging vs. 
home charging for EVs, on the hourly electricity consumption profiles. These insights and the accompanying data 
sets are essential to carry out generation and transmission expansion as well as distribution network planning,and 
are thus essential for a sustainable energy infrastructure development in the Indian context.

Similar to other forecasting studies, we model Gross domestic product (GDP) growth6 to be the main econo-
metric driver of the business-as-usual demand forecasting, and thus three scenarios are introduced: slow, stable, 
and rapid GDP growth. We examine two AC load scenarios: energy-efficient equipment and baseline equipment 
per the International Energy Agency’s Future of Cooling study3. Finally, we evaluate three EV charging mecha-
nisms: home, work, and public charging. This totals the number of data sets spanning three input dimensions to 
18 scenarios. Technology adoption growth has been correlated with economic growth under the assumption that 
new technologies are adopted faster when the economy is growing faster and vice versa. We present two cooling 
scenarios to highlight the difference in energy-efficient and regular air conditioning units and bring attention to 
the need for policy and programs that favor energy-efficient cooling unit sales. Furthermore, we present various 
EV charging mechanisms to inspect the demand impacts that electric vehicle charging can have on the electric 
grid at different times. The produced data can be used as input to electricity infrastructure planning both at the 
distribution and transmission level.

Methods
Figure 4 illustrates the major steps of our proposed demand forecasting approach. We use two models to estimate 
future electricity demand in India. In the first model — business-as-usual — we use a linear regression model to 
project daily peak and consumption on a regional basis; this is the business-as-usual scenario. We then add nat-
ural variation to the projections by finding the error between the training data and results and scaling it to every 
region based on seasonality. Then we fit the projected peak and total consumption to an annual hourly load profile 
for 20157 featuring an evening peak8. In the second model — technology model — we take AC and EV adoption 
into account as an additive component on top of the business-as-usual predictions. GDP data, which is an inde-
pendent variable in the model, is chosen to be the main driver of growth of the business-as-usual scenario as well 
as technology adoption rates. The input data used are publicly available and are referenced in Table 1.

Input data processing.  Although GDP is widely used for forecasting energy demand, it is specifically essen-
tial in the case of India, where economic growth is expected to ramp up over the next few decades similar to the 
recent trends in China9. We based our demand forecast on GDP projections from a PricewaterhouseCoopers 
(PwC) report10, that projected India’s GDP to grow from 3.6 trillion in 2020 to reach 28 trillion USD in 2050. 
Considering the historical national GDP data for India starting in 1990, we fit and project an exponential curve 
for rapid growth and an Gompertz curve for slow growth11 as detailed in Table 2. We use PwC’s projections to 
define the stable GDP growth scenario. Curve fitting and projection results are illustrated in Supplementary Fig. 1.  

Fig. 4  Simplified schematic of methods; inputs in green, models in red, outputs in blue.
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The rapid growth scenario produces an annual average growth rate of 9.5%, PwC’s growth rates start at 7.8% 
for the first projected decade and ends at 6.2% in the final projected decade. The slow growth scenario starts at 
7.2% growth rate in the first projected decade and ends at 3.9% in the final projected decade. To break down the 
regional energy consumption projections to state level we use the ratio of GDP per capita of the corresponding 
state to the GDP per capita of the region it is in. For each GDP growth scenario, we fit the same functions given 
state-wise data to produce GDP forecast at the same resolution. GDP per capita at state-level is computed using 
the projected GDP data and state level population projections12.

GDP dependence and limitation.  Relating growth in electricity demand to GDP is a strong generalization, how-
ever it is not a novel one in the case of India. Strong correlation between economic growth and energy consump-
tion has been established in the Indian context in this study and other studies13 given data from the past two 
decades6. We recognize that GDP as a metric of economic growth has several limitations particularly related to 
projecting how economic growth is distributed among society within a state or nation. This may be the strongest 
limitation of the data we are presenting in the manuscript. However, lack of historical record and long-term pro-
jections of alternative open-access economic data at the desired spatial and temporal resolution limit the devel-
opment of a framework to project energy consumption with other metrics. While GDP and energy consumption 
growths may differ in the long-run, there is an evident correlation between the two that can be used to estimate 
long-run energy consumption growth. Deviating away from linear regression may yield better results, however, 
data scarcity is again a limitation to the development of more complex models. Furthermore, this manuscript 
motivates the need for more bottom-up projections and not just regression models because historical consump-
tion cannot infer consumption trends from new demand sources such as cooling and EVs.

Additionally, since the Future of Cooling study by the International Energy Agency relies on GDP forecasts 
developed by the International Monetary Fund3, we elected to use a similar metric. We intentionally develop a 
large bandwidth of projection scenarios to mitigate the limitation of an individual snapshot representing a sin-
gular assumption. The motivation behind presenting the described results is ability to compare different scenar-
ios and post-analyze the demand growth and the trade-offs. To produce a large bandwidth of growth scenarios 
we needed to use a straightforward metric that has enough historical data to produce various fitted curves for 
projections.

Business-as-usual model.  The business as usual projections are modeled with a linear regression consid-
ering weather and economic growth features. The ground truth historical daily peak and total consumption for 
each electric grid were obtained from the Power System Operation Corporation (POSOCO) for 2014–201914. The 
GDP used in the model was obtained, as explained in the previous section. Weather data was secured from the 
NASA Merra-2 data set15. The choice of features for the regression model is limited to GDP and weather variation 
due to the limitation in availability of data, both historical and future projections, at the desired spatial and tem-
poral resolution. GDP is identified as a long-term parameter driving growth in year over year demand projections 
as highlighted in Fig. 5. Weather data is identified as a short-term parameter driving seasonal variation within a 
year’s demand projections as highlighted in Fig. 6. Previous parametric analysis on these features and their coef-
ficient for short and long term demand forecasting in both time and frequency domain16 reinforce their use as 
features for the business-as-usual regression model. We present detailed outcomes for the Southern region, with 
further details available in16.

NASA Merra 2 data acquisition.  For each of the five electric grid demand regions highlighted in right panel 
of Fig. 1, the largest cities in each region were identified using population data made available by the United 

Data Source

State-wise Historical GDP Ministry of Statistics and Programme Implementation6

Vehicle Sales and Registration Society of indian Automobile Manufacturers24

Air Conditioning Stock and Capacity International Energy Agency3

Load Profile United States Agency for International Development20

State-level sector-wise energy consumption Power System Operation Corporation14,28

Table 1.  Input Data Sources.
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Gompertz Growth Curve Exponential Growth Curve
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A = 7 × 10−29 A = 1 × 10−64

B = 4.64 × 10−2 B = 8.7 × 10−2

C = 0 C = 0

R-squared = 0.949669 R-squared = 0.989361

Table 2.  GDP projections curve fit results.
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Nations17. Then, the city’s latitude and longitude were used to pull down the corresponding environmental data 
from the Nasa Merra-2 data set. The cities used for each of the five regions are listed here:

•	 Northern: Delhi, Jaipur, Lucknow, Kanpur, Ghaziabad, Ludhiana, Agra
•	 Western: Mumbai, Ahmadabad, Surat, Pune, Nagpur, Thane, Bhopal, Indore, Pimpri-Chinchwad
•	 Eastern: Kolkata, Patna, Ranchi (Howrah was ignored because the environmental factors are the same as 

Kolkata)
•	 Southern: Hyderabad, Bangalore, Chennai, Visakhapatnam, Coimbatore, Vijayawada, Madurai
•	 Northeast: Guwahati, Agartala, Imphal

From the NASA set, 11 variables were included for each city: specific humidity, temperature, eastward wind, 
and northward wind (all 2 m above the surface and 10 m above the surface - eight total variables), precipitable ice 
water, precipitable liquid water, and precipitable water vapor. In particular, the instantaneous two-dimensional 
collection “inst1_2d_asm_Nx (M2I1NXASM)” from NASA was used. Detailed descriptions of these variables are 
available in the Merra-2 file specification provided by NASA15. The environmental variables available from the 
NASA MERRA-2 dataset were given on an hourly basis. The daily minimum, daily, maximum, and daily average 
was calculated for each of the 11 variables for each day.

Forecasts.  The business-as-usual demand forecasting problem was divided into ten separate problems,corre-
sponding to one problem each peak and total consumption for each of the five regional grids shown in Fig. 1. To 

Fig. 5  Southern region back test annual demand growth given GDP projection.

Fig. 6  Southern region back test seasonal demand variation given weather data.
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ensure the model would not overfit the data, the model was trained with Elastic Net18 to regularize results, and 
validated on held out 2019 data. An L1 ratio (Lasso) of 0.9 was chosen to minimize error in 2019 as the validation 
set. Then all of the models were trained with 0.9 L1 ratio on the full dataset.

Addition of natural variation.  This step aimed to match the statistical characteristics of an actual load year with 
the projected year. 2019 was used to derive the differences. Natural variation was estimated by a distribution 
characterized by the mean and standard deviation of the differences (in absolute value). Then, a natural variation 
adjustment was added to that day (with a random true/false bit for positive or negative variation). The noise was 
calculated for each region and peak demand and daily consumption separately. The natural variation (noise) 
vectors used are on the Github repository for this paper19. This part of the process is non-deterministic and repli-
cation of the results requires using the same natural variation vector used in our projections.

Hourly profiles.  The statistical inference model presented above forecasts daily consumption driven by state-level 
economic parameters and weather data. The produced projections are at a daily resolution. We downscaled the 
data to hourly load profiles based on the 2015 hourly load profile data7. The result of the regression model is at 
regional level, breaking it down state-wise is pro-rated based on state-wise to region-wise GDP per capita pro-
jections ratios for the respective year. To do so, we tag each day of the year by the month it corresponds to and 
whether it is a weekday or weekend. We cluster demand for each hour by month and day. Each hour of the day 
then has its own cluster of demand data from 2015 based on the assumption that the same hour of the day for a 
given month and the same day type will exhibit similar demand behavior. This biases the construction of the pro-
files to demand patterns from 2015 only. To minimize the impact of this bias, we use the historical weather data15 
of the testing data years (2014–2019) for each day to simulate daily temperatures variations that are reflected 
in higher or lower demand. We sample weather data for each day and compare it to 2015, and subsequently 
use normalized the difference to scale the demand on a daily basis. Finally, we sample demand for each hour of 
the year from the corresponding cluster (defined by month and weekend or weekday) and scale it accordingly. 
Constructing the hourly load profile and fitting them to match the projected daily consumption and the projected 
daily peak demand then becomes a trivial exercise of sampling and fitting from the corresponding clusters and 
weather data space. The 2015 hourly demand data used in this study is documented in detail elsewhere and has 
been used in projecting demand for supply-side modeling efforts8. Limited availability of complete hourly data 
at state and regional level in India biases the hourly profiles to the 2015 datasets. However, the business-as-usual 
projections are for existing demands composed mainly of lighting and appliance at the residential level and large 
daytime loads at the commercial level20. Our approach implicitly assumes that energy consumption trends for 
these loads will follow historical patterns and therefore sampling from a given year with post-processed noise 
variation can yield reasonable results.

Impact of Climate change on business-as-usual demand.  As per the International Energy Agency (IEA) World 
Energy Outlook (WEO) 201921 only 5% of households in India currently own air conditioning units and 2.6% 
of commercial building energy use is from space cooling. Historically, electricity consumption in India has been 
driven by lighting and appliances in the residential sector20 with commercial and industrial sector contributing 
via larger daytime loads. Since cooling demand is not historically available in the data that the business-as-usual 
regression model is learning from, there is no parametric value to projecting increase in temperatures since there 
is no evident correlation between temperature increase and lighting or appliance use. Moreover, since space cool-
ing is a small percentage of current electricity demand in India, no major trends can be identified given the 
limited daily training data that is being used for the business-as-usual regression. It is then safe to assume that 
weather remains constant for the business-as-usual demand.

Technology model.  Since a regression model can only produce forecasts of data it can learn from, additional 
bottom-up processing must be carried out to get a full picture of India’s demand in the future. We identify trends 
and data points at the state level of the country to build a regional profile as well as the national one.

Cooling.  Cooling is divided into two main categories: residential and commercial. The ratio of commercial to 
residential consumption is computed from state-level data22 and is used as the ratio of commercial to residential 
cooling demand. Using the IEA’s baseline and efficient cooling projections from the Future of Cooling study3, we 
use the annual sales and unit types to calculate the energy consumption and growth rate at a national level and 
pro-rate it down to state level given GDP per capita. Surveyed hourly demand profiles20 are indicators of behav-
ioral cooling energy consumption patterns as exemplified in Supplementary Figs. 2 and 3. The survey produce 
various profiles given climate seasons, household income and size. We apply a time-domain convolution of these 
profiles to generate a representative profile for each state for the various climates and seasons.

We can generate the air conditioning demand profiles for two weather seasons (winter and summer) by convo-
lution of the sample profiles to generate a smooth aggregated demand profile. Moreover, coincidence factors must 
be applied to properly estimate the simultaneity of the demand and its peak. Two coincidence factors are iden-
tified: weekday and weekend, values are extracted from a Reference Network Model Toolkit23. We break down 
the national cooling demand to residential and commercial at state level by identifying state-level sector size 
and growth trends. Scaling the profiles to match the projected cooling energy demand produces hourly energy 
consumption profiles from residential and commercial cooling. Aggregating the appropriate states together will 
produce the same results at the regional level.

More importantly, the IEA’s future of cooling study3 stresses the usage of Cooling Degree Days (CDD) to pro-
ject cooling demand dependency on temperature. The unit consumption pattern and projections of capacity for 
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India’s share of global cooling demand is based on growth in electrification, urbanization as well as Purchasing 
Power Parity. The IEA future of cooling study estimates that a 1-degree Celsius increase in decadal average tem-
perature in 2050 will to lead to 25% more CDD and a 2-degree Celsius increase will lead to 50% more CDD. 
Climate change impacts are considered in the unit sales and energy consumption data used from the IEA’s future 
of cooling study. In our analysis, we use IEA’s 50% increase in CDD to model cooling demand in 2050. For prior 
periods, we interpolate CDD between 2018 and 2050 to model cooling demand. The increase in CDD and the 
addition of noise variation are introduced for the purpose of modeling the projected increase in peak demand due 
to climate change. Specifically, this analysis does not consider frequency nor forecast of extreme weather events.

Electric vehicles.  The second component of the technology model projects EV demand in India. The data pre-
sented here considered electric two, three, and four-wheel vehicles. Two-wheelers, being the dominating vehicle 
in terms of annual sales in India24, are expected to be electrified first, followed by the three-wheelers and regular 
cars25. The Indian government has set a goal of converting 100% of two-wheeler sales and 30% of all vehicle sales 
to electric by 203026, so the starting point is vehicle sales at the state level24. Using the regression equations of 
the corresponding GDP growth scenarios, we can project car sales with the EV targets by 2030 met in the rapid 
growth scenario. From vehicle sales and conversion rates, we get an estimate of the number of EV that will require 
charging. From a market survey on the average commute distance of vehicles in urban areas and rural areas25, 
long and short-range battery capacity and EV energy can be estimated. We introduce a mix of EV sales starting 
with short-range as the dominant market product and shifting to long-range, a market-dominant market in 2050. 
This trends reflects the current economic competitiveness of short-range EVs vs. existing internal combustion 
engine vehicles as well as the long-term competitiveness of long-range EVs with declining battery costs.

Similar to the construction of the cooling profiles, a coincidence factor must be implemented, so as to not 
over-predict peak EV charging demand. Since this is a new consumption behavior and given the relatively small 
batteries of two-wheelers and three-wheelers, it is assumed that every vehicle needs to charge every other day on 
average for urban drivers and every day for rural ones. This yields an average daily consumption from EV charg-
ing. As shown in Supplementary Fig. 4, three different charging profiles — home, work, public – are identified 
in an EV pilot project study in Mexico City27. While Mexico and India differ greatly in many socio-economic 
aspects. The different hourly EV charging profiles collected were for a pilot project to deploy electric two-wheelers 
and small sedans in the metropolitan area of Mexico City. This presents two synergies enabling the usage of the 
charging profiles in India. Under the assumptions that EV deployment will be more prevalent in urban areas in 
India with initial conversion of smaller vehicles (two-wheelers and three-wheelers), the charging data collected27 
is a suitable fit for potential EV charging schemes in India. Energy consumption is computed from vehicle sales, 
projections, and electrification conversion. That calculated number is then fitted under the chosen charging pro-
file. Time domain convolution of the profiles is applied to smoothen the peakiness of the total constructed hourly 
time series.

Data dependence.  The technology model relies heavily on surveyed data to produce the representative hourly 
profiles for cooling and electric vehicle demands at state levels. This is indeed a limitation, and our projections 
assumes that future technology adopters will behave just like initial adopters. In the absence of a better alterna-
tive at a similar spatial and temporal resolution, the bottom-up modeling effort provides a reasonable estimate 
of temporal patterns expected from these new demand sources. For the hourly sample cooling profiles, the main 
assumption is that cooling demand consumption is only dependent on weather patterns and econometric pat-
terns. Specifically, we apply a weighted sum convolution of the income level cooling profiles based on the states’ 
GDP per capita ranking. For the total cooling demand at national level, we depend on the air cooling unit sales 
projection as well as break down of unit energy consumption under baseline and efficient scenarios of the IEA’s 
Future of Cooling report3. We pro-rate residential cooling at state level using the GDP per capita projections. For 
commercial cooling we use the state-wise sector growth trends28. A sanity check for this break down is to sum 
both residential and commercial state-wise cooling demand and compare to the IEA’s all India cooling demand 
annual electricity consumption projections to 2050, the difference is highlighted in Supplementary Figs. 5 and 
6. Regarding the EV profiles, while there are alternative choices of charging schemes, we identified the synergies 
with the Berkeley study27 to be best reflective of the bookend EV charging scenarios across India.

Data Records
The data is uploaded on Zenodo29 and is available to download at https://doi.org/10.5281/zenodo.4564581. The 
path leading to a CSV file indicate the scenario corresponding to the results of that file. Breakdown of the folder 
hierarchy listed as:

	 1.	 GDP Growth: slow, stable, rapid
	 2.	 EV charging: home, work, public
	 3.	 Cooling: baseline, efficient
	 4.	 Type: detailed, summary

The detailed results are tables of the itemized hourly demand profile of each considered scenario; all files will 
produce 8760 rows (number of hours in a year). The summary are tables of the itemized annual energy consump-
tion for the considered years; all files will produce seven rows (number of considered future years). Both file types 
are itemized the same way as per Table 3. The path of each file is the reference to the specific scenario the data in 
the tables represents. For example SR.csv file under slow/home/efficient/summary is the summary file of the case 
of slow economic growth, home EV and energy efficient air conditioning consumption.

https://doi.org/10.1038/s41597-021-00951-6
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Technical Validation
The Business-as-usual statistical model is validated using standard statistical metrics when backtesting is applied. 
Further details on the backtesting are available elsewhere16. For the technology model, we compare our estimates 
to the IEA’s WEO1,21,30,31 and Brookings India5. Furthermore, our projections compare favorably against the EV 
projections to the IEA’s Global Electric Vehicle Outlook 20202.

Back testing.  Daily consumption and peak are projected for all five regions, we show the daily consumption 
back tests of the Southern Region in Fig. 7. More results can be found on the GitHub repository. It is important 
to note that the regression model captures the organic growth of the historical demand as well as the seasonal 
variation in demand but is not accurate at predicting daily variation. This shortcoming can be attributed to the 
small training dataset that is available. To compensate for this short-coming, we add additional noise variation 
as discussed earlier in the Methods section. We compare the R-squared value of the regression only versus the 
regression and noise time series as shown in Table 4. Additionally, selected parameter performance metrics of 
the model for the Southern Region are presented in Table 5. The model’s independent variables are the 2 meters 
and 10 meters elevation historic temperature and humidity data for the selected cities and GDP data for the state. 
Various weather parameters will have a higher coefficient then GDP since the latter is not as granular as a metric 
but will still be factored in for longer term growth as interpreted by its Fourier component16.

Cross-comparison.  Supplementary Figs. 7 and 8 compare the forecasting results to the WEO 2020 projec-
tions of India’s Energy Demand to 2040. Our band of projections is notably wider due to the large number of sce-
narios that are combined to forecast energy demand. We further compare our results to Brookings India’s study 

Column Header Description

DateTime Hourly or yearly time resolution

Base Business-as-usual model resulting demand

Com AC Commercial Air Conditioning demand

Res AC Residential Air Conditioning demand

E2W Electric Two-Wheelers demand

E3W Electric Three-Wheelers demand

E4W Electric Four-Wheelers demand

Table 3.  Output data headers descriptor.

Fig. 7  Back test result for Southern Region regression model.

Region Regression Regression + Noise

Eastern 0.709 0.798

Northeastern 0.608 0.722

Northern 0.691 0.784

Southern 0.744 0.825

Western 0.680 0.778

Table 4.  Business-as-usual Regression R-squared consumption results.
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in Supplementary Fig. 9. We also compare our electric vehicle projections to those of the Global EV Outlook in 
Supplementary Fig. 10. Finally, we compare our air conditioning demand contribution to the peak demand to the 
Future of Cooling study in Supplementary Fig. 5.

COVID-19 pandemic impact on year 2020.  The COVID-19 pandemic has drastically affected the global 
population in various ways. Energy consumption dropped severely as people were advised to stay at home. While 
it is not possible to project such “Black Swan” events from historical data, their long-term effects can be modeled 
as delayed growth under various recovery schemes. Figure 8 shows that our projections for the month of January 
2020 align with the realized demand, which is prior to the global outbreak of COVID-19. Evidently, there is a 
strong mismatch in the following months as the outbreak developed into a global pandemic. However, in the later 
part of the year, signs of recovery are noticed where the historical daily consumption once again reaches projected 
levels.

The impact of extreme events on energy consumption are difficult to predict at a granular level. Our pro-
jections are at a five year increment so that such yearly variations are smoothed out and the regression towards 
the mean phenomenon is observed. Moreover, the recovery from extreme events and their long-term impact 
can depend on many factors: economic, social, scientific and more. Without modeling those events in detail, 
projected growth can model the long-term average growth rate. In case of a negative extreme event, a smaller 
growth rate can model the long-term impact caused by the slow down. Similarly, a positive extreme event can be 
modeled as larger growth rate to include the long-term impact by the rapid growth. With signals of a fast recovery 
in total daily consumption for most regions, we elected to disregard projections that model long-term COVID-
19 pandemic impact to avoid confirmation bias. Moreover, there is little data to support projections modeling a 
long-term impact on Indian energy consumption. We believe that the model and data presented in this paper are 
valid beyond the COVID-19 pandemic.

Parameter Coefficient Standard Error t value P > | t |

GDP 13.3630 34.663 0.386 0.700

Bangalore t2m max 931.0014 353.052 2.637 0.008

Chennai h2m min 1.736e + 04 1.65e + 04 1.050 0.294

Hyderabad t10m max −502.7828 356.558 −1.410 0.159

Vijayawada h10m min −2.229e + 04 7671.803 −2.905 0.004

Table 5.  Business-as-usual Southern Region consumption Regression performance of select parameters.

Fig. 8  2020 year-to-date demand comparison with projections.

https://doi.org/10.1038/s41597-021-00951-6


1 0Scientific Data | (2021) 8:178 | https://doi.org/10.1038/s41597-021-00951-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

Usage Notes
The format of the results is comma-separated values (CSV). All the results are available on the Zenodo 
Open-Access repository29.

Code availability
The code used in the generation of the data sets is open-sourced on Github repository19.
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