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Development and validation of the 
CHIRTS-daily quasi-global high-
resolution daily temperature data 
set
Andrew Verdin   1 ✉, Chris Funk2,3 ✉, Pete Peterson3, Martin Landsfeld3, Cascade Tuholske   3,4 
& Kathryn Grace5

We present a high-resolution daily temperature data set, CHIRTS-daily, which is derived by merging 
the monthly Climate Hazards center InfraRed Temperature with Stations climate record with daily 
temperatures from version 5 of the European Centre for Medium-Range Weather Forecasts Re-
Analysis. We demonstrate that remotely sensed temperature estimates may more closely represent 
true conditions than those that rely on interpolation, especially in regions with sparse in situ data. By 
leveraging remotely sensed infrared temperature observations, CHIRTS-daily provides estimates of 
2-meter air temperature for 1983–2016 with a footprint covering 60°S-70°N. We describe this data set 
and perform a series of validations using station observations from two prominent climate data sources. 
The validations indicate high levels of accuracy, with CHIRTS-daily correlations with observations 
ranging from 0.7 to 0.9, and very good representation of heat wave trends.

Background & Summary
This manuscript is focused on the development and validation of CHIRTS-daily: a high-resolution (0.05° × 0.05°) 
daily maximum and minimum temperature data series spanning 60°S–70°N. The CHIRTS-daily data set builds on 
the Climate Hazards center InfraRed Temperature with Stations Tmax data set (CHIRTSmax

1) (Fig. 1a), which lev-
erages remotely sensed infrared land surface emission temperatures and a dense global network of approximately 
15,000 Berkeley Earth in situ station observations to provide robust high-resolution (0.05° × 0.05°) estimates of 
monthly mean maximum 2-meter air temperature (Tmax). The CHIRTSmax product focuses only on maximum air 
temperature estimates because minimum temperatures are more difficult to distinguish from the cool cloud-top 
temperatures observed by satellites. For Tmax values, cloud screening can be used to isolate the thermal infra-
red land surface temperature signal, which correlates well with the monthly maximum 2-meter temperatures 
observed at weather stations. To support scientific modeling, as well as health, agriculture, and ecological appli-
cations that often demand finer temporal resolution, we have created a daily CHIRTS product (CHIRTS-daily) 
by using daily Tmax and Tmin fields from version 5 of the European Centre for Medium-Range Weather Forecasts 
Re-Analysis (ERA5; https://cds.climate.copernicus.eu/cdsapp#!/home) to disaggregate the monthly CHIRTSmax 
product. The ERA5 data set is an advanced reanalysis that uses weather and land models, forced with satellite 
and in situ observations, to derive a complete suite of physically consistent variables describing many aspects of 
the Earth. The daily ERA5 diurnal temperature range (DTR; defined as maximum temperature minus minimum 
temperature) is then used to create CHIRTS-daily minimum temperatures. The ERA5 DTR values are based on 
the hourly reanalysis simulations, which incorporate physically based land and atmospheric modeling compo-
nents, and hence are not affected by potential cloud contamination. Figure 1b provides a graphical representation 
of the CHIRTS-daily development process. The monthly CHIRTSmax is built around an accurate very high res-
olution climatology, thereby providing important spatial detail. The month-to-month variations in CHIRTSmax 
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leverage the power of satellite observations to provide skillful estimates in data-sparse regions. Within any given 
month, the dynamically consistent ERA5 provides accurate assessments of day-to-day temperature anomalies. 
This approach uses the monthly CHIRTSmax to provide a reliable and consistent representation of the climate, and 
the daily ERA5 to represent weather.

Validation of the CHIRTS-daily maximum (CHIRTSX) and minimum (CHIRTSN) temperature prod-
ucts is carried out using daily climate station observations collected from the Global Historical Climatology 
Network (GHCN2) and the Global Summary of the Day (GSOD; https://data.noaa.gov/dataset/dataset/
global-surface-summary-of-the-day-gsod/). We focus on validating in anomaly space to reduce the influence of 
the seasonal cycle on validation statistics. However, a complementary comparison of mean bias is also presented. 
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Fig. 1  Description of the CHIRTS-daily development and validation processes. (a) Description of the 
CHIRTSmax monthly Tmax development and validation processes. (b) Schema of CHIRTS-daily Tmax (Tx) 
and Tmin (Tn) development process. (c) Hottest three consecutive months derived from CHTclim (CHIRTSmax 
climatology).
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This series of validations is limited to the three hottest consecutive months (Fig. 1c), identified using long-term 
monthly CHIRTSmax averages. We focus on the three hottest consecutive months under the assumption that many 
users will be interested in performance during the hottest times of the year. For each GHCN and GSOD station, 
CHIRTSX and CHIRTSN estimates for the nearest pixel are extracted and validation measures computed.

The performance of CHIRTSX and CHIRTSN is compared to minimum and maximum temperatures from the 
Princeton Global Forcing (PGF3) data set, which is produced by the Terrestrial Hydrology Group at Princeton 
University. We find that CHIRTS-daily exhibits greater skill in capturing temperature anomalies, most notably in 
data-sparse regions (Fig. 2). As discussed at length in the CHIRTSmax manuscript1, the number of global in situ 
station observations is low and in decline—in fact, much of Earth is a data-sparse region (Fig. 3).

Fig. 2  Validation statistics for maximum and minimum temperatures and a comparison between CHIRTS 
and PGF. (a) Correlation between CHIRTSX and validation data sets. (b) Difference between correlations for 
CHIRTSX and PGFX. c. Mean absolute error of CHIRTSX with respect to validation data sets. (d) Difference 
between mean absolute errors for CHIRTSX and PGFX. (e) Correlation between CHIRTSN and validation data 
sets. (f) Difference between correlations for CHIRTSN and PGFN. (g) Mean absolute error of CHIRTSN with 
respect to validation data sets. (h) Difference between mean absolute errors for CHIRTSN and PGFN.
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Spatial covariograms (Fig. 3a) quantify the performance of both products as a function of distance from the 
nearest station used in the gridded data set from the Climatic Research Unit at the University of East Anglia 
(CRU4). The x-axis of this graph shows binned distance values, and the vertical axis displays variance explained 
(R2) values. Performance (R2) for both products decays as the distance from the nearest CRU station increases, 
but this decay is much less in the CHIRTS-daily product. We use the CRU station archive because it is generally 
considered to be the gold standard, and because PGF is bias corrected using the monthly CRU. Subsequently, 
we produce maps of expected performance based on each product’s station density for January 2016 (Fig. 3b,c). 
These maps are based on the empirical covariograms shown in Fig. 3a. CHIRTS-daily is bolstered by not only the 
~15,000 monthly Berkeley Earth station observations, but also the thermal infrared backbone from the monthly 
CHIRTSmax, which better captures temperature anomalies in data-sparse regions. Areas where CHIRTS-daily 
begins to have relatively poor performance include a relatively large swath across central Africa, the Horn of 
Africa, and a small bubble in northern Mali. However, relatively poor performance for CHIRTS-daily indicates 
an expected R2 of about 0.60, whereas the expected performance of PGF in these same regions is closer to an 
expected R2 of 0.20.

Methods
Motivation.  Assessing weather-related hazards in a changing climate requires data sets that have accurate 
high-resolution spatial mean fields, good performance in data-sparse regions, and limited sources of non-station-
ary errors. Many scientists are interested in the impacts associated with a degree or two of warming. But non-sta-
tionary errors—errors that create time-varying biases in data sets—can easily be as large or larger than this 
climate change signal. Spatial fidelity also matters. High-resolution mean fields are important because impacts to 
health, agriculture, and other sectors are always local and typically non-linear. Impacts on humans or crops will 
be related to extremes in specific locations, and these impacts will often be strongly related to the variations in 
the absolute value of the weather variable under consideration. A 1- or 2-degree change in mean temperature, for 
example, can dramatically alter the number of days exceeding some specific temperature threshold. This spatial 
accuracy is important for monitoring extreme events on a year-to-year basis, and for assessing the impacts of cli-
mate change. As demonstrated below, data sets that are too cool may also underestimate changes in the frequency 
of heat waves.

Another important consideration is performance in areas with low densities of publicly available weather sta-
tions. Climate hazards typically convolve weather-related shocks, human exposure, and human vulnerability. The 
most vulnerable populations, and those with the most rapidly expanding populations and exposure, are often in 
areas (like Africa, Central America, and parts of Asia) with few available in situ weather observations.

A third consideration is consistency and stationarity, both of which can be important in data-sparse areas, 
where the spatial location and density of available in situ observations changes over time, and typically declines. 
When weather station observations are blended with spatially explicit background fields, non-stationary system-
atic errors can arise, either through changes in the observational network and/or discontinuities in the spatially 
explicit background fields. Accurate high-resolution mean fields can reduce homogeneities arising from shifts in 
observational networks. When the spatially explicit background fields track closely with the in situ observations, 
disruptions associated with changing networks are minimized. Spurious systematic non-stationary errors in the 
background fields, however, can create large incorrect changes.

In general, there are two main approaches to overcoming these limitations: the creation of tailored data sets 
that combine satellite proxy information with weather station observations, or alternately, the use of ready-made 
modern reanalysis systems.

Drought early warning systems, especially those focused on data-sparse regions, must grapple with these 
issues. While the accurate and early identification of drought conditions can trigger mitigation activities that save 

Fig. 3  Performance of CHIRTSX and PGFX, expressed as variance explained (R2) as a function of distance from 
the nearest CRU station, for the hottest three months. (a) Expected R2 as a function of distance from the grid 
cell to the nearest station. (b) Expected R2 of CHIRTSX based on distribution of Berkeley Earth stations for 
January 2016. (c) Expected R2 of PGFX based on distribution of CRU stations for January 2016.
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lives and livelihoods, consistent, accurate, high resolution data sets are required to make such assessments. For 
20 years, scientists at the University of California, Santa Barbara’s (UCSB) Climate Hazards Center (CHC) have 
focused on developing high-quality precipitation estimates suitable for supporting famine early warning, and crop 
and hydrologic modeling in data-sparse regions. The result of this work, the Climate Hazards center InfraRed 
Precipitation with Stations (CHIRPS5) is now one of the most widely used products for global drought moni-
toring. CHIRPS has been adopted by the World Food Program, the US Agency for International Development’s 
(USAID) Famine Early Warning Systems Network (FEWS NET, www.fews.net), the European Union, the Food 
and Agricultural Organization (FAO), and a host of regional and national agencies. The spatial resolution, accu-
racy, and consistency of CHIRPS also make it widely useful for applications such as crop insurance and climate 
change studies. In a typical month, more than 700 unique users download more than 100 gigabytes of CHIRPS 
data. The CHIRPS data set is hosted at the CHC, whose large computational capacity arises from ongoing support 
for and by FEWS NET. Every month, CHIRPS, along with many other valuable environmental data sets, helps 
FEWS NET guide billions of humanitarian assistance dollars to millions of extremely food-insecure people.

At present, there is a dearth of accurate information supporting the monitoring and evaluation of extreme 
temperatures in many food-insecure regions. Such extremes can wilt crops or decimate livestock herds, setting 
the stage for famine. Yet our ability to track these extremes in countries without weather station observations 
remains limited.

To address this limitation, the CHC has developed a modeling philosophy based on a geostatistical frame-
work that decomposes environmental variables into static mean fields and time-varying anomaly fields. There 
are two stages to this process: a monthly Tmax algorithm, described in the CHIRTSmax manuscript1 and illustrated 
in Fig. 1a, and a daily disaggregation procedure, described in Fig. 1b and in the following sections. In the CHC’s 
approach, great attention is given to building the high-resolution (0.05° × 0.05°) mean fields. The CHC’s method 
for this (Moving Window Regression, or MWR) builds localized regression models using large sets of in situ cli-
mate normals. Complicated statistical modeling is supported by the fact that there are typically many more avail-
able stations to estimate the long-term average conditions than there are to represent variations on a given day 
or month. The CHC’s MWR process also makes unique use of high-resolution satellite mean fields as predictors. 
The MWR approach and satellite-means allow the CHC climatologies to perform well in data-sparse regions, and 
even in regions with complex topography.

Within the CHC’s approach, temporal variations are represented by combinations of in situ observations 
and geostationary satellite-based thermal infrared (TIR) observations. The monthly CHIRTSmax product uses a 
unique cloud-screening process to produce accurate global 2-meter Tmax anomalies. This accuracy arises through 
a maximum-compositing process similar to that used in developing gridded vegetation index data sets, such as 
the Normalized Difference Vegetation Index. Atmospheric water vapor can cause spurious declines in green-
ness indices. In the case of surface temperatures, partial cloud cover can reduce the temperatures observed by 
a satellite. In both cases the signature of the contamination is known to suppress the signal. Taking maximum 
composites over a period of time, therefore, can be used to minimize contamination. For the CHIRTSmax, this 
process provides a robust global and very high resolution (0.05°) set of monthly TIR-based temperature anom-
alies. These anomalies, when combined with the CHC’s high-resolution climatology, provide an accurate and 
consistent source of estimates, even when there are no nearby weather stations.

Unfortunately, the CHC’s maximum compositing approach cannot work on daily data, because at daily time 
steps it is difficult to distinguish TIR signal contributions from the land surface and clouds with measurements 
from only the 11 μm band provided by the GridSat6 data set—hence the need for a different approach to disag-
gregation (Fig. 1b). For this, the CHC uses modern reanalyses. Modern reanalyses use atmospheric models and 
assimilation schemes to merge vast quantities of information to produce physically based syntheses that provide 
a complete description of the land and atmosphere. For example, ERA5 uses a four-dimensional assimilation 
scheme to assimilate satellite radiances from 25 infrared and microwave sources and satellite scatterometer data 
from four sources. This rich set of data sources provides valuable information about land surface temperatures, 
soil moisture, atmospheric water vapor, atmospheric air temperatures, precipitation, clouds, and atmospheric 
circulation anomalies.

This rich set of information, and all the benefits accruing from physically modeling the Earth’s systems, pro-
vides an excellent source of information about diurnal temperature variations. At the same time, it should be rec-
ognized that the inclusion of these multiple data sources also creates a stream of input data that is heterogeneous 
in time. For example, many infrared and microwave-based sounders and profilers only appear late in the data 
record, typically arriving in the late 1990s or early 2000s. Even relatively consistent imagery coming from geosta-
tionary satellites can be substantially influenced by inter-satellite calibration issues or orbital changes in any given 
satellite. Reanalyses that ingest station data, furthermore, face threats related to large shifts in the station data that 
go into these reanalyses. Both changes in the satellite systems and observation networks can alter the local energy 
and water budget, potentially introducing spurious random errors.

The four sources of information used in the CHIRTSmax contribute in different ways (Fig. 1a,b). The spa-
tial mean fields provide local context. The carefully validated and curated monthly station and TIR tempera-
ture anomalies provide a consistent source of climate information, carefully constructed to reduce potential 
non-stationary systematic errors. The Berkeley Earth organization (www.berkeleyearth.org) was founded in 
2012 to collect, quality control, and analyze an integrated set of global air temperature observations. Details on 
this data set and methods can be found at http://berkeleyearth.org/methodology. Finally, ERA5 reanalysis infor-
mation is used to disaggregate within a specific month, and greatly reduces any possible issues associated with 
changes in reanalysis inputs.

CHIRTSmax.  The monthly CHIRTSmax product is the foundational data set from which the CHIRTS-daily 
products are developed. CHIRTSmax combines three components: a high-resolution (0.05° × 0.05°) climatology, 
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interpolated in situ temperature anomaly fields, and remotely sensed infrared land surface emissions anomalies 
based on GridSat6 B1 Thermal Infrared geostationary weather satellite observations. Complete details can be 
found in the CHIRTSmax manuscript1, though a brief description is provided in this subsection and Fig. 1a for 
completeness.

There are three components that are combined to create the CHIRTSmax:

	(1)	 CHTclim, a high-resolution (0.05° × 0.05°) monthly maximum temperature (Tmax) climatology developed 
using Moving Window Regression5 with FAO station normals, ERA5 long-term average 2-meter tempera-
tures, latitude, longitude, and elevation as predictors.

	(2)	 CHIRTmax, a high-resolution (0.05° × 0.05°) monthly time series of satellite-based Tmax anomalies.
	(3)	 CHTSmax, a high-resolution (0.05° × 0.05°) monthly time series of interpolated monthly Tmax anomalies 

based on Berkeley Earth (http://www.berkeleyearth.org) and Global Telecommunication System Tmax air 
observations.

Let C  denote the long-term average (CHTclim). Let I′ and S′ denote, respectively, the CHIRTmax and CHTSmax 
anomalies from their individual long-term means. Then, the final CHIRTSmax estimate T is a weighted linear 
combination of these three components, as follows:

α β= + ′ + ′T C I S

where α and β are weights that sum to 1 and are derived using the expected variance explained by the CHTSmax 
and CHIRTmax estimates. The variance explained by the CHTSmax component is based on an empirical covario-
gram and the distance to the closest station. The variance explained by the CHIRTmax component is assumed to 
be 0.25. The weights α and β are proportional to these variance values. The final CHIRTSmax estimate, therefore, 
is an adjusted version of the climatology (CHTclim). The adjustment is based upon a weighted combination of 
satellite-derived estimates of Tmax anomalies (CHIRTmax) and interpolation-based estimates of station-observed 
Tmax anomalies (CHTSmax). In data-sparse regions, the satellite-derived anomalies will receive greater weight than 
their interpolation-based counterparts. Conversely, in regions with high station density, the interpolation-based 
anomalies will receive the greater weight, effectively leveraging the strengths of both data sources.

Downscaling ERA5.  Daily temperatures from the ERA5 are critical to developing the CHIRTS-daily prod-
ucts, as they define the relative evolution of daily temperatures within a given month. The most apparent limita-
tion to using the ERA5 simulations in tandem with CHIRTSmax is the difference in spatial scales between the data 
products. The spatial scale of CHIRTSmax is approximately 5 km by 5 km (0.05° × 0.05°), while that of ERA5 is 
approximately 25 km by 25 km (0.25° × 0.25°). To bridge this gap and facilitate the merging of the two data prod-
ucts, the ERA5 simulations are downscaled using bilinear interpolation in the Interactive Data Language (IDL7) 
using the CONGRID command. Maximum and minimum temperatures for each day are treated independently 
in the downscaling procedure. Additionally, there is no explicit treatment of day-to-day temporal dependence. 
We assume that the inherent temporal autocorrelation is captured by the ERA5 simulations and is preserved in 
the downscaling routine. We also assume the dependence between maximum and minimum temperatures on a 
given day is preserved in the downscaling process. Ultimately, the decision to use the ERA5 simulations to disag-
gregate the monthly CHIRTSmax to daily scale is motivated by the latency of the product. Our goal is to provide 
updates to the CHIRTS-daily product with minimal delay. Collaboration with partners at the National Oceanic 
and Atmospheric Administration (NOAA) should ensure timely updates to the monthly CHIRTSmax product. 
These updated CHIRTSmax products will then be disaggregated with ERA5, providing a much-needed source of 
information that can be used to monitor extreme temperature conditions. These conditions can have dire impacts 
on human and livestock health and crops, while also setting the stage for potentially extensive wildfires.

CHIRTS-daily.  To produce the CHIRTS-daily Tmax (CHIRTSX) values, the downscaled ERA5 Tmax are first 
translated into anomalies from the monthly ERA5 Tmax average. These daily Tmax anomalies are then added to 
each month’s CHIRTSmax value. The resulting CHIRTSX product thus varies on monthly timescales with the 
CHIRTSmax while tracking the day-to-day variations of the ERA5 reanalysis. The ERA5 Tmax and Tmin are then 
used to determine the daily diurnal temperature range (DTR) at each 0.05° pixel. DTR is then used to produce 
CHIRTS-daily Tmin (CHIRTSN) by subtracting the DTR from CHIRTSX.

The steps taken to produce the CHIRTS-daily temperature fields are summarized as follows.

	 1.	 Compute the DTR using the downscaled ERA5 fields:

		  a.    = −DTR ERA ERA5 5t X Nt t
 for = …t T1, ,

	 2.	 Convert the downscaled ERA5 Tmax to anomalies:

		  a.    = −ERA ERA ERA5 5 5X
m anom

X
m

X
m,

t t
 for = …t T1, ,  and = …m M1, ,

	 3.	 Apply the results of Step 2 to the monthly CHIRTSmax values to produce CHIRTSX:

		  a.    = +CHIRTS CHIRTS ERA5X
m

max
m

X
m anom,

t t
 for = …t T1, ,  and = …m M1, ,
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	 4.	 Apply the results of Step 1 to CHIRTSX to produce CHIRTSN:

		  a.    = −CHIRTS CHIRTS DTRN X tt t
 for = …t T1, ,

In the above equations, T represents the total number of days in the CHIRTS-daily data record, where (1, 2, 
3, …, T-2, T-1, T) represents (Jan 1 1983, Jan 2 1983, Jan 3 1983, …, Dec 29 2016, Dec 30 2016, Dec 31 2016); M 
represents the total number of months in the CHIRTSmax data record, where (1, 2, 3, …, M-2, M-1, M) represents 
(Jan 1983, Feb 1983, Mar 1983, … Oct 2016, Nov 2016, Dec 2016).

Ancillary data fields and Heat Index calculation.  As a convenience to end users, several ancillary daily 
variables have been derived from the ERA5 archive and provided at a downscaled 0.05° resolution matching that 
of CHIRTS-daily. The downscaling procedure used to produce these ancillary data fields is the same used to down-
scale the ERA5 temperature fields (i.e., CONGRID command in IDL). These data have not received additional 
validation but are provided to facilitate research for the end users. The ERA5 data set, on which these fields are 
based, has been widely used and validated. Hourly temperature and dew point temperature from the ERA5 data set 
are used to estimate relative humidity (RH). These derived RH values, along with CHIRTS-daily, are used to calcu-
late the Heat Index (HI) using the series of equations and rules provided by the National Weather Service (NWS).

Relative humidity (RH) is estimated from temperature and dew point temperature using the Magnus equation8,  
as follows:

≅ ∗





∗ ∗
−

+ ∗ +






RH exp c b TD T
c T c TD

100 ( )
( ) ( )

where the constants are defined as b = 17.625 and c = 243.048.

The HI is calculated using the equations provided by the NWS. The main HI equation is a refinement of the 
multiple regression analysis from a 1990 NWS Technical Attachment (SR 90-23). This regression modeled a set of 
estimated “apparent temperatures” based on a model of human biophysical thermal temperature equilibria9. The 
following set of equations, referred to as the Rothfusz regression, is abstracted from the NWS website (https://
www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml):

= − . + . ∗ + . ∗ − . ∗ ∗
− . ∗ − . ∗ + . ∗ ∗
+ . ∗ ∗ − . ∗ ∗

HI T RH T RH
T RH T RH
T RH T RH

42 379 2 04901523 10 14333127 0 22475541
0 00683783 0 05481717 0 00122847
0 00085282 0 00000199

2 2 2

2 2 2

where T is temperature in degrees Fahrenheith (F) and RH is relative humidity in percent. HI is the heat index 
expressed as an apparent temperature in degrees F. If the RH is less than 13% and the temperature is between 80 
and 112 degrees F, then the following adjustment is subtracted from HI:

=
−

∗
− −ADJ RH T13

4
17 abs( 95)

171

If the RH is greater than 85% and the temperature is between 80 and 87 degrees F, then the following adjust-
ment is added to HI:

=
−

∗
−ADJ RH T85

10
87

52

The Rothfusz regression is not appropriate when conditions of temperature and humidity warrant a heat index 
value below 80 degrees F. In those cases, we mask and flag the cells where these conditions occurred.

Data Records
The CHIRTS-daily products are available on the Climate Hazards Center website10. To the extent possible under 
the law, we have waived all copyright and related or neighboring rights to CHIRTS. The data have been assigned 
to the public domain using the Creative Commons CC0 1.0 Universal waiver. This work is published from the 
United States. The Climate Hazards Center website also provides access to the validation data used in this paper 
(http://data.chc.ucsb.edu/products/CHIRTSdaily/v1.0/ValidationData.zip).

At the moment, CHIRTS-daily are available as a climate data record that spans 1983–2016. The 1983 starting 
point corresponds with the starting point of a reasonably complete global thermal infrared geostationary satel-
lite archive. Future efforts will update the CHIRTSmax and CHIRTS-daily on a routine basis. We anticipate that 
there will be an early release CHIRTS-daily product, available with a delay of approximately 1 month. The final 
CHIRTS-daily products will be released with an anticipated latency of 2 months.

CHIRTS-daily data are provided in GeoTiff format, though alternate formats may be available upon request. 
Units are degrees Celsius.

Technical Validation
Station screening.  To construct the validation data set, we leverage daily station observations from the 
GHCN and GSOD archives provided by NOAA’s Climate Prediction Center. A stringent and robust station 
screening process ensures that the validation station data are consistently reported over the CHIRTSmax era 
(1983–2016). Four independent screenings are carried out: one for each source (GHCN and GSOD) and each 
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variable (Tmax and Tmin). Below, we describe the screening process for GHCN Tmax stations. This screening process 
is applied to provide more reliable data for comparison with CHIRTS-daily. The other three data sources (GHCN 
Tmin, GSOD Tmax, GSOD Tmin) are screened in an identical fashion.

For the GHCN Tmax screening process, we extract all the daily GHCN maximum temperature station data 
for the period 1 January 1983 to 31 December 2016, which amounts to ~115 million observations across 17,355 
stations. The first step in the screening process is to exclude all stations that have fewer than 2,920 observations 
(an approximation of 80% reporting for at least 10 years), which leaves ~100 million observations across 12,830 
stations. The remaining steps are quantitative in nature, and described in the following rules:

	 1.	 Calculate the station median and standard deviation across all days and years for each month.
	 2.	 Calculate the z-score for each day, using the following equation:

= − = …z x m s i/ , 1, , 12,t t i i

where zt is the computed z-score for day t, xt is the observation for day t, and mi and si are the station medi-
an and standard deviation for the ith month (January = 1, February = 2, etc.).

	 3.	 Remove observations that satisfy at least one of the following conditions:

		  a.   zt < 4.0
		  b.   zt > 4.5
		  c.   xt − mi > 20 °C

* These z-score checks (3a and 3b) were intended to screen out potentially mis-coded data. It is common, for 
example, that data can be recorded unintentionally scaled by a factor of 10. Z-scores beyond ± 4 are extremely 
uncommon. A larger positive z-score (4.5) was used because we expect climate change-related non-stationarity.

	 4.	 Perform a median check for false zero contamination. There are times when the median across all days 
and years is exactly zero and/or the number of observations that are exactly zero is excessive (~15% of the 
time). Remove stations that meet either of these criteria. Repeat two more times, computing new station 
medians and standard deviations each time.

	 5.	 Finally, remove stations that satisfy at least one of the following conditions. Note that CHTclimi denotes the 
monthly Tmax climatology for the ith month, and mi again denotes the station median for the ith month.

		  a.   abs(mi − CHTclimi) > 5 °C
		  b.   abs(mi − CHTclimi)/si > 3
		  c.   The number of remaining observations is less than <2,920

This leaves 58.3 million GHCN Tmax observations across 8,587 stations. We then repeat this screening pro-
cess for GHCN Tmin, and again for GSOD Tmax and Tmin. What remains are 15,713 Tmax stations from GHCN 
(8,587) and GSOD (7,126), with an estimated overlap of 1,612 co-registered stations, and 13,997 Tmin stations 
from GHCN (7,747) and GSOD (6,250), with an estimated overlap of 1,390 co-registered stations. We identified 
a station as potentially co-registered between sources if its coordinates in one source are similar enough to be 
within 1 km of any set of coordinates in the other source. This method is required, as station identification codes 
are inconsistent between sources. Note that because the station screening processes are independent of source and 
variable, some stations will not necessarily be included in both (Tmax and Tmin) validation data sets.

CHIRTSX validation results.  The CHIRTSX product is validated alongside the PGF3 Tmax product (here-
after PGFX for convenience) using the GHCN and GSOD stations that passed the screening process. To remove 
any inherent correlation due to the seasonal cycle, all observations in the validation data sets are converted to 
anomalies at the monthly scale. That is, the monthly mean Tmax for January is subtracted from all daily January 
observations, and so on, for all months. This ensures that the mean of the observations at any station will be zero, 
and that the seasonal harmonics are removed. The same normalization is applied to the CHIRTSX and PGFX 
products. Each station in the validation data set is then paired with the nearest CHIRTSX and PGFX pixel, using 
the Euclidean distance from the station coordinates to the pixel centroid. Validation statistics are computed for 
the hottest three-month period, which is defined using the CHTclim (see Fig. 1c).

Panels A-D in Fig. 2 show the validation statistics for CHIRTSX in the left column and the difference between 
CHIRTSX and PGFX in the right column (computed as CHIRTSX-PGFX). CHIRTSX consistently exhibits a 
stronger agreement with the validation data set than PGFX. The prevalence of blue in panel B indicates that 
CHIRTSX has consistently higher correlations with the stations than PGFX—the global average is 0.17. Similarly, 
the abundance of red in panel D indicates CHIRTSX has consistently lower mean absolute error (MAE) than 
PGFX—the global average is −0.77 °C. Table 1 summarizes these validation statistics by region/continent, which 
further illustrates the skill of CHIRTSX.

CHIRTSN validation results.  We next compare the performance of CHIRTSN to that of the PGF Tmin prod-
uct (PGFN for convenience) for the same hottest 3-month period as the CHIRTSX validation (Fig. 1c). We did 
this in order to maintain consistency with the CHIRTSX validation, and to focus our validation on performance 
during the hottest times of the year.

We convert the Tmin observations from GHCN and GSOD to monthly anomalies to remove inherent corre-
lation. Each station is paired with the nearest CHIRTSN and PGFN pixels, and validation statistics are computed. 

https://doi.org/10.1038/s41597-020-00643-7


9Scientific Data |           (2020) 7:303  | https://doi.org/10.1038/s41597-020-00643-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

Panels E-H in Fig. 2 show the validation statistics for CHIRTSN in the left column and the difference between 
CHIRTSN and PGFN in the right column (computed as CHIRTSN-PGFN). Consistent with the CHIRTSX valida-
tion, the CHIRTSN correlations are consistently higher and the MAE are consistently lower than that of PGFN. 
The global average difference in correlations between CHIRTSN and PGFN is 0.09; the global average difference in 
MAE is −0.37°. Table 2 summarizes these validation statistics by region/continent.

Mean bias error.  It is important to acknowledge the fact that we are validating the CHIRTS-daily data series 
in anomaly space. It is therefore crucial to quantify potential mean bias error in these data sets. To this end, for 
every GHCN and GSOD station and every month, we compute the station climatologies and compare these 
values to the mean of the CHIRTSX and PGFX for the same collection of days. We compute these differences 
as CHIRTSX-station and PGFX-station, thus a positive (negative) value indicates a warm (cool) bias in the data 
product. This produces 12 difference values at every validation station, which we then collapse (average) into a 
mean bias error statistic. Table 3 summarizes the mean bias error globally and by region. These results indicate 
that CHIRTSX is much less biased from a global perspective, and consistently better for many regions because of 
its low bias and good performance in data-sparse regions. However, CHIRTSX exhibits a significant positive bias 
for Australia that is not present in PGFX.

Performance in data-sparse regions.  What distinguishes the CHIRTSmax from other gridded products is 
its use of remotely sensed thermal infrared temperatures. Where large gaps in station networks exist, the resulting 
interpolation-based gridded products are highly uncertain. Furthermore, station-based gridded products tend 
to revert to climatology as the distance to the nearest in situ observation increases. This likely underestimates the 
variance in data-sparse regions. It follows that the performance of CHIRTSX in data-sparse regions is bolstered by 
remotely sensed observations, which inherently makes it more reliable in data-sparse regions.

To verify this assumption, we analyze the performance of CHIRTSX and PGFX as a function of distance from 
the nearest station included in the monthly CRU data product. We focus on CRU stations because the CRU prod-
uct is widely considered the gold standard of gridded climate products. Additionally, the CRU gridded products 
are used to bias correct the PGF in its development workflow. Empirical covariograms are estimated for each 

Tmax

Correlation Mean Absolute Error

CHIRTSX PGFX CHIRTSX PGFX

Global 0.84 0.66 1.3 2.2

N. America 0.80 0.63 1.6 2.4

S. America 0.72 0.45 1.3 2.2

Africa 0.81 0.57 1.1 2.0

Eurasia 0.91 0.74 1.0 1.9

Australia 0.92 0.75 1.0 2.1

Table 1.  Validation statistics for maximum temperature products.

Tmin

Correlation Mean Absolute Error

CHIRTSN PGFN CHIRTSN PGFN

Global 0.75 0.65 1.4 1.8

N. America 0.78 0.71 1.4 1.8

S. America 0.64 0.48 1.2 1.6

Africa 0.67 0.46 1.2 1.8

Eurasia 0.78 0.67 1.3 1.6

Australia 0.60 0.51 1.9 2.3

Table 2.  Validation statistics for minimum temperature products.

Tmax

Mean Bias Error (°C)

CHIRTSX PGFX

Global 0.12 −0.24

N. America 0.01 −0.06

S. America −0.16 −0.30

Africa 0.11 −0.23

Eurasia 0.21 −0.43

Australia 0.39 0.00

Table 3.  Mean bias error in degrees Celsius for the maximum temperature validation data set. Positive 
(negative) values indicate the data product is consistently warmer (cooler) than observations.
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product at a set of sequential distances bins, calculated as R2 = 1 − MSE/SS, where MSE is the Mean Squared 
Error, and SS is the Sum of Squares of the station anomalies.

Figure 3a shows the expected performance for the warmest 3 months, expressed as R2 values for CHIRTSX 
and PGFX. When both products are assessed at a station location (i.e., at a distance of zero), CHIRTSX has an 
R2 that is about 0.20 greater than that of PGFX. At about 300 km, the performance of both products begins to 
decline at the same rate. However, at about 650 km, the performance of PGFX begins a slow, oscillating decline. 
The performance of CHIRTSX hovers around R2 = 0.63, while that of PGFX is closer to R2 = 0.15. At 1500 km, 
the performance of PGFX drops to R2 = 0, while CHIRTSX maintains a value of R2 = 0.50. It can be clearly stated 
that leveraging the thermal infrared temperatures in the CHIRTSmax product effectively enhances CHIRTSX in 
data-sparse regions.

Figure 3b shows a map of the expected variance explained by CHIRTSX based on the distribution of stations 
in the Berkeley Earth archive for January 2016. Figure 3c shows the same for PGFX based on the distribution of 
stations in the CRU archive for January 2016. The performance of CHIRTSX is bolstered by not only the thermal 
infrared background of the monthly CHIRTmax—a satellite-only component of the monthly CHIRTSmax, which 
was shown to have a correlation of about 0.80 with in situ observations globally1—but also a much denser distri-
bution of stations than PGFX, which results in a considerably more reliable data set.

Usage Notes
This section provides two examples of usage case studies, representing typical applications for the CHIRTS-daily 
maximum temperatures. The first application uses a 40.6 °C temperature threshold. This threshold, often used 
in human health studies, represents a temperature level at which the human body often has difficulty maintain-
ing adequate cooling of internal organs. The second application uses a threshold of 30 °C, a common threshold 
used to identify agricultural heat stress. The first case study is global. The second case study focuses on Ethiopia, 
expanding on supplemental material provided in the CHIRTSmax manuscript1.

Figure 4 presents a comparison of the daily station data, CHIRTS-daily, ERA5, and PGF archives, for the 
warmest 3 months. The CHIRTS-daily, ERA5, and PGF values have been extracted at the station locations, sup-
porting a one-to-one comparison. What is quite striking in all the regions examined is that ERA5 dramatically 
underestimates the number of hot days in all regions. The PGF archive, on the other hand, substantially overes-
timates in Australia and South America. The CHIRTS-daily, in all cases, tracks the station-based estimates very 
closely. Note that the daily GHCN and GSOD data likely contributed to the monthly Berkeley Earth data used in 
the monthly CHIRTSmax, so Fig. 4 should not be interpreted as an independent validation study, which is beyond 
the scope of this data descriptor. Nevertheless, CHIRTS-daily does appear to be fit-for-purpose for analyzing 
trends in temperature extremes, especially in data-sparse regions. It should be noted that Africa stands out as a 
region with large increases in the number of very hot days (Table 4). While all the gridded data sets underestimate 
the station data change estimate (+5.7 days), the CHIRTS-daily estimate was the closest (+4.7 days). More anal-
ysis of the spatial pattern and health hazards associated with these large increases appears warranted.

We next turn to a typical agro-climatic risk assessment. Building on results presented in the supplemental 
material of the CHIRTSmax manuscript1, this case study focuses on July Tmax temperatures in the Amhara province 
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Fig. 4  Time series of the average number of days over 40.6 °C for stations in various regions based on the 
observations (Stations), CHIRTSX, ERA5X, and PGFX data sets.
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of northern Ethiopia. El Niño-related rainfall deficits in this region11 contributed to “the worst drought in 50 
years” and led to widespread crop failures that helped push approximately 11 million people into crisis levels of 
food insecurity.

These low rainfall levels were also accompanied by exceptionally warm July air temperatures (Fig. 5). The 
unique nature of the monthly CHIRTSmax archive provides independent satellite-only temperature estimates 
(CHIRTmax) and station-only temperature estimates (CHTSmax), as well as the blended “best estimate” CHIRTSmax 
product. Humanitarian relief agencies often use a convergence-of-evidence approach to guide drought assess-
ments. The fact that the independent CHIRTmax and CHTSmax archives both indicated historically extreme air 
temperatures provides convergent evidence of severe potential crop stress.

Climate hazards typically involve this type of climate shock with underlying vulnerability and exposure—
Fig. 5 represents this schematically. Vulnerability is represented by the gap between the median and 20th per-
centile World Bank per capita incomes. Despite increases in agricultural productivity, the number of extremely 
food insecure Ethiopians has increased. This increase may be due to a series of recent climate shocks, combined 
with an increased price-spike vulnerability, for poorer Ethiopians (http://blog.chc.ucsb.edu/?p=634). Figure 5 
represents the third dimension of climate hazards—exposure—using United Nation estimates of the Ethiopian 

CHIRTS ERA5 PGF Station

Global +0.77 +0.55 +0.74 +0.88

N. America +0.13 +0.14 −0.01 +0.20

S. America +0.04 +0.03 +0.45 +0.13

Africa +4.70 +3.40 +4.30 +5.70

Eurasia +1.20 +0.92 +1.00 +1.20

Australia +1.80 +0.88 +2.90 +2.20

Table 4.  Change in the mean number of hot days (over 40.6 °C) between 2007–2016 and 1983–1992.

Fig. 5  A schematic representation of climate hazard dimensions for Ethiopia. Climate/weather shocks are 
represented by monthly July Tmax anomalies for the satellite-only CHIRTmax data set, the station-only CHTSmax 
archive, and the blended satellite-station CHIRTSmax product. The vulnerability to price and crop production 
shocks is represented by the income gap between the poorest 20% of Ethiopians and the median income. 
Exposure is represented by national population estimates.
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population. Between 1993 and 2070, Ethiopia may experience a five-fold increase in population, with the number 
of Ethiopians increasing from about 50 to 250 million people.

While the ~+2.5 °C temperature anomaly shown in Fig. 5 appears concerning, it is difficult to interpret from 
an agronomic perspective. Plants typically respond to the actual temperature values. In colder areas, crops may 
actually benefit from warmer temperatures. In hot areas, temperature increases can result in increased wilting and 
moisture loss. This dependence means that an accurate background climatology can improve the utility of climate 
hazard assessments. Figure 6 shows long-term July Tmax values averaged over 1983–2016 for the CHIRTS-daily, 
CRU, and ERA5 data sets. The high-resolution CHIRTS-daily product clearly represents Ethiopia’s complex oro-
graphic influences. We find some of the steepest temperature gradients on Earth, with highland areas having 
mean maximum temperatures ranging from 15 to 20 °C, while nearby lowland areas may have mean values of 
greater than 37 °C. The Moving Window Regression5 modeling process used to construct the CHIRTS back-
ground climatology uses satellite TIR mean fields as a predictor, and these fields help capture these complex 
gradients. These patterns are not captured well by the coarse CRU product. The physically based ERA5 reanalysis 
captures the overall pattern with reasonable fidelity, but many fine details are missed. Furthermore, as noted 
above in the global case study, there appears to be a consistent tendency to underestimate the magnitude of the 
mean maximum temperatures, making this an inappropriate product for estimating the hazards associated with 
temperature extremes.

For agricultural impact assessments, days over a 30 °C threshold is a common metric of heat stress. The bar 
plot shown in Fig. 7 shows a time series of this metric for consecutive Julys in the Amhara province of Ethiopia—a 
critical crop-growing region strongly impacted in 2015. This time series gives us a meaningful basis for assessing 
agricultural temperature-related impacts. First, note that this time series is quite variable. In some years, only 10% 
of the pixel-days exceeded 30 °C. In 2015, on the other hand, almost 30% of the pixel-days exceeded 30 °C. This 
suggests widespread temperature impacts that negatively influenced crop production—capturing such impacts 
from space may be quite valuable. Current crop water accounting approaches, such as the Water Requirement 
Satisfaction Index metric (https://earlywarning.usgs.gov/fews/product/126), did not adequately capture the mag-
nitude of 2015 agricultural yield anomalies in Amhara.

Fig. 6  A comparison of July Tmax 1983–2016 mean fields for Ethiopia. From left to right, the panels show means 
derived from CHIRTSmax, CRU, and ERA5 data sets.

Fig. 7  Time series of observed and projected frequency of agricultural heat stress for Ethiopia’s Amhara 
province in July. The barplot shows the frequency based on CHIRTS-daily maximum temperatures. A value 
of 25 means that 25% of the day-pixels had maximum temperatures exceeding 30 °C. The black line with filled 
circles represents a plausible climate change scenario in which the temperatures have been increased by +1.3 °C.
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We conclude with a brief 2070 climate change “projection” for Amhara, based on a perturbed version of 
the observed CHIRTS-daily data set. Note that our goal here is to simply provide a representative usage case, 
not to perform a detailed climate change assessment. In general, it is not unreasonable to assume that future 
air temperatures may be represented by current air temperatures (CUR) perturbed by a smoothly vary-
ing set of increases (DELTA). Furthermore, let CUR be a data set with high spatial and temporal resolution, 
like CHIRTS-daily. DELTA may be derived from climate models such as those represented in the Phase 5 or 
6 Coupled Model Intercomparison Projects. Here, we use a single value of +1.3 °C, which is the change in the 
Phase 5 multi-model ensemble Tmax average, for Amhara in July, between 2070 and 2020, based on the 6 Wm−2 
Representative Concentration Pathway. Perturbing our data set with this value and recalculating the fraction 
of pixel-days warmer than 30 °C results in the black line and filled circles in Fig. 7. By 2070, Ethiopia is likely to 
have a population of ~250 million people (Fig. 4), and the average heat stress fraction may be around 23%, a level 
exceeded in only the most extreme months in the observational record.

Code availability
The CHIRTS-daily data products are derived using approximately 500 lines of code written in the Interactive Data 
Language. While not written as a portable library or toolset, access to the code is not restricted, and it is available 
upon request.
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