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AiiDA 1.0, a scalable computational 
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The ever-growing availability of computing power and the sustained development of advanced 
computational methods have contributed much to recent scientific progress. These developments 
present new challenges driven by the sheer amount of calculations and data to manage. Next-
generation exascale supercomputers will harden these challenges, such that automated and scalable 
solutions become crucial. In recent years, we have been developing AiiDA (aiida.net), a robust open-
source high-throughput infrastructure addressing the challenges arising from the needs of automated 
workflow management and data provenance recording. Here, we introduce developments and 
capabilities required to reach sustained performance, with AiiDA supporting throughputs of tens 
of thousands processes/hour, while automatically preserving and storing the full data provenance 
in a relational database making it queryable and traversable, thus enabling high-performance data 
analytics. AiiDA’s workflow language provides advanced automation, error handling features and a 
flexible plugin model to allow interfacing with external simulation software. The associated plugin 
registry enables seamless sharing of extensions, empowering a vibrant user community dedicated to 
making simulations more robust, user-friendly and reproducible.

Introduction
Reproducibility is one of the cornerstones of the scientific method, as it enables the validation and verification 
of scientific findings1–4. In computational science, for a result to be reproducible, it should be possible to exactly 
retrace all the data transformations that led to its creation. With the ever-growing availability of computational 
power, and increasingly complex computational workflows resulting in large amounts of interconnected data, a 
posteriori reconstruction of provenance has become an intractable task. Instead, to guarantee reproducibility, a 
priori provenance should be effortlessly enforced through mechanisms that automatically track data as it is being 
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created. Crucially, such a system should not merely store the data itself, but also preserve the explicit connection 
to the process that generated it, as well as the inputs of the latter and (recursively) their respective provenance.

While essential, automated provenance storage is not the sole requirement that must be satisfied to deliver 
effective reproducibility. Rather, the data model should be generic enough to be applicable to any computational 
domain, and the infrastructure should be flexible enough to be interfaced with the diverse range of existing 
computational software. Moreover, the infrastructure should also provide a system to fully automate complex 
simulations through the definition of robust workflows. Last, data produced and stored should be easily shareable, 
such that it can be found, accessed and reused with different tools, following FAIR data principles5, and efforts are 
underway to extend these principles from data to the workflows producing the data6. Such concepts of automated 
workflows, data management and sharing were formalised in the Automation, Data, Environment and Sharing 
(ADES) model and implemented in the AiiDA informatics infrastructure7.

Many computational workflow management systems have been devised over the past decades (s.apache.org/
existing-workflow-systems). One popular design choice is to use markup languages to describe the logic of static 
workflows. While this allows the workflow syntax to be kept simple, it tends to come at the cost of sacrificing 
the flexibility needed to dynamically change the execution path taken in response to the intermediate results (or 
errors) encountered. However, such flexibility is crucial in many fields, and in particular in computational mate-
rials science, which has been the original driver for the development of AiiDA.

Actually, in computational materials science, multiple tools address the challenge of managing workflows 
composed of complex simulation codes; Fireworks8, AFLOW9 and ASE10 are some of the most popular. In addi-
tion to these domain specific workflow managers, there are also GC3Pie11, Signac12 and Parsl13 which are applica-
ble to the domain of computational science and high-performance computing in general. Like AiiDA, all of these 
are implemented and operated through the Python language, and provide new language constructs to design 
and automatically execute workflows (in parallel), and store the resulting data. The designs of these workflow 
managers differ depending on the typical use cases that they target; Parsl aims for many (>10000) short (<100 
seconds) concurrent tasks, while Atomate and GC3Pie focus on fewer but computationally more demanding 
tasks, with Signac somewhere in between. All frameworks store the data produced, but none with a focus on 
explicitly recording provenance in detail, and, in particular, storing the interconnections between data and the 
processes that received it as input or produced it as output. A focus on data provenance, as a core principle in 
AiiDA’s design, is a core difference with the other management systems mentioned above.

Early versions of AiiDA have already been successfully used in high-throughput computational studies14–18, 
making their AiiDA databases publicly available, and the corresponding provenance graphs interactively brows-
able through, e.g., uploads on the Materials Cloud19. As a consequence of such uptake of AiiDA, the size and 
scope of the requirements quickly increased, testing the limits of the high-throughput capabilities of the original 
architecture. The workflow engine, the component responsible for the automated management of all calculations 
and workflows, showed its scalability limits under heavy computational loads when trying to manage hundreds 
of jobs concurrently on different computational resources. AiiDA 1.0, represents the culmination of a complete 
redesign that not only greatly improves efficiency and aims to deal with the high-throughput loads expected 
for upcoming exascale computing systems20, but also includes new core features that, amongst others, facilitate 
querying the provenance graphs and extend core functionalities, while remaining faithful to the principles of the 
ADES model7. Despite fairly radical changes to the code and architecture, a dedicated effort has been undertaken 
to guarantee that existing databases, generated with earlier versions, can automatically be migrated, guaranteeing 
and preserving the longevity of existing data. In this paper, we first describe the new architecture of AiiDA 1.0, 
following with a more in-depth discussion of the new design and features, focusing on the rationale behind those 
choices and the challenges they are intended to address. The user interface of AiiDA is intentionally not addressed 
in this paper and as such, it is aimed mainly at plugin developers, power-users and researchers of related fields 
that may be interested in the presented technical solutions. Prospective users, interested in learning to work with 
AiiDA, are referred to the extensive online documentation (aiida-core.readthedocs.io/en/latest/), which includes 
a short tutorial, focused how-to guides, and extensive topical and reference materials.

Architecture Overview
AiiDA aims to provide a framework that enables designing and running complex high-throughput computational 
workflows with full automatic provenance and built-in support for high-performance computing on remote 
supercomputers. The architecture, as shown in Fig. 1, is designed with these goals in mind.

One of the core components, the engine, is responsible for running all calculations and workflows that are 
submitted by the user and will be described in the section “Engine and Workflow Language”. Calculations and 
workflows can be implemented in the custom language provided by AiiDA’s core API which is implemented in 
Python. A detailed description of the engine’s design and implementation, as well as the user interface of the 
workflow language can be found in ref. 20. In addition, an example of part of the workflow syntax is shown in 
Supplementary Fig. S2.

Any calculation or workflow that is run by the engine will be automatically recorded in the provenance graph 
in order to enable the reproducibility of the results. The definition and implementation of the provenance graph is 
explained in greater detail in section “The Provenance Model”. Besides the workflow language, the ORM also pro-
vides the tools to interact with the nodes of the provenance graph and inspect their content. The QueryBuilder is 
the tool that allows efficient traversal of the provenance graph to select (sets of) nodes of interest and is described 
in detail in section “Database Abstraction and Querying Language”.

The contents of the provenance graph are stored in a file repository on the local file system and a relational 
database. The mapping between the database and the Python API is performed by an Object Relational Mapper 
(ORM): currently the user can choose between the Django (djangoproject.com) or SQLAlchemy (sqlalchemy.org)  
library.
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From the outside, users can interact with AiiDA through a command line interface called verdi, an interactive 
Python shell or normal Python scripts. The REST API allows one to query the provenance graph through HTTP 
calls (see section “The REST API” for more details). AiiDA itself can communicate with computing resources 
either locally or over SSH to run calculations on those resources and comes with built-in support for most 
well-known and used job schedulers.

Although this is not the first release of AiiDA, the changes with respect to the design, implementation and 
features are so extensive that AiiDA 1.0 can almost be considered to be a new code, were it not for the fact that old 
data is guaranteed to be forward compatible. Table 1 gives an overview of the changes in AiiDA 1.0 with respect to 
earlier versions (a more detailed overview can be found in section A of the Supplementary Information).

Engine and Workflow Language
The engine is the component of AiiDA in charge of automating the execution of calculations and workflows. 
AiiDA is capable of managing calculations either on the local computer where AiiDA is installed, or on any 
number of remote resources (see section “Running on external computers: calculation jobs”). In addition, AiiDA 
provides a workflow language to define the logic to run complex sequences of steps, with potentially nested sub-
workflows and calculations.

The engine consists of runners that are executed in parallel as different operating system processes, supervised 
by a daemon that monitors and relaunches them if they were to die. Each runner can process tasks independently 
and concurrently, distributing the workload involved in workflow and calculation execution. Task distribution is 
achieved via a task queue implemented using the AMQP protocol through RabbitMQ (rabbitmq.com), to guar-
antee reliable scheduling and almost instantaneous reaction to events such as the request for the submission of a 
new calculation or workflow, or continuing a workflow when the calculations or subworkflows it depends upon 
are completed. Additional technical details on the implementation of the engine and the use of the event-based 
task queue can be found in the Supplementary Information.

Thanks to this scalable architecture, the AiiDA engine is able to sustain high-throughput workloads involv-
ing tens of thousands of concurrent tasks every hour distributed on multiple computational resources, as we 
demonstrate in the “Performance” section. Additionally, during execution AiiDA automatically stores all data and 
actions in the provenance graph (see “The Provenance Model”), including the workflows, the calculations and 
their inputs and outputs, to provide full traceability.

Fig. 1  Schematic overview of the architecture of AiiDA 1.0.

Component Status Description

Engine ↻ Redesigned Responsible for running all calculations and workflows

Workflow language + New Allows to write robust and modular workflows

Daemon ↻ Redesigned Rewritten to be able to scale on demand

Provenance graph ↻ Redesigned Core concept extended to include workflows

Query builder + New New tool thats allow querying the provenance graph through Python API

REST API + New Provides access to the database over the HTTP protocol

Database ⊕ Optimized Improved query speed and storage efficiency

Plugin system + New Provides a plug-and-play system to install extensions of AiiDA

Table 1.  An overview of the most important additions and improvements in AiiDA 1.0 with respect to 
the version described in ref. 7. Components with the status “Redesigned” have been partially or completely 
redesigned and reimplemented.
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In this section we define the three core concepts defined by the AiiDA engine (processes, calculations and 
workflows) and we briefly describe the key aspects of the engine implementation.

Processes in AiiDA.  In AiiDA, any entity that handles input data to produce output data, and that is run by 
the engine, is called a process. Processes come in two flavours: calculations and workflows. These two terms in 
AiiDA have a more specific meaning than their use in common parlance. In particular, calculations are defined as 
processes that create new data as output, given certain data as input. A typical case is the execution of a simulation 
code on a remote computer. In contrast, workflows in AiiDA are solely tasked with the orchestration of subpro-
cesses, calling calculations and/or other workflows in a certain logical sequence. Consequently, workflows are not 
allowed to generate new data, but can only return existing data, usually created by one of the calculations that they 
called (either directly or indirectly via a subworkflow).

This distinction is critical in the design of the provenance model of AiiDA, allowing to differentiate the part 
of the provenance graph that represents exactly how data was generated (the data provenance) from the logical 
provenance that captures the why of the data creation, i.e., which workflows drove the execution. This distinction 
is elaborated in more detail in the subsection “Logical and data provenance”.

In routine tasks, users do not interact directly with calculations or workflows, but with specific subclasses that 
define additional functionalities and are appropriate in different use cases that we describe below.

Process functions: calculation functions and work functions.  The simplest way to define a process 
(a calculation or a workflow) is to add a line (@calcfunction or @workfunction, respectively) on top of 
a standard Python function (this line is called a decorator in Python; see the supplementary section “Example of 
a work chain and calculation function” for an example). Calculation and work functions are collectively referred 
to as process functions. The logic of the @calcfunction and @workfunction decorators is defined by 
AiiDA, and they signal to AiiDA’s engine that any time the function is called, its execution should be recorded in 
the provenance graph, linking up the inputs passed and the outputs it produced. Furthermore, if a work function 
calls another process function, this action is also represented in the provenance graph as a connection between 
the caller and the called process.

This approach of defining processes is very intuitive and powerful, because any standard Python function can 
be converted into a process function simply by adding a decorator, as long as it accepts AiiDA datatypes as input 
and returns an AiiDA datatype (or a dictionary of AiiDA datatypes) as output. However, process functions show 
their limits when running very long workflows that can last for days (e.g., in the case of molecular-dynamics 
simulations). The reason is that process functions are executed on the local machine and since it is not possible 
to interrupt the execution of a Python function and resume it later, the local machine cannot be shut down, 
rebooted or disconnected from the network until the process is finished. In addition, the interface design, through 
its simplicity, restricts what code can be executed, as it has to be written in Python. Of course one could resort 
to calling external codes through subprocesses, but this quickly becomes complicated, especially if the external 
code needs to be run on a remote machine and/or through a job scheduler. For these reasons, AiiDA implements 
two additional processes: calculation jobs, to manage the execution of external codes through job schedulers, and 
work chains to implement and orchestrate long-running workflows with the possibility of pausing and restarting 
between steps.

Running on external computers: calculation jobs.  Calculations jobs, implemented by the CalcJob 
process class, are used to manage the execution of external codes, commonly run via a job scheduler and option-
ally on a remote machine. The CalcJob can be adapted for external codes through plugins (see “The Plugin 
System”), which define how the required raw input files are constructed from the AiiDA datatypes that are pro-
vided as input. Once submitted, the engine takes over and performs all the necessary steps to run the calculation 
to completion. These include uploading the raw input files, submitting the job to the scheduler, querying the job 
state and waiting for it to finish, and finally retrieving the files to be stored locally. The retrieved files can optionally 
be parsed into AiiDA datatypes that are registered as outputs of the calculation. The parser logic is also defined 
through plugins, since this also requires code-specific logic. The explicit parsing into AiiDA datatypes makes the 
outputs interoperable among different codes and allows for their direct reuse as inputs of new calculations.

To increase the robustness of the engine, we implemented optimised algorithms to automatically resched-
ule failed tasks through an exponential-backoff mechanism, recovering from common transient errors such as 
connection issues. If the task fails multiple times consecutively (for example because the remote machine went 
offline), the process is automatically paused. The process can be resumed effortlessly by the user when the issue 
is resolved, and the AiiDA engine ensures that no data loss occurs as the calculation resumes from where it was 
paused.

Additionally, to avoid overloading remote machines with connections, rendering them potentially unrespon-
sive also to other users, AiiDA implements a connection pooling algorithm. Connections to the same computer 
are grouped and new requests are funnelled within existing open connections, if available. If no connection is 
open and a new one needs to be created, AiiDA guarantees that a configurable minimal time interval between 
them is respected. For similar reasons, AiiDA caches the list of jobs in the scheduler queue and respects a mini-
mum (configurable) timeout when refreshing their state.

Interruptible workflows: work chains.  As discussed earlier, the limitation of a workfunction is that its 
execution is atomic and blocking. Therefore, if workfunctions are used to implement complex workflows calling 
many long-running calculation jobs, intermediate progress within the function body cannot be persisted. As a 
consequence, if the process is interrupted (for instance to restart the AiiDA daemon or to reboot the machine 
where AiiDA is running), all progress is lost.

https://doi.org/10.1038/s41597-020-00638-4
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To solve this issue, AiiDA implements the WorkChain process class. Work chains allow users to specify units 
of work (like the processing of data or the submission of subprocesses) as steps. The logical outline of the steps 
(i.e., their sequence, possibly including while and if/else logic) is defined in the process specification. By 
design, the execution of the workflow is managed by the AiiDA engine that gets back control between steps, exe-
cuting the next one only when all subprocesses have finished. Most importantly, between steps the engine persists 
the workflow state to the database. Therefore, if the engine is stopped no progress is lost and, upon restarting, 
the engine will continue the workflow execution from the last persisted step (or the engine will keep waiting for 
running subprocesses, if any).

In addition to the capability of stopping and continuing execution, work chains have the advantage that inputs 
and outputs (including information like their type or whether they are required or optional) can be declared in 
the process specification, together with the logical outline of the steps. Work chains are thus self-documenting 
because, through simple inspection of the specification, users can determine the interface of the workflow and 
its main logic. Furthermore, the specification is machine-readable and can be automatically rendered in multiple 
formats. One use case is the extension provided in AiiDA for the Sphinx (sphinx-doc.org) engine (used to gen-
erate the AiiDA documentation, see “Community building”) that generates human-readable documentation for 
any work chain, to be displayed, for instance, as a web page.

Since work chains are directly implemented in Python, users have the full power of the programming language 
at their disposal, as well as direct access to the content of the provenance graph. This allows for the implementa-
tion for powerful error-handling mechanisms that can deal with failures of calculations that are run as part of the 
workflow. AiiDA is a domain and code agnostic infrastructure and therefore does not include error handlers for 
specific codes. However, various utilities and tools are provided to make implementing these as easy as possible, 
such as exit codes for calculations and workflows, some of which are already pre-defined by AiiDA, and others 
that can be defined by the corresponding plugin. Based on these exit codes, error handlers can dynamically decide 
whether to re-submit calculations with different inputs, adapt postprocessing, etc. Plugins for specific simulation 
codes can utilise these tools to write the error handling specific to their use case, as has been done for example by 
the aiida-quantumespresso (github.com/aiidateam/aiida-quantumespresso) and aiida-vasp (github.
com/aiida-vasp/aiida-vasp) plugins for the Quantum ESPRESSO21 and VASP22 codes, respectively. The typical 
failures that are handled range from simple out-of-walltime errors to more complex failures such as problems 
with the convergence of the self-consistent minimization cycle. These are just two examples of popular computa-
tional materials science codes for which AiiDA plugins exist, but many other codes are supported as well, as will 
be further discussed in “The Plugin System”.

The work chain interface encourages writing modular workflows, with lower-level work chains implemented 
to solve specific tasks that are often code-dependent, like error handling, restarting or automatic tuning of param-
eters. Higher-level work chains can then wrap around these, directly exposing all inputs of the lower-level work-
flows or only a few, with the others being determined by the workflow logic. Such wrapping work chains can 
implement additional functionality less focused on the technical details of the code execution but rather focusing 
on the evaluation of scientific quantities of interest. As such, workflows enable the delivery of fully automated 
turn-key solutions that require only minimal inputs and encode the scientists’ knowledge on how to compute a 
given result, from code-specific technicalities to the handling of the parameters involved in the scientific models 
of the simulations.

To conclude, we emphasise that implementing workflows directly in Python is a design choice. Since there is 
no translation between what the user implements and what the engine executes, the user can leverage the power 
of the full Python and AiiDA APIs when designing workflows. Additionally, this design directly facilitates debug-
ging using standard Python tools and seamless integration with external libraries for data manipulation.

The Provenance Model
As explained in the previous section, AiiDA’s engine automatically represents the execution of processes, along 
with their inputs and outputs, as vertices (called nodes in AiiDA) of a directed graph. Graph edges (called links) 
connect the nodes; process nodes, for instance, have incoming links from their inputs and outgoing links to their 
outputs. Since output data can in turn be used as input to new processes, extensive graphs are generated. We call 
them AiiDA provenance graphs because they allow to retrace the exact steps that led to the creation of a piece of 
data. An example of a simple provenance graph is shown in Fig. 2.

Node types.  While all nodes of the graph share a set of common properties, there is a need to define custom 
properties based on what the node represents. Therefore, the various AiiDA processes (see “Engine and Workflow 
Language”) as well as data are represented by different node subtypes. This makes it possible to implement func-
tionality specific to each of them and to explicitly target nodes of a certain type when querying the graph (see 
“Database Abstraction and Querying Language”).

In AiiDA, the Node class is the base class to represent any node in the graph. The common properties of any 
node include the user who created it, the creation and last modification times, an optional computer on which it 
was run or stored, and a human-readable label and description. Node classes are subclassed to build a hierarchy 
of node types, schematically represented in Fig. 3. In particular, data and process nodes are represented by the 
Data and ProcessNode subclasses, respectively.

Various data types are implemented by directly subclassing the Data class. AiiDA ships with a few basic 
data types; for instance, among many others, Float to represent a single float value and Dict for a dictionary 
of key-value pairs. Arbitrary new data types can be defined through the plugin system (see “The plugin system”).

The hierarchy of ProcessNode subclasses reflects the distinction in AiiDA between calculations and 
workflows, represented by subclasses of CalculationNode or WorkflowNode, respectively. In practice, 
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in a provenance graph one finds instances of CalcJobNode, CalcFunctionNode, WorkChainNode or 
WorkFunctionNode, representing executions by the engine of the corresponding process classes (CalcJob, 
calcfunction, WorkChain or workfunction, respectively, as discussed in “The engine”). The interme-
diate classes in the hierarchy serve mostly as a taxonomic classifier and they are useful when querying the prov-
enance graph (see “Database abstraction and querying language”). For instance, querying for WorkflowNodes 
will match both WorkChainNodes as well as WorkFunctionNodes.

Link types.  All links have a type to indicate the semantic meaning of the relationship. In addition, links have 
a label that can be used, given a node, to distinguish nodes connected to it with the same link type. For example, 
labels identify the different input nodes to a process. A summary of all link types in AiiDA is shown in Fig. 4.

Process nodes can have input and output links to data nodes, representing their inputs and outputs. More 
specifically, in the implementation, input links can be of type INPUT_CALC and INPUT_WORK depending on 
the type of the linked process node. Similarly, output links can either be of type CREATE or RETURN (for calcu-
lation and workflow nodes, respectively) explicitly highlighting the difference between calculation and workflow 
processes described in “Engine and Workflow Language”.

Fig. 2  (a) A schematic provenance graph representing the execution of a workflow W1 receiving three data  
nodes D1, D2 and D3 as input, containing the values x, y and z respectively. W1 computes the expression (x + y) · z  
by calling two calculations C1 (to perform the sum) and C2 (to perform the product), forwarding the correct 
inputs to them. C1 creates the intermediate node D4 (with the value x + y) and C2 then creates the node D5 with 
the final result, that is then also returned by W1. While this simplified example is purely for illustrative purposes, 
it demonstrates that by storing execution information as a graph, the provenance of all data is fully recorded. (b) 
Data-provenance layer: it includes calculation and data nodes only, showing the exact sequence of steps that led 
to the creation of the data nodes. (c) Logical-provenance layer: it hides the details of all intermediate results and 
focuses only on how the workflow produced the final results from a given set of inputs.

Fig. 3  The hierarchy of the node types in AiiDA. This hierarchy is also mirrored in the Python code, where 
Python classes are used to represent them, using Python’s inheritance model. The different node classes allow 
to implement custom functionality for each subtype. Additionally, the subclass hierarchy allows to query for 
specific node types, or a set thereof.

https://doi.org/10.1038/s41597-020-00638-4
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In addition to links between data and process nodes, two additional link types exist between processes, to 
indicate that a workflow called another process. These links are called CALL_CALC and CALL_WORK, depending 
on the type of the called process, and are collectively referred to as call links.

Due to their semantic meaning, link types impose precise validation rules. First, a link type requires specific 
node types at its two endpoints. In addition, cardinality rules are defined, as illustrated in Fig. 4. In general these 
dictate that, given a node, any number of nodes can be linked to it by links of a given type. For create and call 
links there are instead explicit restrictions: a data node can be created by at most one calculation, while it can be 
returned by multiple workflows; a process can be called by at most one workflow, while a workflow can call an 
arbitrary number of subprocesses. Finally, uniqueness constraints on the labels of certain link types are enforced: 
the link labels of input nodes to a given process must be unique, to guarantee that each input can be uniquely 
identified. The same applies to the output nodes of a process.

Logical and data provenance.  Due to the rules defined in the previous sections, AiiDA provenance graphs 
have useful properties. The subgraph composed exclusively of data and calculation nodes together with the links 
that connect them forms a Directed Acyclic Graph (DAG). The acyclicity is a direct result of calculations only 
having outgoing links to data they created: output nodes are always generated as a result of execution and there-
fore, because of the causality principle, cannot also simultaneously be part of the inputs of the process itself or 
of any parent process in the graph. We refer to this subgraph as the data provenance, since it is an exact record 
of the origin of the data. Since a DAG has well defined properties, assumptions can be made by the AiiDA query 
language (see “Database Abstraction and Querying Language”), for instance to define the concept of an ancestor 
of a given node as any node that can be reached following the links of the data-provenance DAG in the backward 
direction (i.e., moving from the node at the head of a link to the one at the tail). Similarly, descendants are defined 
as nodes that can be reached following DAG links in the forward direction.

We can also define a second subgraph, composed solely of data and workflow nodes and the links connecting 
them (including CALL_WORK links). We call this graph the logical provenance, since it focuses on the logical 
steps taken by the workflows when processing data and orchestrating processes. Like the data provenance, the 
logical provenance subgraph also forms a directed graph that, however, is not acyclic. In fact, return links are not 
bound by the causality principle since they do not signify “creation”, and workflows merely return outputs that 
have already been created by other calculations. For instance, a workflow selecting one of its inputs based on some 
criteria will have a return link to that input, which introduces a cycle in the graph.

Fig. 4  Link types allowed in the AiiDA provenance graph. Rectangles represent node types and arrows 
connecting them indicate the direction and the type of each link. The symbols at the start and end of each 
arrow indicate the cardinality of the corresponding link types: 0..1 means that at most one node is allowed 
on that link endpoint for a given node on the opposite endpoint (for instance, a Data node can have at most 
one CalculationNode as its creator); 0..* means that any number of nodes is possible (for instance, a 
CalculationNode can have an arbitrary number of input Data nodes). Additionally, a dagger (†) indicates 
that link labels must be unique for a given node on the opposite endpoint (for instance, outgoing create links 
from a CalculationNode must have unique labels).
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The two layers of data and logical provenance share data nodes and are interconnected by CALL_CALC links. 
The separation of these two provenance layers has the additional benefit of allowing the granularity for the inspec-
tion of the provenance graph, as shown in Fig. 2(b,c), to be selected.

Node properties.  In the previous section “Link types”, we described the basic properties that are common to 
all node types. The various subtypes define the “schema” of the additional properties that fully define and describe 
the node. AiiDA provides two data stores to persist these properties: a filesystem repository and a relational 
database (where any JSON-serialisable key-value pair can be saved, see “Database Abstraction and Querying 
Language”). Properties that are stored in the database are named attributes, which are fully and efficiently query-
able. In contrast, properties that do not require querying and/or are very large in size, such as large arrays or raw 
files, are better stored in the repository so as not to overburden the database. Attributes and the files in the repos-
itory are immutable once the node is stored, since together they define the “content” of the node and allowing 
them to be changed would invalidate the provenance of descendants. Mutable properties are also allowed and are 
called extras that, like attributes, are stored as key-value pairs in the database. However, in stark contrast to attrib-
utes, extras can be added and/or modified at any time. A typical use case is to tag nodes with custom properties 
that can, for example, be used for more selective querying.

Reproducibility and efficiency.  By automatically recording all data transformations through a process 
together with all the inputs it consumed, the produced graph is in principle fully reproducible. This of course 
depends on all relevant inputs being stored as well as the code that was ran by the process. The actual source code 
of process functions is stored by AiiDA in the repository; for all other processes the code is referenced indirectly 
by storing both the version of AiiDA and of the relevant plugin in the attributes of the process node. The source 
code of external simulation software is not directly stored, however, although AiiDA provides the user with the 
possibility to store metadata, such as the version of the software or the libraries and parameters used for compila-
tion. The inclusion of this information is not enforced as it is impossible to validate and it unnecessarily compli-
cates the interface for those users who do not require this level of reproducibility. The obvious solution to improve 
the provenance of data produced by external codes is containerisation, and development is ongoing to provide 
integrated support for containerised codes in AiiDA.

Tracking all data transformations in a provenance graph provides another benefit besides enabling reproduci-
bility. The entire provenance graph can serve to implement a “caching” mechanism: if one considers the execution 
of a process that already has been performed before with identical inputs, the actual execution can be skipped. In 
this case, since the inputs are identical, we already know what the outputs are going to be as well, and so we can 
simply take those from the previously executed process instead, avoiding incurring the computational cost once 
more. This caching mechanism is implemented in AiiDA 1.0 and is explained in detail in the section “Caching”.

Database Abstraction and Querying Language
When running automated high-throughput research projects with AiiDA, very large provenance graphs contain-
ing millions of nodes or more are easily generated (as for instance in the study of ref. 14). Tools that can efficiently 
query such graphs become essential to perform data analysis. In order to allow the implementation of a per-
formant tool, AiiDA uses a relational database to store the provenance graph with its links and nodes including 
most of their properties (see “Node properties”). In addition, we have optimised AiiDA’s database schema and 
indexes to ensure that typical graph queries are very efficient, as discussed in section “Performance”.

Direct database queries must be expressed in its native language. AiiDA’s current database solution PostgreSQL 
(postgresql.org) is based on the SQL language, which, while known for its efficiency, requires (in the context of the 
AiiDA’s provenance graph) writing queries that are long and cumbersome even for database experts. Furthermore, 
the exact query structure depends on the specific implementation choices of AiiDA, that could change between 
versions to improve efficiency (for instance if the schema is improved or the SQL backend is replaced by a graph 
database). AiiDA does not directly write the SQL statements itself but relies on object-relational mapping (ORM) 
libraries like Django and SQLAlchemy as an intermediate layer to express the queries in Python. However, these 
queries still depend on the specific database schema and have essentially the same complexity level as the native 
ones. It is therefore crucial to provide a tool that abstracts this process and makes writing queries not just as sim-
ple as possible but also independent of the ORM and database implementation.

The query builder is the tool in AiiDA that satisfies these criteria: it allows users to express any query on the 
provenance graph using a familiar Python syntax that is automatically translated into an optimised SQL query 
and executed. To illustrate the concept of the query builder, we describe in Fig. 5 a simple provenance graph and 
how a query is mapped onto it. Essentially, this is the problem of subgraph isomorphism, which, given two graphs 
G and H, consists of finding all the subgraphs within G that are isomorphic to H23. Here G is the entire AiiDA 
provenance graph and H is the subgraph represented by the query as expressed through the query builder.

The schematic query shown in Fig. 5(b) represents the search for all crystal structures (StructureData) 
used as input to a calculation (CalculationNode) that created a Dict  node as output. The query 
encodes filters on the link directions, link types (INPUT, CREATE) and node types (StructureData, 
CalculationNode, Dict). On top of these constraints, additional query specifications are available 
which are not shown in Fig. 5 but are explained in detail in the “Query builder syntax example” section in the 
Supplementary Information. In particular, filters can be set on the node properties, for example the structure 
must contain a given chemical element or the output must have a value within a certain range. Moreover, the user 
can specify a list of projections, i.e., which subset of properties of the matched nodes should be returned. Once 
the query is fully defined and executed by the user, the query builder returns all the subgraphs embedded in the 
AiiDA provenance graph that match the query constraints. Figure 5 shows all four embedded subgraphs that 
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match the query of this particular example. Finally, the query builder converts the results into Python objects, that 
can directly be used with common data processing libraries like SciPy (scipy.org) and pandas (pandas.pydata.org)  
for further data analysis.

The reason for the existence of two ORM backend implementations (Django and SQLAlchemy) is mostly 
historical. The original implementation used only Django, and as a result AiiDA’s API was tightly coupled to this 
library. When the query builder was first introduced, interaction with the database was implemented instead 
via SQLAlchemy, as it provided a richer feature set allowing for more general queries. Since SQLAlchemy at 
the time already provided support for JSONB (unlike Django), it was also used as an alternative ORM backend 
implementation to benefit from the significant improvements in database performance (see “Performance”). To 
achieve this, extensive work was performed to decouple the backend ORM from Django-specific constructs, and 
to create a new layer of backend-independent AiiDA frontend classes (those directly exposed to users to interact 
with nodes). Moreover, all functionalities of AiiDA (command line tools, query builder, import/export function-
ality,…) were critically revised and updated so as not to rely anymore on backend-specific logic but to use general 
backend-independent interfaces instead. As a consequence, in the current version of AiiDA the user interface 
does not depend anymore on the chosen backend. Additionally, implementing new ORM backends is now greatly 
streamlined and simplified. Django also started supporting JSONB recently and, therefore, we have updated the 
Django interface in AiiDA to use JSONB fields for attributes and extras instead of our original solution based on 
entity-attribute-value tables, increasing database performance also for the Django backend (see “Performance”).

The REST API
The query builder is the tool of choice for querying data directly via the Python interface, which in turn is the 
preferred approach when one has direct access to the machine running AiiDA. If, instead, data needs to be made 
available to users without full access to the machine, for example over the web, a solution is required that can 
serve the data in a secure way. In addition, such a solution should not just be able to serve the database contents 
as a whole, but it should provide the necessary functionality to query for specific data.

A widespread approach to share data over the web is through a REST API (w3.org/2001/sw/wiki/REST), a 
stateless protocol that allows to query and retrieve data via HTTP requests (w3.org/Protocols). REST APIs are 
not only generally adopted on the web, but they have also become widespread in specific scientific disciplines and 

Fig. 5  (a) Schematic of an AiiDA graph that could result from a materials science simulation: as described by 
the labels, a Density Functional Theory self-consistent field (SCF) calculation and a geometry relaxation of 
a crystal structure, and a calculation of the “distance” between the initial and final structure. Orange squares 
represent nodes of type CalculationNode, circles represent Data nodes: blue for crystal structures (of type 
StructureData) and green for nodes of type Dict (dictionaries of key–value pairs with input parameters 
or parsed results). (b) Representation of a graph query searching a StructureData node that was an input of 
a CalculationNode that created a Dict node as output. Labels on the right represent the filter on the node 
type applied while querying. (c) The four subgraphs that match the query embedded in the entire provenance 
graph, where the matching nodes and links are colored in red and highlighted by a surrounding border.
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domains. For instance, in the materials science community the OPTIMADE (optimade.org) consortium has been 
formed to define a common REST interface for querying material property databases. Many of the major mate-
rials databases have implemented (or are planning to implement) the OPTIMADE interface like AFLOW9, the 
Crystallography Open Database24, TCOD25, the High-Throughput Toolkit (httk.openmaterialsdb.se), Materials 
Cloud19, MPDS26, Materials Project27, NOMAD28, OQMD29, and AiiDA, among others.

AiiDA implements a REST API server that can be launched directly from the command line or deployed via 
scalable web servers like Apache (httpd.apache.org). API endpoints are available to access data associated with 
the AiiDA graph, including the list of nodes, their properties (like attributes, extras and files in the repository) 
as well as the graph information (incoming and outgoing links for a given node). Nodes are identified by their 
UUID (ietf.org/rfc/rfc4122.txt) to ensure that resources are uniquely identifiable even if data is shared and then 
made available by a different server. Custom queries can be performed by specifying filters in the query string 
in order to narrow the matched subset of nodes. The web server is implemented using the flask (palletsprojects.
com/p/flask) web framework and a number of flask plugins (including flask-sqlalchemy to manage sessions to 
the database and flask-restful to handle requests using the REST approach). Once a request is received, this is 
translated into a database query using AiiDA’s query builder, which is then executed. The results of the query are 
then mapped to the format defined by the REST API and serialised into a JSON response that is returned to the 
web client. Results are paginated to facilitate downloads of large amounts of data without overloading the server. 
In addition to endpoints common to all node types, additional endpoints are available that provide functionality 
specific to only certain node subtypes. For example, it is possible to directly obtain raw inputs and outputs of a cal-
culation, or to download the content of data nodes in a specific format other than AiiDA’s internal representation.

In conclusion, AiiDA’s REST API endpoints provide a complete set of features to interact with AiiDA pro-
grammatically and in a secure way from the web. An emblematic example of its use is provided by the Explore 
section of the Materials Cloud19 portal, where AiiDA databases are made available as interactive web pages and 
the provenance graph can be browsed via a graphical user interface. Indeed, all data needed to display the prove-
nance graph and the node contents on Materials Cloud Explore is obtained through AiiDA’s REST API.

Performance
In this section, we examine the performance of the database and the engine. Where applicable, a comparison is 
drawn with earlier versions of AiiDA7, to illustrate how the new design has improved performance.

The database schema of AiiDA 1.0 includes many improvements and optimisations with respect to the 
schema published in ref. 7. Here we highlight two changes that have had the greatest impact on storage and query 
efficiency. First, in section “EAV replaced by JSONB” we describe how the schema of node attributes has been 
changed from a custom entity-attribute-value solution to a native JSON binary (JSONB) format. Second, section 
“On-the-fly transitive closure” details how the transitive-closure, originally a statically generated table, has been 
replaced with one that is generated on the fly in memory.

EAV replaced by JSONB.  As described in “The provenance model”, the attributes of a node are stored in 
a relational database. The exact schema for these attributes depends on the node type and cannot be statically 
defined, which is in direct conflict with the modus operandi of relational databases where schemas are rigorously 
defined a priori. This limitation was originally overcome by implementing an extended entity-attribute-value 
(EAV) table that allowed storing arbitrarily nested serialisable attributes in a relational database7. While a suc-
cessful solution, it comes with an increased storage cost and significant overhead in the (de-)serialisation of data, 
reducing the querying efficiency.

As storing semi-structured data is a common requirement for many applications, PostgreSQL added sup-
port for a native JSON and JSONB datatype as of v9.2 (postgresql.org/docs/current/static/release-9-2.html) and 
v9.4 (postgresql.org/docs/current/static/release-9-4.html), respectively, which is an efficient storage and indexing 
format (postgresql.org/docs/current/static/datatype-json.html). In AiiDA 1.0, the custom EAV implementation 
for node attributes has been replaced with the native JSONB provided by PostgreSQL, which yields significant 
improvements in both storage cost and query efficiency.

The replacement of EAV by JSONB significantly reduces storage cost in two ways: (a) the data itself is stored 
more compactly as it is reduced from an entire table to a single column and (b) database indexes can be removed 
while still providing a superior query efficiency. Figure 6(a) shows the space occupied when storing 10000 crys-
tal structures, comparing the size of the raw files on disk, and with their content stored in the EAV and JSONB 
schema. In the case of raw files, the XSF format (xcrysden.org/doc/XSF.html) was used since it contains only the 
information that is absolutely necessary.

This benchmark was performed on a PostgreSQL 9.6.8 database using the ORM backends as implemented 
in AiiDA 1.0. When comparing the EAV format to the JSONB format, a decrease in storage space of almost two 
orders of magnitude becomes apparent. The space gains of the new format do not only apply to the occupied space 
on disk, but also to the amount of data transferred when querying JSON fields, as shown in Table 2. This effect is, 
however, only a part of the increase in query efficiency thanks to the JSONB schema.

Using the JSONB-based format also carries significant speed benefits. These mainly come from the more 
compact JSONB-based schema with respect to the EAV schema, as described in the previous section. This results 
in (a) less transferred data from the database to AiiDA, and (b) a reduced cost of deserialising the raw query result 
into Python objects.

Figure 6(b) shows benchmarks carried out with PostgreSQL 10.10 on an AiiDA database generated for a 
research paper14 which contains 7318371 nodes. The benchmarks were carried out on a subset of 300000 
crystal-structure data nodes on a machine with an Intel i7-5960X CPU with 64GB of RAM. Three different kind 
of attributes were queried: cell, kinds and sites. The cell is a 3 × 3 array of floats, kinds contain information on 
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atomic species (therefore, typically there is one kind per chemical element contained in the structure), while there 
is a site per atom, explaining the increase in result sizes as shown at Table 2.

Due to the specific format of the EAV schema, more rows need to be retrieved for every crystal structure data 
node. The effect of the different result size is visible both in the SQL time (reflecting the time to perform the query 
and to get the result from the database) and in the total amount of time spent which includes the deserialisation 
of raw query results into Python objects. As shown in Fig. 6(b), the total query time of the site attributes in the 
JSONB format is 75 times smaller than the equivalent query in the EAV format. The SQL time for the same query 
is roughly 6.5 times smaller for the JSONB version of SQL query compared to the EAV version of the query. The 
increased final speedup at the Python level is due to the fact that in the EAV based schema there is the overhead of 
serialising the attributes at the Python level, which is largely avoided in a JSONB-based schema.

On-the-fly transitive closure.  Very often, when querying the provenance graph one is only interested in 
the neighbours directly adjacent to a certain node. However, some use cases require to traverse the graph taking 
multiple hops in the data provenance to find a specific ancestor or descendant of a given node. To make the que-
ries for ancestors and descendants at arbitrary distance as efficient as possible, early versions of AiiDA computed 
and stored the transitive closure (TC) of the graph (i.e., the list of all available paths between any pair of nodes) 
in a separate database table. Storing these paths in a dedicated database table with appropriate indexes allowed 
AiiDA to query for ancestors and descendants with time complexity 𝒪(1)in dependent of the graph topology and 
the number of hops.

However, the typical size of the TC table is significant even for moderately sized provenance graphs, and 
quickly has an adverse effect on the general performance of the database. For example, a subset of just one mil-
lion nodes from the database generated in ref. 14 has 226 million rows in the TC table, corresponding to 200 GB 
on disk. In addition to the raw disk storage cost, the time needed to store a new link also increases, as the TC is 
updated with automatic triggers at each update of the links table. This becomes more expensive as the table grows 

Fig. 6  Comparison in a log scale of the space requirements and time to solution when querying data with the 
two AiiDA ORM backends. (a) Space needed to store 10000 structure data objects as raw text files, using the 
existing EAV-based schema and the new JSON-based schema. The reduced space requirements of the JSON-
based schema with respect to the raw text files are due to, among other things, white-space removal. The JSONB 
schema reduces the required space by a factor of 1.5 compared to the raw file size and a factor of 25 compared to 
the EAV-based schema. (b) Time for three different queries that return attributes of different size for the same 
set of nodes. The benchmarks are run on a cold database, meaning that the database caches are emptied before 
each query. We indicate separately the database query time (SQL time) and the total query time which includes 
also the construction of the Python objects in memory. The total query time of the site attributes in the JSONB 
format is 75 times smaller compared to the equivalent query in the EAV format. The SQL time for the same 
query is roughly 6.5 times smaller for the JSONB version of SQL query compared to the EAV version of the 
query.

Attribute

EAV JSONB

Rows Size (MB) Rows Size (MB)

Cell 255,671 71 19,667 8

Kinds 537,303 150 19,667 11

Sites 15,352,241 4412 19,667 201

Table 2.  Result size and number of rows of attribute queries presented in Fig. 6(b) on a database table of 300000 
crystal structures.
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because table indexes need to be updated as well. AiiDA 1.0 replaces the TC explicitly stored in a table with one 
that is computed lazily, or on-the-fly (OTF), whenever ancestors or descendants of a node are queried for. This is 
implemented in the query builder via SQL common table expressions to recursively traverse the DAG. The OTF 
method greatly reduces the time required to store new links and does not require any disk space for storing the 
TC, albeit at the cost of slightly slower queries. However, the impact on the efficiency of the recursive queries for 
AiiDA provenance graphs is minimal, since the typical graph topology is relatively shallow and often composed of 
(almost) disjoint components. This can be seen in Fig. 7(a,b) that shows frequency graphs capturing the topology 
of a subgraph of the database of ref. 14. composed of one million nodes. Indeed, the vast majority of nodes only 
have a handful of ancestors and descendants and these can be reached in a relatively small number of hops.

To compare the performance of the explicit and lazy implementations of the TC, we performed benchmarks 
on multiple graphs with topologies comparable to typical AiiDA provenance graphs. Each graph consists of N 
binary trees with a depth and breadth (the number of downward branches and the number of outward going 
edges from each vertex, respectively) of 2 or 4. The benchmark records the total time it takes to query for all 
descendants of 50 top-level nodes using either the explicit TC table (TC-TAB) or the on-the-fly TC (TC-OTF).

Figure 3(c) clearly shows that in both cases the number of trees does not affect the query efficiency. Moreover, 
as the depth and breadth of the graph increases, the TC-TAB query time increases. In contrast, for the TC-OTF, 
the topology of the graph has little impact on the query time. Note that this holds for these particular topologies, 
which match that of typical AiiDA provenance graphs, but is not necessarily the case for more complex graph 
topologies. Finally, as expected, the TC-TAB is faster than the TC-OTF, albeit by just a factor of two. We deem this 
increased cost more than acceptable, given the considerable savings in storage space provided by the TC-OTF, 
the performance independence from the graph topology and the faster storage of new links. For these reasons, all 
recent versions of AiiDA implement only the TC-OTF.

Event versus polling-based engine.  To evaluate the performance of the event-based engine of AiiDA 
1.0 compared to the polling-based one of earlier versions, we consider an example work chain that per-
forms simple and fast arithmetic operations. The work chain first computes the sum of two inputs by sub-
mitting a CalcJob and then performs another addition using a calcfunction. For the CalcJob, the 
ArithmeticAddCalculation implementation is used, which wraps a simple Bash script that sums two 
integers. Each work chain execution then corresponds to the execution of three processes (top work chain, a cal-
culation job and a calculation function) and is representative of typical use cases. For each benchmark, 400 work 
chains are submitted to the daemon and the rate of submission and process completion is recorded, as shown 
in Fig. 8. These benchmarks were performed on a machine with an Intel Xeon E5-2623 v3 CPU with 64GB of 
RAM. Beside the results obtained for the old and new engine using optimised parameters (number of workers, 
transport intervals,…), for a fair comparison and to highlight the effect of different engine types, in Fig. 8(a) we 
also show the results for the new engine with some artificial constraints. In particular, we run the new engine with 
four workers only (which is roughly comparable with the old engine, with four independent tasks for submitting, 
checking queued jobs, retrieving files, and processing work chain steps) rather than twelve. Additionally we set a 
minimal interval between connections of 5 seconds in the new daemon to simulate the polling behaviour (with 
default polling time of 5 seconds) of the old daemon, despite all calculation jobs being run on the local host where 
an interval of zero is optimal.

Figure 8(a) shows that the submission rate of the old engine is slightly faster compared to the new engine, 
because the procedure was significantly simpler with no communication with remote daemon workers. 
Nevertheless, the total completion time of the new engine (even in the constrained configuration) is shorter, with 
the optimised new engine completing all processes three times faster than the old one in this simple example. 
Additionally, for the old engine all work chains complete towards the end of the time window at roughly the same 
time, in a few discontinuous jumps because of the polling-based architecture. In contrast, the completion rate of 
the event-based engine is much smoother (beside being faster in general) because of the continuous operating 
character of the new engine, with processes managed concurrently and executed immediately, without waiting 
for the next polling interval.

Fig. 7  Analysis of a sample of one million nodes of the AiiDA graph published in ref. 14. (a) Frequencies of the 
number of ancestors and descendants of all nodes. (b) Frequencies of the number of hops, i.e., the distance to 
reach the farthest ancestor/descendant. (c) Required CPU time when querying for all descendants of 50 top-
level nodes in a graph that consists of a number of binary trees of breadth B and depth D using the transitive 
closure on-the-fly (TC-OTF, diamonds) or the explicitly tabulated transitive closure (TC-TAB, squares).
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The concurrency of the new daemon is highlighted even more in Fig. 8(b) where we compare the completion 
time for the new (optimised) daemon and old one, showing independently the completion for the top work chain 
and each of the two subprocesses. The reason of the large delay in the old engine is because, even though the 
workflow only runs two subprocesses, the internal logic consists of multiple steps, where only one is processed per 
polling interval. In contrast, the new engine executes all workflow steps in quick succession without interruption.

We stress that the efficiency improvements of the new engine are even larger in real high-throughput situa-
tions, since the daemon is never idle between polling intervals. Most importantly, the new daemon is scalable and 
the number of daemon workers can be increased dynamically to distribute heavy work loads. This effect is made 
visible in Fig. 8(a), where the optimised new engine (with 12 workers and without connection delay) completes 
all processes in half the time required by the constrained one. The effective throughput of the new engine for this 
experiment, which was run on a modest work station, amounts to roughly 35000 processes per hour. Due to the 
scalable design of the new engine, this rate can be easily increased by running more daemon runners on a more 
powerful machine.

Caching.  The storing of complete data provenance as described in “The Provenance Model” does not only 
guarantee the reproducibility of results, it can also reduce the unnecessary repetition of calculations. If the engine 
is asked to launch a calculation, it can first check in the database if a calculation with the exact same inputs has 
already been performed. In that case, the engine can simply reuse the outputs of the completed calculation saving 
computational resources. This mechanism is referred to as caching in AiiDA and users can activate it for all cal-
culation types or only for specific ones.

To rapidly find identical calculations in the database, one needs an efficient method to determine whether two 
nodes are equivalent. For this purpose, AiiDA uses the concept of hashing, where the whole content of a node 
is mapped onto a single short hexadecimal string. In AiiDA we employ the cryptographic BLAKE2b algorithm 
(blake2.net), which has a relatively low computational cost combined with an overwhelmingly unlikely proba-
bility of hash collisions. The latter property means that any two nodes with the same hash can be assumed to be 
identical. The content of a node that is included in the computation of its hash consists of the immutable node 
attributes and the file repository contents. In addition, for a calculation node the hashes of all its inputs are also 
included, such that looking for calculations with identical inputs can be done merely by looking at the hash of the 
calculation itself.

As soon as a node is stored and it becomes immutable, its hash is computed and stored as a node property, 
making it queryable. When the engine is asked to launch a new calculation, it first computes its hash and searches 
the database for an existing node with the same hash. If an identical calculation is found and caching is enabled, 
the engine simply clones the output nodes of the existing calculation and links them to the new calculation. This 
saves valuable computational resources and results in the same provenance graph as if the calculation had actually 
been run. Nevertheless, specific extra properties are added to indicate which calculation was used as the cache 
source, making it possible to identify cached calculations (mostly for debugging purposes).

Fig. 8  Process submission and completion rates for the old and new engine. (a) Number of submitted (solid 
lines) and completed (dashed lines) processes over time for the new engine (both with optimised parameters 
and with artificial constraints, see text) and the old engine. The submission of the old engine is slightly faster, 
but despite this the completion rate of the new engine is clearly higher, even under constrained conditions. (b) 
Number of completed processes for the old (dashed lines) and new (solid lines) engine, decomposed in the 
separate (sub)processes. The polling-based nature of the old engine is clearly reflected in the stepwise behaviour 
of the completion rate with processes being finalised in batches. In contrast, the curves for the new engine, due 
to its event-based design, are smooth and closely packed together, indicating processes being executed in a 
continuous fashion.
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The concept of caching is especially powerful when developing and running complex workflows consisting of 
many calculations. If any calculation fails, the workflow that launched it fails as well. If the error can be resolved 
(e.g., because it was due to a bug in the workflow), the workflow can be fixed and simply rerun from scratch: 
thanks to the caching mechanism, it will effectively continue from where it previously failed without repeating 
successful calculations.

The Plugin System
The AiiDA ontology and provenance graph are designed to be employed in any field of computational science, and 
therefore they are intentionally domain agnostic. To enable users to extend core functionalities to suit the needs of a 
specific discipline, AiiDA provides a flexible plugin system to add custom data types, to interface external simulation 
codes with specific input generators and parsers, to implement custom workflows, and more. These extensions are 
registered upon installation through entry points, as explained in “Architecture Overview”, which allows them to be 
developed and installed completely independently of the AiiDA code base. To promote sharing of plugins, AiiDA 
provides an online registry (see “Registry”) where plugin packages can be registered, discovered and downloaded.

Architecture.  The plugin system builds on top of the setuptools project (setuptools.readthedocs.io), currently 
the de-facto standard tool for bundling and installing Python packages. Setuptools provides a feature called “entry 
points”, which are handles to specific Python resources (e.g., a class or function) of a package. A Python package 
can define these entry points (categorised in entry point groups) such that, once installed, the corresponding 
resources are registered and become automatically discoverable and usable by any other package. AiiDA leverages 
the entry point system by defining several groups specific to the type of resources that a plugin can extend, for 
example aiida.data and aiida.workflows for new data types and workflows, respectively (ten groups 
are currently defined, to extend support to new codes, parsers, job schedulers, transport protocols to connect 
to remote computers, external databases, etc.). When AiiDA plugin packages register plugins in the appropriate 
entry point groups, AiiDA automatically discovers them and makes the functionality available to users, integrat-
ing it in its core infrastructure. Plugin packages are encouraged to namespace their entry points by prefixing them 
with the package name to avoid overlap with entry points of other packages.

Installing a plugin package can be performed with a single command of the pip (pypi.org/project/pip) Python 
package manager if the package is published on PyPI (pypi.org). We emphasise, however, that publication on PyPI 
is not required. Local or private packages can be installed just as easily and they can also register plugin entry 
points, giving developers full freedom on how to maintain and distribute their plugin packages.

Registry.  The AiiDA plugin registry (aiidateam.github.io/aiida-registry/) is an online resource with a list of 
all known plugin packages. This centralised overview makes plugins easily discoverable by users of the AiiDA 
community and encourages code sharing and reuse. Authors can register their plugin packages through a pull 
request to the registry repository providing minimal information like package name, development status, links 
to the code repository and documentation, as well as a URI pointing to a JSON file maintained by the plugin 
developers. The latter contains additional information in setuptools format, such as the name and description of 
the project, the authors list and the entry points that are provided. Based on the information provided by the reg-
istered packages, the registry website is automatically built through continuous deployment. The plugin system in 
combination with the registry provides a powerful and effective tool to allow users and developers to easily create 
and share extensions of AiiDA’s core functionality.

Community Building
Science is a collective enterprise and scientific reproducibility can only be realised through a concerted effort of 
the scientific community. Making a software tool like AiiDA available is an important first step towards improving 
the reproducibility of computational science, but it is not enough. One needs to facilitate the uptake of the tool 
by the community, such that the data produced by it become interoperable and reusable. We have undertaken 
various approaches to build a community around AiiDA, such as guaranteeing the quality and robustness of the 
code, ensuring the longevity of data produced with AiiDA, and actively promoting knowledge transfer by online 
and offline training of users and developers through tutorials and workshops. Additionally, we are now member 
of NumFOCUS (numfocus.org), an organisation that promotes open science and open research data.

Code quality, testing and continuous integration.  AiiDA’s source code is hosted on GitHub (github.com)  
and all code development contributions, both from internal and external contributors, go through its pull request 
system. These pull requests facilitate the review and improvement of the suggested changes before they are 
accepted into the main code base. On top of this quality control performed by peers, we have enabled an auto-
matic continuous integration testing system30. Using GitHub actions (github.com/features/actions), each code 
commit triggers the running of a suite of over 1000 unit and integration tests that verify that the changes do not 
break existing functionality. These measures are crucially important to guarantee the longevity of the project as 
the codebase and number of contributors keep growing. The GitHub repository not only serves as a code hosting 
platform, but also facilitates discussion, interaction and collaboration between all contributors through its issue 
and milestone tracker, and the project boards.

Data longevity.  With data longevity we refer here to the possibility of accessing data produced with earlier 
code versions from newer versions. This is an important aspect of any data infrastructure and it is particularly 
critical to AiiDA. Indeed, AiiDA aims at improving the reproducibility of computational science simulations 
and thus data should be accessible also years after it has been produced. However, AiiDA also focuses on being 
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performant for high-throughput workloads (see “Performance”), which often requires changes to existing data 
layouts.

To guarantee the longevity of data, AiiDA can automatically migrate data across code versions without the 
need of human intervention. Particular care has been devoted to implement robust database schema and data 
migrations for both database backends (Django and SQLAlchemy, see “Database Abstraction and Querying 
Language”) with 42 migrations per backend implemented in v1.0. These migrations ensure that early AiiDA 
users can seamlessly migrate their databases generated years ago to the most recent version without losing any of 
their data or provenance. Additionally, to guarantee that all migrations are correct and thus avoid the potentially 
irreversible corruption of user data, the integrity of each migration is verified by automated individual unit tests 
as described previously. While the development and maintenance effort for these migrations is significant, they 
are essential for data longevity and with that, for the uptake of the platform by users, by giving them confidence 
that their data will be accessible in the future. Similar migrations and the corresponding tests have been imple-
mented for AiiDA archive files that contain exported (parts of) AiiDA databases. Since these archive files are not 
concerned with the database schema but merely with the data itself, the database migrations cannot be reused, but 
instead separate migrations in Python had to be developed.

A final contribution to AiiDA’s data longevity is the compatibility of AiiDA 1.0 with both Python 2 and Python 
3. Despite Python 2 reaching its end-of-life in January 2020, AiiDA 1.0 supported this version for another 6 
months, thereby providing a grace period for users and developers to upgrade their code and plugins to Python 3.

Interoperability.  Through its plugin system, AiiDA forms a natural interoperability interface for various 
simulation codes that is centred around the reproducibility provided by the provenance graph. Any external 
code that has a command line interface can in principle be run with AiiDA. Other interoperability requirements 
involve importing and converting data and interfacing to existing libraries. Indeed, we try not to reimplement fea-
tures provided by existing robust codes, but rather we provide interfaces to them. Specifically, AiiDA comes with 
built-in support for various widespread computational materials science libraries for data analysis and conversion 
such as ASE10, pymatgen31, spglib32 and seekpath33. Additionally, tools are provided to directly interface with 
existing databases, such as ICSD34, COD24, TCOD35 and OQMD29, and import the data into an AiiDA database. 
Finally, while AiiDA is a fully independent tool, it integrates seamlessly with the Materials Cloud dissemination 
platform19 that provides, among other things, a web application for browsing AiiDA provenance graphs interac-
tively. Powered by the AiiDA REST API, the provenance browser can be used both for AiiDA databases uploaded 
to the Materials Cloud as well as for those residing on the computer of the AiiDA user.

Outreach.  In addition to the aspects outlined earlier, we actively pursued various activities to strengthen the user 
and developer community of AiiDA. Notably, we organised a significant number of events (see aiida.net/events),  
with 19 tutorials, schools and workshops over the 2017–2020 period. These targeted both new users, introducing 
the code and the concepts of provenance and reproducible workflows, as well as advanced developers (with yearly 
coding weeks, and events aiming to provide direct support to AiiDA plugin developers).

To broaden the accessibility of the educational material presented during these events beyond people attend-
ing in person, the tutorial texts are made available online (aiida-tutorials.readthedocs.io) and live recordings of 
presentations are uploaded to the Materials Cloud19 Learn section (materialscloud.org/learn/). The tutorial texts 
are distributed together with virtual machines, based on the Quantum Mobile19, which contain preinstalled and 
preconfigured versions of AiiDA, its plugins, and the simulation codes and data, such that no setup is required to 
follow the tutorial. With this innovative approach, the barrier to access and learn the code is significantly lowered, 
and interested new users can quickly try out AiiDA and understand if it suits their research needs. In addition to 
the interactive tutorials, the code comes with extensive online documentation (aiida-core.readthedocs.io) and a 
mailing list is operated by the core developers to provide direct user support (aiida.net/mailing-list).

Thanks to these efforts, AiiDA has seen a rise in its use and adoption for research projects14–18,36–43 (see also 
aiida.net/science for a more complete overview of recently published work that has employed AiiDA). The com-
munity of plugin developers has also grown substantially and as of May 2020 the plugin registry (see “The Plugin 
System”) hosts 49 plugin packages, including for BigDFT44, CASTEP45, CP2K46, CRYSTAL47, FLEUR (flapw.de), 
Gaussian48, GULP49, Phonopy50, Quantum ESPRESSO21, Raspa51, Siesta52, VASP22, Wannier9053, Yambo54 and 
many more. This developer community has also been strengthened by the targeted events that we have organised, 
for example to help developers migrate their plugins to AiiDA 1.0, to extend support to Python 3, and to design 
common workflows and interfaces for codes implementing similar methods.

Finally, as AiiDA grows, we have now standardised the approach to provide concrete ideas for improvement 
and further extensions of AiiDA by the community at large. Inspired by the concept of the Python Enhancement 
Proposals (PEPs) (Python.org/dev/peps/), we have implemented a repository to host new AiiDA Enhancement 
Proposals (AEPs) (github.com/aiidateam/AEP) and a standardised protocol to provide new suggestions. 
Discussions on each suggested AEP are facilitated by the GitHub platform and remain available also after 
approval, allowing to go back and review the reasoning that justified specific design decisions. AEPs provide a 
way to extend the discussions on the future roadmap of the code to all interested users, beyond the pool of core 
developers.

Conclusions
We have presented AiiDA 1.0, a Python open-source, high-throughput and scalable infrastructure for computa-
tional science with a strong focus on automated data provenance. We have highlighted the new design of AiiDA 
1.0 that makes it scalable to exascale high-throughput computational loads. AiiDA 1.0 can easily sustain tens of 
thousands of processes per hour and dispatch them on a broad range of computing resources, from local comput-
ers to large high-performance supercomputers. Key to achieving this goal has been the redesign of the workflow 
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engine from a polling-based to an event-based paradigm. The engine can be scaled on demand to an arbitrary 
number of workers that operate independently, where communication with and among them is made possible by 
the RabbitMQ message broker.

In addition to the engine, the design and implementation of the provenance graph have been significantly 
improved. The concept of workflows is now fully integrated into the provenance graph, including now also the 
logical steps in the data provenance. The implementation of the provenance graph has been optimised and made 
more efficient by migrating the storage of node properties to native JSONB column types and by computing the 
transitive closure on the fly, instead of storing it in a static table. The QueryBuilder is a powerful tool that 
allows users to inspect their provenance graph and extract information, without having to be able to write SQL 
queries and that provides a simple Python syntax that is independent of the ORM backend used for the imple-
mentation. The REST API provides yet another way of extracting data from an AiiDA provenance graph, which 
is especially useful when direct access to the machine running the instance is not available. Crucially, despite the 
profound improvements and changes in the code compared to early versions, existing data and their provenance 
can be automatically migrated, and are therefore guaranteed to remain compatible with the present version of 
AiiDA.

Finally, the plugin system makes AiiDA a flexible tool interoperable with any simulation software. It is not 
just limited to calculation plugins; users can create their own data types, command line interface extensions, and 
workflows, and share any of those. The plugin registry allows developers to register their plugin packages and 
other users to discover them, which directly fosters a lively community of developers, that has grown beyond the 
original field of application in materials science, supporting now over 90 codes spanning many fields of research 
ranging from mechanical engineering, to chemistry and physics. Thanks to advanced tools available within the 
Python ecosystem, installing plugin packages can be performed with a single command, automatically registering 
the included plugins with AiiDA. Through these tools, AiiDA provides a platform and community geared towards 
making computational science more transparent, user-friendly, and ultimately fully reproducible, in full compli-
ance with the FAIR principles5.

Data availability
The data used to create Figs. 6, 7 and Table 2 for the analysis of the database performance come from ref. 14. The 
raw data is available on the Materials Cloud Archive55.

The data used to create Fig. 8, along with the scripts that were used for the creation and analysis of the data, are 
available on the Materials Cloud Archive56.

Code availability
The source code of AiiDA is released under the MIT open-source license and is made available on GitHub 
(github.com/aiidateam/aiida-core). It is also distributed as an installable package through the Python Package 
Index (pypi.org/project/aiida-core).
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