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Dimensionality reduction beyond neural 
subspaces with slice tensor component 
analysis

Arthur Pellegrino    1,2,3  , Heike Stein    1,3 & N. Alex Cayco-Gajic    1 

Recent work has argued that large-scale neural recordings are often well 
described by patterns of coactivation across neurons. Yet the view that 
neural variability is constrained to a fixed, low-dimensional subspace may 
overlook higher-dimensional structure, including stereotyped neural 
sequences or slowly evolving latent spaces. Here we argue that task-relevant 
variability in neural data can also cofluctuate over trials or time, defining 
distinct ‘covariability classes’ that may co-occur within the same dataset. 
To demix these covariability classes, we develop sliceTCA (slice tensor 
component analysis), a new unsupervised dimensionality reduction method 
for neural data tensors. In three example datasets, including motor cortical 
activity during a classic reaching task in primates and recent multiregion 
recordings in mice, we show that sliceTCA can capture more task-relevant 
structure in neural data using fewer components than traditional 
methods. Overall, our theoretical framework extends the classic view of 
low-dimensional population activity by incorporating additional classes of 
latent variables capturing higher-dimensional structure.

Neural activity varies in relation to fluctuations in the environment, 
changes in synaptic input, learning or adaptation, and heterogeneous 
cell properties, creating variability across neurons, time and trials. 
Recent work has emphasized that trial-to-trial variability is often cor-
related across populations of neurons1, generating low-dimensional 
representations of sensory or behavioral variables. Indeed, analyzing 
the structure of neural covariances has led to key insights into the infor-
mation encoded and computations performed by neural circuits2,3. 
Such findings have driven an increase in the popularity of dimension-
ality reduction methods (for example, principal component analysis 
(PCA)), which seek to capture structure in neural data by identifying 
population-wide patterns of covariance. More recent work has advo-
cated instead for applying tensor-based methods (for example, tensor 
component analysis (TCA)) that distinguish between changes in neural 
trajectories that occur over fast (within-trial) and slow (between-trial) 
timescales4–6. In these approaches, neural activity is assumed to be 

constrained to a low-dimensional neural subspace (defined by a set of 
latent variables) that is fixed over the course of an experiment.

However, this picture of low-dimensional latent variables fails to 
account for some forms of structure in neural datasets. First, not all 
population activity is described by covariance patterns across neurons. 
For example, many brain areas produce temporal sequences in which 
the latency of activation varies from neuron to neuron but that are 
highly stereotyped across conditions7–11. Second, the neural encod-
ing weights for a given sensory stimulus may change over trials due to 
adaptation, learning12,13 or representational drift14–16. These examples 
demonstrate three different types (or ‘classes’) of ‘covariability’, by 
which we mean structure in neural population recordings that can be 
described by stereotyped patterns across neurons, trials or time. Yet, 
because common neural dimensionality reduction methods typically 
look for covarying population-wide patterns, they may miss these 
additional forms of covariability in neural data.
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In this Article, we argue that neural population activity is likely to 
exhibit multiple covariability classes that are intermixed (Fig. 1d). To 
provide intuition on how mixed covariability could arise at the level of 
neural circuits, we first built a toy feedforward model of the sensory 
cortex during a go/no-go task (Fig. 1e). In this model, a population of 
linear cortical neurons received two sources of input in the context 
of a go/no-go task (Fig. 1f and Extended Data Fig. 2). First, all neurons 
received a sensory input that was time-locked to the stimulus. The pro-
jection weights were stimulus specific (either go or no-go) and plastic 
(potentiation/depression for go/no-go stimuli, respectively), in line 
with enhanced sensitivity to target stimuli in the sensory cortex during 
perceptual learning20,21. Potentiation and depression rates were sto-
chastic and heterogeneous across neurons (Extended Data Fig. 2b,c and 
Methods). Second, all neurons also received a top–down modulatory 
input unrelated to task events, for example, due to temporal fluctua-
tions of arousal22. In this linear model, each neuron’s activity is simply 
the summation of its sensory and top–down input currents (Fig. 1f).

From these minimal assumptions, the two input sources represent 
two different classes of covariability. First, stimulus-locked sensory 
inputs share the same characteristic temporal profile, with neural 
encoding weights that vary over neurons and trials due to hetero-
geneity in potentiation and depression rates. This type of structure 
corresponds to time covariability (Fig. 1c). In contrast, the top–down 
input is fed through a static pattern of neural weights (as these synapses 
are nonplastic) but fluctuates in strength over time and trials due to 
variability in the modulatory signals. Therefore, this second type of 
structure falls into the class of neural covariability (Fig. 1a). In principle, 
the resulting population activity can be described by two components 
capturing the sensory and top–down inputs (Methods). Yet, despite the 
simplicity of this model, PCA, which relies on a single covariability class, 
requires many components to capture the resulting population activ-
ity (Fig. 1g). This toy model illustrates how mixed covariability classes 
can emerge from minimal assumptions regarding different sources of 
heterogeneity in neural circuits and that they cannot be disentangled 
using traditional dimensionality reduction methods.

SliceTCA disentangles mixed covariability
To disentangle mixed covariability in neural data, we must first return 
to the mathematical formulation of PCA. Matrix factorization methods, 
including PCA and non-negative matrix factorization (NMF), approxi-
mate a data matrix X as a sum of R components:

X ≈ ̂X =
R
∑
r=1

X (r). (1)

In neuroscience, X is generally a matrix of size N × KT containing the 
activity of N neurons recorded over K trials, each containing T time 
points. Each component X(r) is a rank-1 matrix defined by a vector of 
neural weights describing different activation patterns across the popu-
lation and a vector of temporal weights describing how the strength of 
these patterns changes in amplitude over the course of the experiment 
(Fig. 1h). Through this low-rank constraint, these methods are typically 
used to capture dominant patterns of neural covariability.

However, arranging neural data into matrix form limits the struc-
ture that can be captured, as matrix factorizations do not distinguish 
between rapid fluctuations within a trial and slower variations across 
trials4. This limitation can be addressed by structuring the data into an 
N × T × K tensor, which can be similarly decomposed following equation 
(1) into a low-rank tensor approximation. For this, we must generalize 
the concept of a rank-1 matrix to tensors. Different definitions of the 
tensor rank will capture different forms of structure in the data.

Here, we present sliceTCA, a new tensor decomposition method 
based on the slice rank23 (Methods). A rank-1 matrix is defined as 
the outer product of two vectors so that each column of the matrix 
is a scaled version of the same column vector (Fig. 1h). Similarly, a 

Here, we propose that neural circuits are likely to encode task- 
relevant information in multiple co-occurring covariability classes. 
To demonstrate this, we introduce sliceTCA, a new unsupervised 
dimensionality reduction method able to identify and disentangle 
components belonging to different covariability classes that are mixed 
within the same dataset. This property contrasts sliceTCA from matrix 
factorization methods (such as PCA), which capture a single covari-
ability class at a time, and from TCA, which identifies components 
constrained to all of them simultaneously. As a result, we show that 
sliceTCA can capture more structure in fewer components than either 
of these methods. Based on theoretical and practical considerations 
of the sliceTCA decomposition, we develop an analysis pipeline for 
model selection, optimization and visualization that is implemented 
in a readily applicable Python library.

After validating our method on simulated data, we illustrate the 
advantages of the mixed covariability framework in three large-scale 
neural datasets. First, we demonstrate that different covariability 
classes encode distinct behaviorally relevant signals in motor cortical 
recordings in nonhuman primates17. Next, in simultaneous imaging 
data from cortical and cerebellar populations during a cued motor 
task18, we show that sliceTCA uncovers task-relevant manifolds by 
considering covariability across trials. Finally, we analyze a recent 
dataset from the International Brain Laboratory (IBL)19 and show that 
sliceTCA disentangles region-specific covariability classes across the 
visual cortex, hippocampus, thalamus and midbrain. We then provide 
a geometric intuition for how neural population activity is shaped by 
latent variables belonging to the three different covariability classes. 
Together, these results demonstrate the necessity of extending the 
traditional view of latent variables and neural covariability to uncover 
higher-dimensional latent structure. With sliceTCA, we propose a new 
unsupervised dimensionality reduction method that uncovers coex-
isting classes of behaviorally relevant covariability in neural datasets.

Results
Multiple covariability classes
Neural activity often displays correlated fluctuations1. This form of 
covariability in neural data is usually determined by the neuron-by- 
neuron covariance matrix. Classic methods such as PCA capture the 
neural covariance matrix to identify characteristic patterns of neural 
weights whose time course of activation can vary freely from trial to 
trial (Fig. 1a). Each of these patterns is represented by a different com-
ponent. However, there are other forms of structure in population 
activity that are not captured by the neural covariance matrix and that 
would be discarded within this framework. Heterogeneous latencies 
or timescales in different neurons (Fig. 1b) have been widely reported 
across brain regions, including in neural sequences7–11. Such temporal 
patterns are often characteristic for trials of the same task condition. 
Hence, such patterns represent a distinct kind of covariability in neural 
data, in which population activity covaries over trials, whereas the time 
courses of activation are heterogeneous across neurons (Fig. 1b and 
Extended Data Fig. 1).

These two examples illustrate that population covariability falls 
into multiple classes, which we call ‘neural covariability’ and ‘trial 
covariability’. Similar to neural covariability, trial covariability can 
be analyzed using the trial-by-trial covariance matrix, each element 
of which describes the similarity between the time courses of the full 
population response on two distinct trials. Indeed, using this approach, 
previous work has argued that different cortical regions are better 
described by trial covariability or neural covariability7. An additional 
form of structure in population activity might follow a characteristic 
temporal profile (say, locked to the time of stimulus presentation), 
whereas its neural encoding profile might change from trial to trial 
(Fig. 1c) due to adaptation or representational drift12,14–16. This gives rise 
to a third covariability class corresponding to ‘temporal covariability’, 
which is captured by the time-by-time covariance matrix.
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slice-rank-1 tensor is defined as the outer product of a vector and a 
matrix (or ‘slice’; Fig. 1i). Depending on how the tensor is sliced, these 
components can capture any of the three covariability classes.

To see this, we may consider each slice type separately. First, a 
neuron-slicing component is described by a vector of characteristic 
neural weights and a matrix describing the time course for that com-
ponent over trials (Fig. 1a). This is the same class of neural covariability 
captured by common applications of matrix factorizations in which the 
data tensor is reshaped or ‘unfolded’ into an N × KT matrix (sometimes 
referred to as ‘trial-concatenated’ matrix factorization; Extended Data 
Fig. 1a). Similarly, the trial-slicing components capture trial covariabil-
ity: stereotyped neuron-specific temporal profiles that vary together in 
amplitude over trials (Fig. 1b). Meanwhile, the time-slicing components 
identify time covariability: a common temporal profile whose neural 
encoding weights change from trial to trial, for example, due to learn-
ing, adaptation or drift (Fig. 1c).

If only one of these three slice types were fitted, sliceTCA would 
be equivalent to a matrix factorization on the respective unfolding of 

the data tensor (Extended Data Fig. 1a–c). Indeed, previous work has 
argued for performing PCA on different unfoldings of the data ten-
sor to identify the slice type that provides the best approximation7. 
Crucially, sliceTCA differs from this approach by fitting all three slice 
types simultaneously, thereby demixing different covariability classes 
that may be combined within the same dataset (Fig. 1j). SliceTCA is also 
related to, yet distinct from, TCA (that is, the CP (canonical polyadic) 
decomposition)4–6. TCA constrains each component to be described 
by the outer product of three vectors of neural, trial and temporal fac-
tors, which requires that each component lies in the intersection of all 
three covariability classes (Fig. 1d and Methods). To demonstrate the 
conceptual difference between these methods, we applied sliceTCA 
to our toy model (Fig. 1e). Indeed, sliceTCA was able to decompose the 
activity into its two ground-truth components (Extended Data Fig. 2c), 
whereas PCA and TCA required substantially more components to cap-
ture the data (Fig. 1g). SliceTCA also outperformed PCA and TCA in the 
presence of noise (Extended Data Fig. 2d,e and Supplementary Fig. 1). 
These results demonstrate that, by disentangling mixed covariability 
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scales in amplitude over trials but has a neuron-specific time course within a trial. 
c, Example of a latent variable with a characteristic temporal profile within a trial 
but whose neural encoding weights change over trials. d, Schematic of the three 
covariability classes captured by sliceTCA. Matrix factorization methods such as 
PCA capture only a single covariability class at a time depending on how the data 
tensor is unfolded into matrix form. Because TCA treats neurons, trials and time 
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model of perceptual learning during a go/no-go task. On each trial, a population 
of linear neurons receives (1) a sensory input from one of two upstream sources 
representing the go/no-go stimuli and (2) top–down modulation representing 

stimulus-independent factors. Red indicates plastic weights. f, Evolution of 
inputs over trials. Go/no-go inputs increase/decrease in strength over trials due 
to synaptic potentiation/depression, whereas top–down inputs vary from trial 
to trial but are nonplastic. g, Error as a function of the number of components 
for different methods. h, Schematic of a rank-1 matrix. Each column of the matrix 
is a scaled version of the same vector. Equivalently, the matrix can be written as 
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scaling weights. i, Schematic of a slice-rank-1 tensor. Each ‘slice’ of the tensor  
is a scaled version of the same matrix. The tensor can be written as an outer 
product of that matrix (a ‘slice’) and a vector representing the scaling weights.  
j, Schematic illustrating that sliceTCA approximates the data tensor as a low-
slice-rank approximation. Each component is a slice-rank-1 tensor, which can be 
one of three types: neuron slicing, trial slicing or time slicing, corresponding to 
the examples in a–c.
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classes, sliceTCA is able to capture more structure in the data with fewer 
components as compared to other methods.

While we were able to explore neural and temporal covariability in 
the feedforward model, it neglected trial covariability, which can cap-
ture temporally rich population dynamics such as neural sequences. 
Toward this end, we built a linear recurrent neural network (RNN) model 
to generate high-dimensional, condition-specific sequences24 while 
additionally integrating low-dimensional, condition-independent 
inputs (Methods and Extended Data Fig. 3a–c). As designed, the RNN 
activity could be decomposed into a few trial-slicing components 
corresponding to the embedded sequences and a few neural-slicing 
components corresponding to the inputs (Extended Data Fig. 3d). 
Through this model, we were able to systematically examine the effects 
of three different sources of noise: low-dimensional input noise, intrin-
sic noise in the circuit dynamics and observation noise (Methods). 
As expected, sliceTCA was able to achieve near-optimal denoising of 
observation noise (Extended Data Fig. 3g). Conversely, variability in the 
RNN activity coming from input noise was entirely retained by sliceTCA; 
this is because any variability in the inputs pushes the activity along a 
low-dimensional subspace determined by the input projection. Finally, 
sliceTCA performed well for intrinsic noise with a tendency to overfit 
for higher noise levels. These results clarify the robustness of sliceTCA 
to different sources and amounts of noise and provide insight into the 
relationship between the slice rank and neural circuit dynamics.

Task-relevant information is distributed across slice types
Based on the results of our toy model, we predicted that different 
slice types could capture different kinds of behaviorally relevant sig-
nals in neural data. We tested this hypothesis in a dataset comprising 
population recordings of the primary motor cortex (M1) and dorsal 
premotor cortex (PMd) during maze reaching and classic center-out 
(no-maze) reaching tasks (Fig. 2a, hand position). To quantify decod-
ing performance, we linearly mapped population activity onto hand 
velocity (Methods). As a benchmark, we first mapped trial-averaged 
raw neural data onto kinematic trajectories, revealing a close match 
between behavior and neural activity (Fig. 2a, trial-averaged raw data). 
However, when we attempted to decode hand trajectories based on 
individual trials, we observed considerable trial-to-trial variability that 
corresponded poorly to kinematic data (Fig. 2a, raw data).

We reasoned that single-trial kinematic information might be 
present in the data but obscured by behaviorally irrelevant neural 
variability. If true, then the decoder should perform significantly 
better on properly denoised data. To test this, we first used a com-
mon approach of fitting a low-rank approximation using NMF (R = 12 
components) to the N × (TK) matrix of trial-concatenated neural 
activity (‘neuron-unfolded’ data). Surprisingly, this decreased the 
performance of the decoder (Fig. 2a, neuron-slicing NMF), suggest-
ing that the discarded variability contained information about hand 
kinematics. We wondered whether a better performance could be 
obtained with a method that explicitly identifies covariability across 
trials. Indeed, TCA-denoised data displayed a better match to the hand 
kinematics (R = 12 components; Fig. 2a, TCA). Yet, by constraining the 
decomposition to be low tensor rank (and thus also discarding tem-
poral variability across neurons), TCA is unable to reconstruct neural 
sequences at a sufficiently high temporal resolution to allow for precise  
behavioral readout.

By performing TCA and NMF on the neuron-unfolded data tensor, 
we have assumed that behaviorally relevant information in the data 
is represented by neural covariability (Fig. 1d). However, previous 
work has emphasized that neural activity in motor regions is better 
described by stereotyped sequences that are distinct for each task 
condition7,25. Following this intuition, we performed the same decoding 
analysis on denoised trial-unfolded data, in which a T × (NK) matrix is 
approximated using NMF (R = 12 components). Remarkably, this simple 
change in the denoising strategy resulted in a significantly better match 

between trial-to-trial variability in the data and the hand kinematics 
(Fig. 2a, trial-slicing NMF). We further validated that the components 
obtained by trial-slicing NMF corresponded to reach-tuned sequences 
whose temporal orderings were reproducible across held-out data 
(Supplementary Fig. 2). These results reveal that, in this dataset, behav-
iorally relevant information was encoded by trial covariability (specifi-
cally, neural sequences) rather than by neural covariability.

Trial- and neuron-concatenated NMFs constitute two special cases 
of non-negative sliceTCA in which either neuron-slicing components 
or trial-slicing components exclusively are fitted. Therefore, we next 
asked whether we could identify additional information in the data 
by demixing different classes of covariability with sliceTCA. Previous 
work has identified preparatory signals in the PMd that indicate the 
dynamics of the upcoming movement26. Therefore, we hypothesized 
that we could capture preparatory signals in a time-slicing component 
with a stereotyped ramping profile and neural weights encoding reach 
targets and curvature on a trial-by-trial basis.

Toward this end, we used sliceTCA to add a single time-slicing com-
ponent to the previous model with 12 trial-slicing components (Fig. 2b 
and Supplementary Fig. 3; Rneuron = 0, Rtrial = 12, Rtime = 1 selected based on 
the elbow of the cross-validated loss (Extended Data Fig. 4b)). In both 
the trial-slicing NMF model and the mixed covariability sliceTCA model, 
the trial-slicing components identified sequential neural activations 
for similar reach conditions that seemed to be continuously tuned to 
target angles (Fig. 2c and Supplementary Fig. 3). Decoding from these 
trial-slicing components (in either the mixed or unmixed model) led 
to significantly better performance as compared to the neuron-slicing 
and TCA models (Fig. 2e, Extended Data Fig. 4a and Supplementary 
Fig. 4). Furthermore, despite being a (multi)linear method, sliceTCA 
had a decoding performance on par with that of LFADS (latent factor 
analysis via dynamical systems)27 for straight reaches and performed 
better for the maze condition (P = 1.907 × 10−6, two-sided Wilcoxon 
signed-rank test; Fig. 2e and Extended Data Fig. 4a). We addition-
ally noted that the trial-slicing partial reconstruction from sliceTCA 
mapped onto hand kinematics slightly better in the mixed model 
than in the trial-slicing-only model (Fig. 2e; P = 1.907 × 10−6, two-sided 
Wilcoxon signed-rank test). Intriguingly, while the single time-slicing 
component mapped poorly onto hand kinematics (Extended Data 
Fig. 4a), its time course displayed a peak around 100 ms before move-
ment onset followed by a drop in amplitude (Fig. 2d), consistent with 
a motor preparatory signal.

If the time-slicing component contains motor preparatory infor-
mation, we would further expect it to contain information regard-
ing the parameters of the upcoming movement26. Indeed, the neural 
encoding weights in the PMd (but not M1; Extended Data Fig. 4c,d) were 
correlated across similar conditions and encoded both reach direction 
and curvature (Fig. 2f–h). Therefore, while the trial-slicing components 
directly encoded motor sequences governing hand kinematics, the 
time-slicing component contained primarily preparatory information 
about movement parameters. Interestingly, simply applying NMF with-
out explicitly demixing covariability classes was not able to recover this 
preparatory signal (Extended Data Fig. 4e and Supplementary Fig. 5). 
Together, these results show that behaviorally relevant information in 
neural data can be spread across different slice types, motivating the 
need to demix covariability with sliceTCA.

Pipeline for sliceTCA model selection and optimization
Dimensionality reduction methods, while powerful, can prove challeng-
ing in practice. First, robustly identifying the optimal number of compo-
nents is a crucial yet challenging step in interpreting the dimensionality 
of neural representations28,29. Even after the rank is fixed, invariances in 
the decomposition may lead to multiple possible solutions (for exam-
ple, matrix factorizations are known to be invariant to invertible linear 
transformations such as rotations), although adding a non-negativity 
constraint (as in the case of NMF) confers better uniqueness properties 
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straight reaches). d, The single time-slicing component, which displays 
a high temporal weight preceding movement onset. Condition-specific 
neural weights are shown in the slice. e, R2 of fivefold cross-validated velocity 
decoding in each model (error bars represent the s.e.m. over n = 49 and  
n = 53 test trials for the maze and no-maze conditions, respectively,  
averaged over a fivefold cross-validation of 20 permutations of the trials).  
f, Correlations between neural weights on the time-slicing component in the 
PMd. Correlations were high for pairs of trials with similar reach direction 
and curvature and low for dissimilar reaches. g, Mapping of average activity 
in the time-slicing component before movement onset (from 0.75 to 0 s 
before onset) onto reach targets, revealing a strong association (R2 = 0.95 
and R2 = 0.91, center-out versus curved reaches). h, Partially reconstructed 
activity from the time-slicing component, projected into a 3D subspace 
identified to maximally separate clockwise (CW) versus counterclockwise 
(CCW) movements and target x and y positions. Data points are clustered 
according to both reach direction and curvature, indicating that the time-
slicing component encodes information about the dynamics of the upcoming 
movement (dots, clockwise reaches; triangles, counterclockwise reaches).
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compared to unconstrained matrix factorizations30. Thanks to the 
tractability of sliceTCA, we were able to characterize its mathemati-
cal invariances (Extended Data Figs. 5 and 6). To provide objective 
criteria for model selection and uniqueness, we developed a full analy-
sis pipeline for sliceTCA, including data preprocessing, model selec-
tion, model optimization and visualization (Fig. 3). First, trials must 
be time-warped, trimmed or masked for the data to be shaped into 
a tensor. Alignment to key events is an important consideration to 
remove additional sources of variability that are not incorporated into 
sliceTCA assumptions, such as sequences that are jittered or warped in 
time31 (Extended Data Fig. 7). We have taken the approach of piecewise 
linearly warping trials to task-relevant variables, but unsupervised 
warping is a promising alternative32. Second, to choose the optimal 
rank, we developed a rigorous cross-validation procedure to identify 
the number of components of each slice type, which we validated on 
ground-truth data (Extended Data Fig. 8a,b). Third, we identified the 
two invariance classes leading to equivalent sliceTCA decompositions 
(that is, for which different sets of weights of the components yield the 
same reconstructed tensor approximation) (Methods and Extended 
Data Figs. 5 and 6) and developed a hierarchical model optimization 
that adds additional constraints in the form of ‘sub-losses’ that must 
be minimized at three stages (Methods and Extended Data Fig. 8c,d). 
Model similarity analysis across different parameter initializations 
quantified the nonuniqueness of sliceTCA solutions (Extended Data 
Fig. 8e–h and Supplementary Fig. 6) and confirmed that the hierar-
chical optimization procedure leads to unique solutions. We further 
prove mathematically that a unique solution is guaranteed if each of 
the sub-losses is unique (Supplementary mathematical notes). Using 
a rigorous and standardized pipeline for model selection, fitting and 
optimization allows the user to make a robust, principled choice of 
sliceTCA decomposition for further interpretation.

Denoising task-relevant manifolds
With a standardized data analysis pipeline established, we next applied 
unconstrained sliceTCA to a new dataset consisting of the z-scored fluo-
rescence traces of simultaneously imaged granule cells in the cerebel-
lum and pyramidal neurons in the premotor cortex of mice performing 
a motor task (Fig. 4a)18. Using the sliceTCA analysis pipeline, we selected 
a model with three trial-slicing components and three neuron-slicing 
components at the elbow of the cross-validated loss function (Fig. 4b,c 
and Extended Data Fig. 9a; similar components were observed in the 
optimal model (Supplementary Fig. 7)). By comparison, TCA required 18 
components to attain the same performance and displayed redundancy 

in the fitted components (Extended Data Fig. 9c,d). The cross-validation 
procedure resulted in no time-slicing components, as they consistently 
led to an increased test loss for this dataset (Extended Data Fig. 9a). The 
first trial-slicing component captured temporally distributed cerebel-
lar and cortical time courses that were common to both left and right 
correct reaches but distinct from error reaches (Fig. 4b,d). In contrast, 
the second trial-slicing component accounted for the differential acti-
vation in left versus right trials (Fig. 4b,d). A third component decayed 
slowly over trials, possibly representing adaptation over the course of 
the session (Fig. 4b).

In addition, the three neuron-slicing components captured 
trial-specific activations of population modes localized around the 
time of movement or reward (dashed lines, Fig. 4c), with prolonged 
(and enhanced) activity in error trials, compared to correct trials, in the 
first and third components (two-sided Mann–Whitney U test, P < 0.001 
for both components). Interestingly, the second neuron-slicing com-
ponent captured differences between cerebellar and cortical activity 
(Fig. 4c,d). We next asked how sliceTCA compares to matrix factori-
zation methods that do not demix neural and trial covariability. To 
test this, we performed PCA and factor analysis on the neuron and 
trial unfoldings of the data tensor (Fig. 4e and Supplementary Fig. 8). 
Demixing covariability classes with sliceTCA resulted in components 
with higher-dimensional structure in the slices (Fig. 4e and Supplemen-
tary Fig. 8c,d). This suggests that simply applying PCA to the tensor 
unfoldings cannot capture as much variability in the data (for example, 
in timing for individual neurons or trials) because it may be obscured 
by other dominant covariability types. Together, these results show 
that sliceTCA identifies both task-specific (left, right, error trials) and 
region-specific (cerebellum versus cortex) variables by capturing the 
structure of neural data across multiple covariability classes.

We next examined how applying sliceTCA affects reconstructed 
neural activity (Fig. 4f). Toward this end, we compared the neural 
representations of the raw data in neural space to the reconstructed 
data from the sliceTCA model. The sliceTCA reconstruction captured 
the same top principal components as the raw data, confirming that 
it faithfully captured its overall structure (Supplementary Fig. 9). The 
advantage of including both neural covariability and trial covariability 
was reflected in the increased behavioral interpretability of the neural 
representations. For this, we projected the data onto the dimension 
that best separated left versus right correct trials during the period 
between movement and reward. The axis found from the sliceTCA 
reconstruction revealed more interpretable, denoised representa-
tions as compared to the dimension found from raw data (Fig. 4g).  

Data
preprocessing

Cross-validated (CV) 
model selection

Hierarchical
model optimization

Visualization 
and further analysis

+ +

:
Trial 1 Trial 2

Time

N
eu

ro
ns

Tr
ial

s
Time

Neurons

Tr
ia

ls

Time

Tr
ial

s

N
eu

ro
ns

C
V

lo
ss

Test data
Discarded

Training data

+ +

R

1

:2

:3

X

Fig. 3 | SliceTCA model selection, optimization and analysis pipeline. First, 
neural data are preprocessed to form a data tensor. In experiments with variable 
trial lengths, this could include temporal warping, exclusion of outlier trials and/
or trimming to the time period of interest. Second, model selection is performed 
to choose the number of components of each slice type (Rneuron, Rtrial, Rtime) based 
on the cross-validated mean-squared error (MSE) loss (blue curve). For 
cross-validation, we randomly assign blocks of consecutive time points (blue) 
within the data tensor as held-out data. The remaining entries of the tensor are 
used as training data (white). Specifically, the held-out entries are masked when 
computing the loss used to optimize the model parameters. To reduce temporal 

correlations between the training and testing data, we discard a brief period  
from the ends of the held-out blocks (light blue) from both training and testing. 
We use only the interiors of these blocks as test data (dark blue). Note that, 
because there are three slice types, the optimization is a 3D grid search on the 
cross-validated loss. Third, a hierarchical model optimization procedure is 
performed to identify a unique solution to the two mathematically identified 
invariance classes by optimizing the MSE loss ℒ1 followed by secondary and 
tertiary losses ℒ2 and ℒ3 (Methods). After this procedure, the resulting loading 
vectors and slices can be analyzed.
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components. Loading vector weights are colored according to trial type. In the 
slices, neurons are sorted within each region (Cbl, cerebellum; Ctx, premotor 
cortex) by the latency of the maximum activation in the first component. 
Dashed lines indicate movement onset, mid-turn, movement end and reward. 
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the covariance matrices of the slices of the trial-slicing components identified 
by PCA, factor analysis (FA) or sliceTCA, averaged over components (thick 
lines; transparent lines indicate individual components). Right: leading 
eigenvalue for each component. f, Single-neuron reconstructions of low-slice-

rank approximations. The full sliceTCA reconstruction (right) is obtained by 
summing the contributions of all components from both slice types. g, Data 
from ten example trials per condition, projected onto an axis that maximally 
separates left and right correct trials between movement onset and reward. LDA, 
linear discriminant analysis. h, Neural manifolds in an orthonormalized neural 
subspace found with LDA (axis 1, same as g; axis 2 separates movement onset 
versus reward; axis 3 separates reward expectation versus post-reward) from raw 
data and sliceTCA reconstruction. i, Separation of left versus right trajectories 
from full data and data denoised with sliceTCA. Δwithin (Δbetween) indicates the 
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trajectories are more separable after sliceTCA denoising (two-sided Wilcoxon 
signed-rank test, P < 0.001 for both the cerebellum and premotor cortex).
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Similarly, the task-relevant neural manifolds, found by projecting 
neural trajectories onto a subspace that separates activity along three 
task-relevant dimensions (Methods), appeared substantially denoised 
when sliceTCA was applied compared to a direct projection of the raw 
data (Fig. 4h and Supplementary Fig. 9). We confirmed this denoising 
effect by measuring the distance between left and right trials around 
the time of movement onset in sliceTCA reconstructions as compared 
to the raw data (Fig. 4i). Our results indicate that sliceTCA, by group-
ing behaviorally similar trajectories in an unsupervised manner, 
increases the distance between trajectories of behaviorally distinct 
trials. Together, these findings show that sliceTCA is able to denoise 
task-relevant representations in neural data in an unsupervised fashion.

Identifying region-specific covariability patterns
Thus far, we have shown that mixed covariability occurs within the same 
neural population. However, the need to consider multiple covariability 
classes becomes even more crucial in multiregion recordings, as dif-
ferent brain areas are better described by different classes7. Yet, rely-
ing on different data tensor unfoldings for each region would require 
that they be analyzed separately without leveraging the simultaneous 
nature of such data. Therefore, we asked whether sliceTCA could demix 
area-specific representations in distinct slice types.

To test this idea, we took advantage of a recently published dataset 
consisting of Neuropixels recordings across six brain regions during 
a perceptual decision-making task (Fig. 5a)19. Our cross-validation 
procedure selected a model with eight components: two trial-slicing 
components, three neuron-slicing components and three time-slicing 
components (Extended Data Fig. 10a and Supplementary Fig. 10). The 
two trial-slicing components identified variables related to behavioral 
performance (Fig. 5b). The first trial-slicing component separated cor-
rect from incorrect trials (two-sided Mann–Whitney U test, P < 0.001), 
and the corresponding slice was characterized by reward-locked tem-
poral response profiles in midbrain nuclei (anterior pretectal nucleus 
and midbrain reticular nucleus), which we validated in single-neuron 
peristimulus time histograms (PSTHs) (Fig. 5c) and in nonwarped 
data (Extended Data Fig. 10b,c). The second trial-slicing component 
instead featured temporally heterogeneous responses in all regions 
and correlated inversely with the log reaction times (Pearson’s r = −0.35, 
P < 0.001, n = 831 trials; Fig. 5b). We next asked how these compo-
nents contributed to the activity of different regions. The full sliceTCA 
reconstruction explained 33–49% of neural activity, depending on the 
region (Fig. 5d). Of this reconstructed activity, the two trial-slicing 
components contributed considerably to neurons in the anterior 
pretectal nucleus, midbrain reticular nucleus and thalamus (19 ± 10%, 
mean ± s.d., n = 75 neurons; Fig. 5e). Thus, the trial-slicing components 
identified stereotyped activations in subcortical regions (thalamus, 
anterior pretectal nucleus and midbrain reticular nucleus) that were 
linked to behavioral performance across trials.

In contrast, the three neuron-slicing components identified 
three distinct clusters of neurons corresponding to cortical regions: 
the hippocampus, dentate gyrus and visual cortex (Fig. 5f). These 
components, therefore, represented population-wide covariabil-
ity patterns that were specific to each of these regions. The slice of 
the hippocampus-preferring component was characterized by a 
contrast-dependent activation between the sensory cue and reward 
(correlation of stimulus-evoked responses with contrast, Pearson’s 
r = 0.40, P < 0.001; Fig. 5f,g), a feature that was less prominent in the 
dentate gyrus and not observed in visual cortex-preferring compo-
nents (r = 0.11, P = 0.002 for dentate gyrus, r = −0.05, P = 0.14 for visual 
cortex). In the dentate gyrus-preferring component, we observed 
post-reward suppression on correct (rewarded) trials, which was sig-
nificantly shorter on error trials (two-sided Mann–Whitney U test, 
P < 0.001; Fig. 5f). The final visual cortex-preferring component 
revealed pre-stimulus activation that increased in strength over trials 
(Pearson’s r = 0.55, P < 0.001; Fig. 5f), possibly indicating the emergence 

of a predictive signal of cue onset over the course of the experiment. 
Each component contributed to a large fraction of the sliceTCA recon-
struction in its respective region (37 ± 21%, n = 138 neurons; Fig. 5h). 
Therefore, the three neuron-slicing components represented different 
task-relevant features that were separately encoded in hippocampal, 
dentate gyrus and visual cortical population responses.

Finally, the remaining time-slicing components partitioned the 
task duration into three distinct periods: early (pre-stimulus and stimu-
lus onset), late (post-reward) and reward periods (Fig. 5i). The corre-
sponding slices revealed smooth variations of the strength of each of 
these components in single neurons over the course of the experiment. 
While these changes appeared low-rank, simply replacing them with a 
TCA component led to a drop in the reconstruction error (Supplemen-
tary Fig. 12). Furthermore, given the strong similarity of the three slices, 
we asked whether the components could sum to a flat trial-varying 
baseline for each neuron. However, we observed examples of a broad 
range of modulation patterns of PSTHs, with slowly varying activity 
that changed heterogeneously over trials for the three task periods 
(for example, in Fig. 5j). Indeed, a substantial proportion of neurons 
across all regions showed significantly different rates of change in trial 
weights across the three components (analysis of variance, P < 0.05 
with Bonferroni correction, n = 221 neurons; Extended Data Fig. 10d). 
Moreover, these three components contributed substantially to the 
sliceTCA reconstruction across all recorded regions (62 ± 18%, n = 213 
neurons; Fig. 5k), demonstrating that the dataset was dominated by 
time covariability. Therefore, we asked whether the task-relevant and 
region-specific information observed in the trial and neural slice-type 
components would be visible without explicitly demixing the covari-
ability classes with sliceTCA. However, simply applying NMF to the 
relevant unfoldings led to neural loadings that were not clustered 
by region and trial loadings that were not correlated with behavior 
(Supplementary Fig. 13). In contrast to sliceTCA, TCA components 
were less region-specific (Extended Data Fig. 10e). Together, these 
results show that, by accounting for different classes of covariability, 
sliceTCA is able to demix multiregion recording data into brain-wide 
representations of task period, behaviorally relevant stereotyped 
activity and population-wide patterns of covariability encoded by 
individual regions.

Geometric interpretation of mixed covariability
Dimensionality reduction methods such as PCA allow for the inter-
pretation of neural representations as trajectories embedded in a 
low-dimensional latent subspace within the full neural activity space. 
In sliceTCA, the neuron-slicing components can be interpreted in the 
same way owing to their relationship to standard matrix factorizations. 
However, the time- and trial-slicing components have different interpre-
tations, as their loading vectors form bases of subspaces of the time and 
trial spaces. How, then, can we grasp the time- and trial-slicing compo-
nents’ contributions to latent representations in neural activity space?

We can answer this question by considering the contribution from 
each slice type separately. First, note that while the neuron-slicing 
components are constrained to an Rneuron-dimensional subspace, 
their trajectories within that subspace are unconstrained over trials 
(Fig. 6, neuron-slicing component). Conversely, the trajectories of 
the Rtime time-slicing components are constrained to be a linear com-
bination of a few common temporal profiles, but the neural weight 
vectors can instead vary from trial to trial. Geometrically, this means 
that the reconstruction from these components lies within an 
Rtime-dimensional subspace that can now vary on each trial, but the 
embedded low-dimensional trajectories will have similar shapes (Fig. 6, 
time-slicing component). Finally, the Rtrial trial-slicing components’ 
neural weights change at every time point, whereas trial weights are 
fixed. This corresponds to trajectories that are no longer embedded 
in a low-dimensional subspace but that are instead constrained to be 
linear combinations of stereotyped, potentially high-dimensional 

http://www.nature.com/natureneuroscience


Nature Neuroscience | Volume 27 | June 2024 | 1199–1210 1207

Technical Report https://doi.org/10.1038/s41593-024-01626-2

trajectories (Fig. 6, trial-slicing component; see Supplementary Fig. 14 
for an example with multiple components). In this way, the three covari-
ability classes that we have described can also be seen as three classes 

of latent activity in neural state space. All three classes combine to form 
the full reconstruction, which may appear more complex than any one 
component type (Fig. 6, reconstruction).
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Fig. 5 | SliceTCA identifies region-specific sensory and behavioral variables 
in multiregion recordings. a, Schematic of the perceptual decision-making 
task from the IBL. Image modified from ref. 53. Green (red) arrows and circles 
indicate correct (incorrect) actions. b, Trial-slicing components: the loading 
vector of component 1 shows a separation between correct (orange) and error 
(black) trials. In component 2, the color scale in the loading vector indicates 
the log reaction time (RT). In the corresponding slices: VIS, visual cortex; CA, 
hippocampus; DG, dentate gyrus; TH, thalamus; APN, anterior pretectal nucleus; 
MRN, midbrain reticular nucleus. White lines indicate stimulus onset and reward 
or timeout onset. Slice weights are normalized to [0, 1] for each neuron separately 
and sorted by the latency of the peak activation within each region (separately for 
each component). c, Top: PSTH of an example neuron from the anterior pretectal 
nucleus showing reward-locked activation for correct/error trials (pink/black). 
Bottom: PSTH built from the full sliceTCA reconstruction. Arrowheads indicate 
stimulus onset and reward. d, Reconstruction performance (Methods) of the 
full sliceTCA model, separated by region. Black dots indicate individual neurons. 
e, Contribution of each trial-slicing component to the overall reconstruction. 

Comp. weight, component weight. f, Neuron-slicing components: trials are 
grouped into blocks separately for different components. In component 1 
(hippocampal region CA1 related), trials are grouped by contrast separately 
for left/right trials (within left/right, contrast increases from bottom to top). 
In components 2 (dentate gyrus related) and 3 (visual cortex related), trials are 
grouped into blocks by left/right and correct/error. For all slices, within each 
block, trials are sorted in increasing order (ascending). Each slice is normalized 
to [0, 1]. g, Top: PSTH of an example hippocampal neuron for low to high contrast 
(dark to light green). Bottom: PSTH built from the full sliceTCA reconstruction. 
h, Contribution of each neuron-slicing component to the overall reconstruction. 
i, Time-slicing components: in the slices, neurons are sorted within each region 
according to increasing activation in early trials after normalizing weights 
for each neuron to [0, 1] (same sorting across components). j, Top: PSTH of an 
example visual cortical neuron for early to late trials (indigo to teal). Bottom, 
PSTH built from the full sliceTCA reconstruction. k, Contribution of each time-
slicing component to the overall reconstruction.
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This geometric view illustrates that, by fitting different covari-
ability classes, sliceTCA is able to capture latent trajectories that are 
no longer confined to a linear subspace despite still being a multilinear 
method. In contrast, traditional matrix factorization methods that 
capture only a single covariability class are restricted to one of the 
three geometric classes of latent activity in neural state space shown in 
Fig. 6, whereas TCA constrains its components to obey the geometrical 
constraints of all three classes simultaneously (Supplementary Fig. 15). 
In sum, sliceTCA is able to capture a broader range of covariability 
structure in neural data (and a broader range of latent representa-
tions in neural space) than related methods, all while remaining easily 
interpretable.

Discussion
Neural activity is often interpreted as low-dimensional population 
modes representing patterns of covariation across neurons. We have 
advocated for an expansion of this view to describe three distinct 
classes of covariability: across neurons, across time and across trials. 
We further introduced sliceTCA, a new tensor decomposition that 
demixes these covariability classes in large-scale neural data. Through 
several example datasets, we demonstrated that sliceTCA captures 
more task-relevant covariability in fewer components, allowing for 
the discovery of intricate latent structure in population activity. Thus, 
sliceTCA expands the classic view of neural representations toward 
latent variables that are not constrained to a fixed low-dimensional 
subspace.

Our framework of multiple covariability classes addresses key limi-
tations of the classic view on latent variables, which is unable to identify 
several types of structure commonly found in neural data (for example, 

neural sequences)7,25. Indeed, task-relevant sequences are a widespread 
phenomenon observed across brain regions11,33,34. While we emphasized 
the ability of trial covariability to capture condition-specific neural 
sequences, we note that this class can capture more complex forms 
of stereotyped temporal patterning across neurons35–37. In contrast, 
population modes characterized by variable timing on different tri-
als (for example, in temporal difference learning38) are captured by 
neural covariability. Lastly, temporal covariability captures stereo-
typed trajectories embedded in reaching direction-specific subspaces 
within the neural state space39. We speculate that temporal covariability 
could also capture latent subspaces that evolve slowly due to learning 
or drift12,14. Our results support previous work arguing that different 
brain regions are better described by different covariability classes7. 
Importantly, we further show that, without demixing covariability, 
task-relevant variability can be obscured by components of the domi-
nant slice type (Supplementary Figs. 5, 8 and 13). Therefore, demixing 
covariability classes may be a crucial step when considering multire-
gion recordings that may contain qualitatively distinct computations in  
different populations.

A long-standing challenge in systems neuroscience is the difficulty 
of mapping neural variability to changes in behavior40. Despite being 
unsupervised, sliceTCA was able to disentangle behavioral and task 
information in each of the datasets presented. This may be due to two 
factors: first, demixing covariability effectively ‘denoises’ components 
representing task variables that would have otherwise been occluded 
by other covariability classes. Second, trial-slicing components identify 
changes that are common across trials, which tend to be defined by task 
variables or behavioral outcomes. Indeed, we found that trial-slicing 
components often correlated with behavioral variables. Moreover, 
using feedforward and recurrent circuit models, we demonstrated 
how sliceTCA could offer a window into the computational roles of 
variables modeled by different slice types. Hence, we argue that the 
classical view on latent neural representations, which assumes that 
behaviorally relevant neural variability is correlated across neurons, 
is overly reductionist and may miss many types of neural dynamics 
underlying behavior.

A key advantage of matrix and tensor decompositions is their 
simplicity. (Multi)linear methods can perform as well as nonlinear 
methods in specific applications while remaining considerably more 
interpretable (Extended Data Fig. 4a). Indeed, the analytical tractability 
of sliceTCA enabled us to characterize its invariance classes and to pro-
pose a method to identify a unique solution in the unconstrained case 
(Extended Data Fig. 8c). Identifying invariances is crucial for reproduc-
ibility and interpretation, as nonunique solutions may prohibit clear 
comparisons across datasets41,42. This issue is ever more important with 
the trend toward comparisons of neural data to task-trained neural 
networks, whose representations are known to be sensitive to model 
specifications43,44. Going forward, matrix and tensor decompositions 
could prove useful for comparing latent representations by virtue of 
their tractability.

SliceTCA is closely related to both TCA and PCA while offering 
more flexibility by capturing multiple covariability classes. However, 
in some cases, TCA or PCA may be sufficient to capture the data while 
also offering other advantages. If no demixing is required, PCA has 
the benefit of having a closed-form solution (but we note that PCA is 
a special case of sliceTCA that could be identified through our pipe-
line). In contrast, the stronger constraints imposed by TCA mean that 
it generally requires more components than PCA or sliceTCA yet has 
fewer parameters per component. As such, TCA and sliceTCA represent 
two sides of a trade-off between model parsimony and expressivity, 
which could be balanced by combining their respective strengths 
(Supplementary Fig. 12). Future work could generalize sliceTCA and 
TCA using the partition rank45. However, careful consideration would 
be required to fully understand the implications of a low-partition-rank 
decomposition, including potentially new invariances.
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Fig. 6 | Different slice types capture latent variables with distinct geometric 
properties. Neuron-slicing component: example of two neuron-slicing 
components visualized in neural activity space. The latent activity is embedded 
in a 2D subspace, but their trajectories within that subspace are unconstrained. 
Time-slicing component: example of two time-slicing components. These are 
also embedded within a 2D subspace, but that subspace may vary over trials. 
Within each latent subspace, the latent trajectories have similar shape as they 
are constrained to linear combinations of a few characteristic temporal weights. 
Trial-slicing component: the trial-slicing components are not constrained to 
any subspace, as the neural encodings may change at every time point. These 
components describe linear combinations of a few potentially high-dimensional 
latent trajectories such as neural sequences. Note that, here, only one component 
is shown for clarity. In this case, the latent trajectory is simply re-scaled on 
each trial. Reconstruction: after summing these components, the full latent 
trajectories are not necessarily limited by any of the geometric constraints that 
characterize individual slice types.
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While tensor decompositions can be viewed as generalizations of 
matrix factorizations, they have specific limitations (for example, they 
are generally more computationally expensive46,47). Data tensors also 
require trimming, masking or warping trials to the same length. These 
preprocessing steps make implicit assumptions about the temporal 
structure of latent variables: warping assumes that latent variables are 
simply rescaled in time on different trials48, whereas trimming is more 
suitable when latent variables have a fixed intrinsic temporal structure 
independent of trial length (for example, background oscillations)32. 
Because of these considerations, we note that sliceTCA may not be a 
good fit for datasets in which these two kinds of temporal structure 
are mixed, datasets that lack a systematic trial structure or datasets 
in which activity is dominated by chaotic dynamics rather than pat-
terns of covariation. More generally, time warping is a thorny issue 
for tensor decomposition when key events for alignment are unknown 
(Supplementary Fig. 11). Toward this end, unsupervised time-warping 
methods could help identify unlabeled events in the data, whether as a 
preprocessing step32 or performed simultaneously with dimensional-
ity reduction31,49.

Together, tensor decompositions are useful for neural data, as they 
allow for the discovery of patterns in trial-structured data. While we 
focused on third-order tensors, data tensors of even higher order could 
be imagined by adding legs corresponding to days, conditions or even 
individuals50,51. Going forward, our framework of mixed covariability 
could, therefore, help advance our understanding of behaviorally 
relevant latent structure in high-dimensional neural data across brain 
regions and subjects.
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Methods
No original data were collected for this study. We analyzed data from 
three previous datasets17–19. All experiments were approved by the 
relevant bodies: the Institutional Animal Care and Use Committee of 
Stanford University (dataset 1), the Administrative Panel on Laboratory 
Animal Care and Administrative Panel on Biosafety of Stanford Univer-
sity (dataset 2), and the Institutional Animal Care and Use Committees 
of Cold Spring Harbor Laboratory (dataset 3). Additional experimental 
details can be found below.

Definition of the sliceTCA model
Matrix rank and matrix factorization. Consider a data matrix consist-
ing of N neurons recorded over T samples (time points): X ∈ ℝN×T . 
Matrix factorization methods find a low-rank approximation ̂X  fol-
lowing equation (1), in which each component is a rank-1 matrix: 
X(r) = u(r) ⊗ v(r), where u(r) ∈ ℝN  and v(r) ∈ ℝT  are vectors representing 
the neural and temporal coefficients, which are chosen to minimize 
a loss function. In other words, the activity of neuron n at time t is 
given by

̂Xn,t =
R
∑
r=1

u(r)n v(r)t (2)

A common choice of loss function is the MSE:

ℒ = 1
NT

‖
‖X − ̂X‖‖

2

F
(3)

Constraints may be added to the minimization of the loss, such as 
non-negativity of the coefficients in NMF.

Slice rank and sliceTCA. A d-tensor is a generalization of a matrix to 
d legs (that is, a data matrix is a 2-tensor). Here, we are specifically 
concerned with 3-tensors typically used in neuroscience, in which the 
three legs represent neurons, time and trial/condition: X ∈ ℝN×T×K . 
SliceTCA extends the matrix factorization in equation (1) by fitting X 
with a low ‘slice rank’ approximation23. A slice-rank-1 d-tensor is an 
outer product of a vector and a (d − 1)-tensor. For the 3-tensors that 
we have been considering, this corresponds to the outer product of a 
‘loading’ vector and a 2-tensor, thus making this 2-tensor a ‘slice’ of 
this slice-rank-1 tensor up to a scalar multiple determined by the load-
ing vector.

Each sliceTCA component can be one of three different slice  
types. For example, a neuron-slicing component can be written as 
X(r) = u(r) ⊗ A(r), where A(r) ∈ ℝT×K  is the time-by-trial slice representing 
the weights of the component across both time and trials and the vector 
u(r) represents the neural loading vector. Components of other slice 
types can be constructed similarly with their respective loading vectors 
and slices: v(r) ∈ ℝT, B(r) ∈ ℝN×K  for the time-slicing components and 
w(r) ∈ ℝK, C(r) ∈ ℝN×T  for the trial-slicing components. Put together, 
this results in a decomposition of the following form:

̂Xn,t,k =
Rneuron
∑
r=1

u(r)n A(r)t,k +
Rtime
∑
r=1

v(r)t B(r)n,k +
Rtrial
∑
r=1

w(r)
k C (r)

n,t (4)

Because of the different slice types, each sliceTCA model can be 
described by the hyperparameter three-tuple R = (Rneuron, Rtrial, Rtime), 
defining the number of neuron-, trial- and time-slicing components, 
for a total of Rneuron + Rtrial + Rtime components.

Relationship to TCA. The extension of matrix factorizations to TCA is 
based on a different definition of tensor rank, in which a rank-1 tensor 
is as an outer product of d vectors. Each component is defined by a set 
of vectors corresponding to neuron, time and trial coefficients 
u(r) ∈ ℝN,v(r) ∈ ℝT,w(r) ∈ ℝK  for each component: X(r) = u(r) ⊗ v(r) ⊗ w(r). 

Then, each element of the approximated data tensor can be written  
as

̂Xn,t,k =
R
∑
r=1

u(r)n v(r)t w(r)
k (5)

In other words, a TCA component is a special case of a sliceTCA compo-
nent in which the slice is a rank-1 matrix. In this way, sliceTCA is more 
flexible than TCA, as it has fewer constraints on the type of structure 
that is identified in the data. However, this increase in flexibility comes 
with the cost of an increased number of parameters, as sliceTCA fits 
all the entries of each slice. The flexibility of sliceTCA also leads to 
different invariance classes as discussed below. Finally, we note that 
the two methods can, in principle, be merged by incorporating TCA 
components into equation (4).

SliceTCA invariance classes
Transformations within a slice type. Matrix factorization methods 
are known to be invariant to invertible linear transformations, includ-
ing, but not limited to, rotations of the loading vectors. For example, 
suppose we decompose a matrix Y ∈ ℝN×T  into a product of a matrix 
of weights, W ∈ ℝN×R, and a matrix of scores, S ∈ ℝR×T . Consider any 
invertible linear transformation F ∈ ℝR×R. Then, Y can be rewritten 
as

Y = WS = WFF−1S = W̃ ̃S (6)

where W̃ = WF  and ̃S = F−1S. As a result, matrix decompositions, such 
as factor analysis, lead to not one solution but rather an invariance 
class of equivalent solutions. Note that PCA avoids this problem by 
aligning the first component to the direction of the maximum pro-
jected variance, as long as the eigenvalues of the covariance matrix 
are distinct. However, other methods that do not have a ranking of 
components are not able to use the same alignment. SliceTCA inherits 
this same invariance class, as all the loading vectors within a given slice 
type can be transformed in the same way as equation (6) to yield the 
same partially reconstructed tensor for each slice type (Extended Data 
Fig. 5a).

Transformations between slice types. SliceTCA has an additional 
invariance class due to the fundamental properties of multilinear addi-
tion. For example, consider a slice-rank-2 tensor Y ∈ ℝN×T×K , which is 
made of two components of different slice types. We will assume with-
out loss of generality that these are neuron- and time-slicing compo-
nents with corresponding slices V and U, such that

Yn,t,k = unVt,k + vtUn,k

Then, the following transformation can be performed for the arbitrary 
vector z ∈ ℝK:

Yn,t,k = unVt,k + vtUn,k + unvtzk − unvtzk
= un (Vt,k − vtzk) + vt (Un,k + unzk)

= un ̃Vt,k + vtŨn,k

where ̃V = V − v⊗ z and Ũ = U + u⊗ z are transformations of the original 
slices. This invariance class, therefore, corresponds to passing a tensor- 
rank-1 tensor between two slices of differing slice types (Extended Data 
Fig. 5b).

Note that two classes of transformations (within slice type and 
between slice type) commute (see proposition 2.1 of Supplementary 
mathematical notes); therefore, one cannot obtain a new transforma-
tion by, for example, applying the first transformation, followed by the 
second and then the first again.
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Identification of a unique sliceTCA decomposition. To find a uniquely 
defined solution, we can take advantage of the natural hierarchy 
between the two invariance classes. Specifically, let us first define the 
partial reconstruction ̂X neuron of the low-slice-rank approximation ̂X  
based on the neuron-slicing components; that is

̂X neuron =
Rneuron
∑
r=1

u(r) ⊗ A(r)

a n d  l e t  ̂X time  a n d  ̂X trial  b e  s i m i l a r l y  d ef i n e d ,  s o  t h a t 
̂X = ̂X neuron + ̂X time + ̂X trial. Now, note that the within-slice-type transfor-

mations change the weights of the loading vectors and slices of all 
components of a given slice type without changing the partial recon-
structions for each slice type. For example, applying these transforma-
tions to the neuron-slicing components would change u(r) and A(r) but 
not ̂X neuron. On the contrary, the between-slice-type transformations 
change the partial reconstructions ̂X neuron, ̂X time and ̂X trial, but not the 
full reconstruction ̂X . Therefore, the key to identifying a unique solu-
tion is first to perform the between-slice-type transformations to 
identify the unique partial reconstructions ̂X neuron, ̂X time  and ̂X trial   
and then perform the within-slice-type transformations to identify  
the unique loading vectors and components.

We leveraged this hierarchy to develop a post hoc model optimiza-
tion into three steps, each with a distinct loss function. The first step 
identifies a model that minimizes a loss function ℒ1 defined on the full 
reconstruction (Extended Data Fig. 8c(i)), resulting in the approxima-
tion ̂X . Next, because of the two invariance classes, there is a continuous 
manifold of solutions with different parameters (loading vectors and 
slices) that, after being recombined, all result in the same ̂X  and, there-
fore, have the same loss. Next, we use stochastic gradient descent to 
identify the between-slice-type transformation that minimizes a sec-
ondary loss function ℒ2, which fixes ̂X neuron, ̂X time  and ̂X trial without 
affecting ̂X  (Extended Data Fig. 8c(ii)). Finally, we identify the 
within-slice-type transformation that minimizes a tertiary loss function 
ℒ3 to arrive at the final components (loading vectors u(r), v(r), w(r) and 
slices A(r), B(r), C(r)) without affecting ̂X neuron, ̂X trial and ̂X time (Extended 
Data Fig. 8c(iii)). Each of the three loss functions can, in principle, be 
chosen according to the constraints or normative assumptions most 
relevant to the question at hand.

We note that, if we performed only the ℒ1 optimization step, 
then different initializations would lead to different solutions for 
the coefficients. Both the ℒ2 and ℒ3 steps are necessary to identify a 
unique solution across the two invariance classes. If we applied only 
ℒ3 after ℒ1, there would be no guarantee that ̂X neuron would be the 
same for two seeds, as they could differ by more than just a rotation 
due to the between-slice-type invariances; therefore, it would not 
necessarily be possible to identify a unique solution. If we then 
applied ℒ2 to correct this, we would need to reapply ℒ3 to come up 
with a unique set of coefficients. Therefore, the most natural way to 
identify a unique solution is to exploit the hierarchical structure of 
the invariances by optimizing the invariances in the proposed order: 
ℒ1, then ℒ2, then ℒ3. More precisely, we prove that, if each of these 
objective functions leads to a unique solution, the decomposition 
is unique under weak conditions (see theorem 2.7 in Supplementary 
mathematical notes).

This procedure can also be understood more intuitively by con-
sidering the case in which there is only a single component type, in 
which case sliceTCA reduces to a matrix factorization. Even then, 
minimizing ℒ1 is not sufficient to determine a unique model due to 
there being a continuum of factor rotations that yield the same ̂X . 
PCA solves these invariances by constraining the factors to be orthog-
onal and ranking them by variance explained, resulting in a unique 
solution (under certain weak conditions, for example, up to sign 
reversals if all singular values are unique). This can be written through 
an additional loss function (equivalent to ℒ3 in our framework). When 

considering mixed slice types, the second step (minimizing ℒ2) 
becomes necessary owing to the invariant transformations between 
slice types.

Model selection, optimization and fitting
To fit sliceTCA for a given dataset arranged as a 3-tensor, we followed 
the data analysis pipeline described in the main text. Below, we provide 
details and hyperparameters for the steps involved in the pipeline.

Fitting sliceTCA with stochastic gradient descent. For a fixed choice 
of R, model parameters (that is, the loading vectors and slices of all 
components) were fitted using the optimizer Adam54 in Pytorch. Initial 
parameters were randomly drawn from a uniform distribution over [−1, 
1] or [0, 1] for unconstrained and non-negative sliceTCA, respectively. 
Throughout, we optimized the MSE loss in equation (3) with a learning 
rate of 0.02. Note that, during model selection, some of these entries 
will be masked (that is, not be summed in the loss) for cross-validation 
(see the next section). To introduce stochasticity in the computation 
of the gradient, and thus avoid local minima, we additionally masked a 
fraction of tensor entries so that they are not included in the calculation 
of the loss. This fraction starts at 80% and decreases exponentially dur-
ing training with a decay factor of 0.5 over three (Fig. 2) or five blocks 
of iterations (Figs. 4 and 5). Within each block, the mask indices are 
randomly reinitialized every 20 of a total of 150 (Fig. 2), 200 (Fig. 4) or 
100 iterations per block (Fig. 5). Run time scales approximately linearly 
with the number of components (Supplementary Fig. 16). To obtain 
an optimal model under a given R, we repeated the fitting procedure 
ten times with different random seeds and chose the model with the 
lowest loss.

Cross-validated model selection. To choose the number of com-
ponents in each slice type, we run a 3D grid search to optimize the 
cross-validated loss. In addition to the decaying mask used during 
model fitting, we masked 20% of the entries throughout the fitting 
procedure as held-out data. These masked entries were chosen in 
randomly selected 1-s (Fig. 4) or 150-ms blocks (Fig. 5) of consecu-
tive time points in random neurons and trials. Blocked masking of 
held-out data (rather than salt-and-pepper masking) was necessary 
to avoid temporal correlations between the training and testing data 
due to the slow timescale of the calcium indicator or due to smooth-
ing effects in electrophysiological data. To protect further against 
spuriously high cross-validation performance due to temporal cor-
relations, we trimmed the first and last 250 ms (Fig. 4) or 40 ms (Fig. 5) 
from each block; these data were discarded from the test set, and 
only the remaining interior of each block was used to calculate the 
cross-validated loss. We repeated the grid search ten times with dif-
ferent random seeds for train–test split and parameter initialization 
while keeping a constant seed for different R. Once the cross-validated 
grid search was complete, we selected R* by identifying the model with 
a minimum or near-optimal average test loss across seeds. Admis-
sible models are defined as those achieving a minimum of 80% of the 
optimal performance for nonconstrained sliceTCA and 95% of the 
optimal model performance for non-negative sliceTCA, as compared 
to root-mean-squared entries of the raw data.

Hierarchical model optimization. For the first step of the model 
optimization procedure, we chose the MSE loss for ℒ1:

ℒ1(u,A,v,B,w,C)

= 1
KNT

‖
‖‖‖
X − (

Rneuron
∑
r=1

[u(r) ⊗ A(r)] +
Rtime
∑
r=1

[v(r) ⊗ B(r)] +
Rtrial
∑
r=1

[w(r) ⊗ C (r)])
‖
‖‖‖

2

F

as in the model selection (essentially refitting the model with the spe-
cific ranks identified with the cross-validation procedure on the entire 
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data). For ℒ2, we used the sum of the squared entries of the three partial 
reconstructions from each slice type:

ℒ2(x,y, z) =
‖
‖‖‖
̂X trial −∑

r,s
x(r,s) ⊗ v(s) ⊗w(r) − ∑

r,s
u(r) ⊗ y(r,s) ⊗w(s)‖‖‖‖

2

F

+
‖
‖‖‖
̂X time +∑

r,s
x(r,s) ⊗ v(s) ⊗w(r) − ∑

r,s
u(r) ⊗ v(s) ⊗ z(r,s)

‖
‖‖‖

2

F

+
‖
‖‖‖
̂X neuron +∑

r,s
u(r) ⊗ y(r,s) ⊗w(s) + ∑

r,s
u(r) ⊗ v(s) ⊗ z(r,s)

‖
‖‖‖

2

F

where x ∈ ℝRtime×Rtrial×N, y ∈ ℝRneuron×Rtrial×T  and z ∈ ℝRneuron×Rtime×K . This can 
be thought as a form of L2 regularization. For ℒ3, we chose orthogo-
nalization and variance explained ordering through singular value 
decomposition (SVD).

We stress that the losses ℒ1, ℒ2 and ℒ3 may be chosen according 
to the specific problem at hand. For example, different factor rota-
tions could be easily implemented into the hierarchical model opti-
mization, including varimax or even oblique (that is, nonorthogonal) 
rotations. Therefore, while we chose an ℒ3 that constrained compo-
nents to be orthogonal, in general, sliceTCA does not necessarily 
need to return orthogonal components. Finally, we remark that the 
hierarchical model optimization procedure is valid only for uncon-
strained sliceTCA, as adding a non-negativity constraint restricts the 
possible space of solutions. This also explains why non-negative 
factorizations (for example, NMF) are known to suffer less from 
uniqueness issues but also require more complex conditions to 
guarantee uniqueness30. Future work could borrow from existing 
methods for factor rotations specifically designed for NMF to extend 
to non-negative sliceTCA55.

Model similarity. To estimate whether solutions found with sliceTCA 
are unique in practice, we adopted a measure of the model similarity 
of the solutions found from different random initializations4,56. This 
score is based on computing the angle between a pair of vectors cor-
responding to the loading factors of two models after components 
are matched according to the Hungarian algorithm. For each pair of 
sliceTCA components, we unfolded the slice of each component into 
a vector. Then, we computed the angle between the loading vectors, 
the angle between the vectors resulting from unfolded slices, and their 
average values.

Following previous work4, we computed this modified similar-
ity score for each of the ten randomly initialized models against the 
model that achieved the lowest MSE loss. We calculated (1) the overall 
model similarity and (2) the model similarity for each slice type, which 
could be an informative diagnostic tool for model optimization in 
future work. To establish a baseline chance level of similarity, we also 
computed a shuffled model similarity score: for each slice type and 
component, we shuffled the elements of the weight vectors of one of 
the two models within the respective weight vectors before computing 
their similarity score. We then calculated the mean similarity over 100 
shuffle repetitions for each slice type.

Feedforward model of perceptual learning
We modeled a population of linear neurons receiving a sensory input 
from upstream sources representing a go stimulus and a no-go stimu-
lus, as well as an input representing a top–down modulation that varied 
from trial to trial. On each trial k, either the go or no-go stimulus was 
activated, with probability P = 0.5 of presenting the same stimulus as 
in the previous trial. Go/no-go inputs (xgo, xno) were assumed to follow 
the same bell-shaped activation function st = e−(t−4)

2
 on the trials dur-

ing which their corresponding stimulus was presented, that is, xgot,k = st 
if k was a go trial and xgot,k = 0  otherwise (and vice versa for the  
no-go input).

The stochastic learning process of the go and no-go weights 
wgo

k ,wno
k ∈ ℝN  over trials was modeled as an Ornstein–Uhlenbeck pro-

cess, which was initialized at wgo
0 = wno

0 = 1 and evolved independently 
across neurons:

dwgo
k = diag(ααα) (μgo −wgo

k )dk + σdWk

dwno
k = diag(ααα) (μno −wno

k )dk + σdWk

where αn ∼ 𝒰𝒰([0.2,0.8])  are the neuron-specific learning rates, and 
μgo = 2, μno = 0, σ = 1.3. Furthermore, to keep weights non-negative and 
simulate their saturation, we clamped them to [0, 2]. The process was 
evaluated using a stochastic differential equation solver and sampled 
at K evenly spaced points in [0, 10] representing K trials.

Top–down modulation was modeled as a rectified Gaussian 
process:

xTDt,k = max(0, γ(t)), γ ∼ GP(0, κ)

with the temporal kernel:

κ(t1, t2) = exp (−
(t1 − t2)

2

2l2 )

where l = √0.5. Top–down weights were nonplastic and distributed as 
wTD

n ∼ 𝒰𝒰([0, 1]).
The activity of each neuron was thus given by

Xn,t,k = wgo
n,kx

go
t +wno

n,kx
no
t +wTD

n xTDt,k

= wS
n,kst +wTD

n xTDt,k

where the sensory input is combined into wS
n,k = wgo

n,k
go
k +wno

n,k(1 −
go
k ), 

where go is an indicator function that is 1 when trial k is a go trial and 0 
if it is a no-go trial. By construction, the tensor X has a slice rank of 2, as 
it can be written in the following form:

X = I S + ITD

where I Sn,t,k = wS
n,kst  is a time-slicing component representing the 

weighted, trial-specific sensory input and ITDn,t,k = wTD
n xTDt,k  is a neuron- 

slicing component representing top–down modulatory factors that 
vary over trials. In our simulations, we used K = 100, T = 90, N = 80.

We fitted sliceTCA with non-negativity constraints to the synthetic 
dataset, using five blocks of 200 iterations each with a learning rate that 
decayed exponentially over blocks from 0.2 to 0.0125 and a mask that 
decayed exponentially over blocks from 0.8 to 0.05. Masked entries 
changed randomly every iteration. Initial parameters were drawn 
uniformly over [0, 1].

RNN model of condition-dependent neural sequences
Model description. We built a model of a linear RNN that produces 
recurrently generated sequences for different task conditions while 
also receiving condition-independent inputs. To generate sequences, 
we parameterize the connectivity matrix W ∈ ℝN×N  by a Schur decom-
position24. Additionally, we let the central matrix have a block-diagonal 
structure to embed multiple sequences into the dynamics. Formally, 
we let W = USUT, where U is a unitary matrix and S is defined in block 
structure as

S = [
(λ + ϵ)I− − λI 0

0 (λ + ϵ)I− − λI
]

where I ∈ ℝN/2×N/2 is the identity matrix and I− ∈ ℝN/2×N/2 is the matrix 
with ones along its subdiagonal. The unitary matrix U was generated 
as the left singular vector matrix of a random normal matrix.
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Each block of S corresponds to the sequential dynamics for one of 
the two noninterfering sequences. The specific sequence is selected by 
the initial state of the network. This is parameterized through the first 
and (N/2 + 1)th columns of U (that is, U1 and UN/2+1), which correspond to 
the beginning of each sequence. The RNN also receives a 2D input that 
is condition independent. To avoid interference with the sequences, we 
mapped the input through the (N/2)th and the Nth columns of U (that 
is, UN/2 and UN), as these are the elements corresponding to the end of 
the sequence. In this way, we were able to generate RNN dynamics that 
produce condition-specific sequences while also being influenced by 
condition-independent inputs.

To test the effects of different sources of noise, we considered RNN 
dynamics that are governed by stochastic differential equations. On 
trial k, the population activity x(k)(t) ∈ ℝN  and inputs u(k)(t) ∈ ℝ2 evolve 
according to

{
dx(k) = (−x(k) +Wϕ(x(k)) + Bu(k))dt + σ1dW

(k)
1 x(k)(0) = c(k)1 U1 + c(k)2 UN/2+1

du(k) = A(k)u(k)dt + σ2dW
(k)
2 u(k)(0) = u(k)0

where B = [UN/2,UN], Aij ∼ 𝒩𝒩(0, 1/2)  and dW i are infinitesimal  
increments of a Wiener process. Furthermore, we took 
[c(k)1 , c(k)1 ] = [cos(θ(k)), sin(θ(k))] , where θ(k) represents the angle of the 
task variable. In our simulations, we used K = T = N = 200 and  
took ϕ = id.

RNNs have three natural sources of noise: (1) noise at the level of 
the dynamics of each neuron, σ1dW1, which we call intrinsic noise; (2) 
input noise, σ2dW2; and (3) observation noise added to the full tensor, 
Y = X + η, where ηijk ∼ 𝒩𝒩(0,σ3). Thus, by systematically varying σ1, σ2, σ3, 
we can vary the magnitude of different sources of noise in the data. 
Importantly, they have the property that for ϕ = id, 𝔼𝔼[Y ] = X , where 
y(k)(t) is the activity with σi ≠ 0 for at least one i and x(k)(t) is the activity 
with σi = 0 for all i.

To evaluate the effect of these different sources of noise on sli-
ceTCA, we considered the variance explained κ = 1 − || ̂Y − Y||2F/||Y − ̄y||2F  
as a function of the noise level ζ = ||Y − X||2F/||Y − ̄y||2F , where ̂Y  is the 
reconstruction from sliceTCA fit on Y. In the normalization term 
above, ̄y ∈ ℝ is the average over all NTK entries of Y (but we note that 
different marginalizations are possible57). An optimal denoiser (that 
is, for which ̂Y = X) would yield κ = 1 − ζ. Meanwhile, a model that fully 
captures the variability (including noise) in the data (that is, ̂Y = Y ) 
would have κ = 1.

Statistics and reproducibility
As we reanalyzed existing data, no statistical method was used to 
predetermine sample sizes. Instead, we demonstrated the utility 
of sliceTCA by choosing three previously published datasets repre-
senting a typical range of numbers of recorded neurons, time points 
and trials. For the application of sliceTCA to these example datasets 
and subsequent analyses, we randomly selected an example session 
and animal for each dataset. General trends were confirmed by fit-
ting sliceTCA on other example sessions of the same dataset (not 
shown). To ensure reproducibility, we have made available the datasets 
for the sessions analyzed in this paper, along with the analysis code 
(see the ‘Data availability’ and ‘Code availability’ sections below). 
Model selection was performed as described in the ‘Model selection, 
optimization and fitting’ section above. During cross-validation, 
tensor entries (indexed by neurons, trials and blocks of time) were 
randomly allocated (80–20%) into training versus held-out data using 
a pseudo-random number generator. No blinding was performed, 
as our method is unsupervised and was applied to the full dataset. 
The investigators were not blinded to outcome assessment. Unless 
otherwise specified, we performed two-sided nonparametric sta-
tistical tests. In Extended Data Fig. 10d, model assumptions were 
not tested before performing analyses of variance. In dataset 3, we 

excluded neurons with low firing rates (<0.2 Hz); otherwise, no data 
were excluded from the analyses.

Dataset 1 of motor cortical recordings during a center-out and 
maze reaching task
Description of the dataset. We analyzed a dataset of motor cortical 
(M1, n = 90) and premotor cortical (PMd, n = 92) electrophysiological 
recordings17. The dataset is curated and publicly available as part of the 
‘Neural Latents Benchmark’ project58. Briefly, monkeys were trained 
to perform a delayed center-out reach task to one of 27 locations in 
both the maze condition (in which barriers were placed on the screen, 
leading to curved optimal reach trajectories) and the no-maze condi-
tion with matched target locations (classic center-out task leading 
to straight optimal reach trajectories). The go signal for movement 
initiation appeared 0–1,000 ms after target onset and 1,000–2,600 ms 
after the trial started with a fixation cue. We analyzed data from one 
animal (monkey J) in a single session and randomly subselected 12 
target locations, resulting in K = 246 single-target trials in the maze 
reach conditions and K = 265 single-target trials in the 12 center-out 
reach conditions with matched target locations.

Additional preprocessing. We calculated firing rates for bins of 10 ms, 
which we then smoothed with a Gaussian filter with σ = 20 ms and 
rescaled to minimum and maximum values of 0 and 1 over the course of 
the experiment for each neuron separately. We selected a time period 
starting 1 s before movement onset (thus including a substantial part 
of the motor preparation period) and ending 0.5 s after movement 
onset when the monkey had successfully reached the target position 
in most trials. We did not time-warp the data. The resulting data tensor 
had dimensions of N = 182, T = 150 and K = 511.

Supervised mapping of neural population activity onto kinematic 
data. To identify the neural subspace from which 2D hand trajecto-
ries could be read out (Fig. 2a), we used ordinary least squares (OLS). 
Specifically, we found weights that project the neuron-unfolded data 
from the full neural space onto a 2D subspace that best maps onto 
(x, y) hand velocity with a time delay of 100 ms to account for the lag 
between neural activity and movement. When testing the decoding 
analysis after dimensionality reduction, we instead applied OLS to 
the reconstruction (or partial reconstruction (that is, from a single 
slice type)) after reshaping it into an N × KT matrix. We also used OLS 
to project time-averaged pre-movement activity onto target locations 
(Fig. 2g). For Fig. 2h, we used LDA to identify the dimension that best 
separates pre-movement averaged activity in clockwise versus coun-
terclockwise curved reaches in the maze condition. To plot activity in 
a 3D neural subspace that contained information about the upcoming 
movement, we then orthogonalized the two axes that map neural activ-
ity onto target locations to the axis that distinguishes clockwise and 
counterclockwise movements.

For all decoding analyses, we calculated R2 values on left-out trials 
in a fivefold cross-validation procedure performed on 20 permutations 
of the trials. Decoding was performed on data from the period span-
ning 250 ms before to 450 ms after movement onset. For trial-resolved 
data (Fig. 2a, raw data, neuron-slicing NMF, TCA, trial-slicing NMF), we 
averaged trial-wise R2 values; for pre-movement information on target 
positions, we calculated a single R2 value across trials for center-out 
and maze reaching conditions. For trial-averaged data (Fig. 2a, 
trial-averaged raw data), we performed twofold cross-validation by 
averaging hand and neural trajectories separately for each fold and 
then calculating R2 values averaged over conditions and folds.

Visualization of sliceTCA weights. The results of fitting non-negative 
sliceTCA are shown in Fig. 2c,d and Supplementary Fig. 3. Each compo-
nent consists of a weight vector and a slice of corresponding weights 
on the other two variables. Along the trial dimension, we sorted trials 
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by the angle of the target position and whether trials belonged to 
center-out or maze reaching conditions. Along the neuron dimension 
of trial-slicing components, neurons were sorted by the peak latency 
of neural activity in the first component. For the time-slicing compo-
nent, neurons were sorted according to their mean activity in the first 
reaching condition.

Correlation matrices. To assess the encoding similarity of movement 
preparation in the time-slicing component, we calculated the K × K 
correlation matrix of the neural encoding weights (that is, the rows of 
the slice in Fig. 2d) for different pairs of trials, separately for center-out 
and maze reach conditions, and for the PMd (Fig. 2f) and M1 (Extended 
Data Fig. 4c). We sorted the resulting correlation matrices by the angle 
of the target location (Fig. 2f).

Dataset 2 of cortico-cerebellar calcium imaging during a 
motor task
Description of the dataset. We analyzed recently published calcium 
imaging data consisting of simultaneously recorded cerebellar granule 
cells (n = 134) and premotor cortical L5 pyramidal cells (n = 152) from a 
head-fixed mouse performing a motor task in which a manipulandum 
had to be moved forward and leftward or rightward for a reward18. After 
a correct movement was completed, a water reward was delivered with 
a 1-s delay, followed by an additional 3.5-s intertrial interval. Left versus 
right rewarded turn directions were alternated without a cue after 40 
successful trials. We analyzed data from one session of a mouse in an 
advanced stage of learning, comprising a total of K = 218 trials. The data 
were sampled at a 30-Hz frame rate. Calcium traces were corrected for 
slow drifts, z-scored and low-pass filtered18.

Additional preprocessing. Owing to the freely timed movement 
period, we piecewise linearly warped data to the median interval 
lengths between movement onset, turn and movement end. The 
remaining trial periods were left unwarped and cut to include data from 
1.5 s before movement onset until 2.5 s after reward delivery, resulting 
in a preprocessed N × T × K data tensor with N = 286, T = 150 and K = 218.

Visualization of sliceTCA weights. In Fig. 4b,c, we show the results of 
a fitted sliceTCA model. We further reordered trials in the trial–time 
slices according to trial type and neurons in the neuron–time slices 
according to the peak activity in the first trial-loading component. 
This allows for a visual comparison of the tiling structure across com-
ponents. We used Mann–Whitney U tests on the time-averaged activity 
between reward and trial end in the trial–time slices. We used LDA to 
determine the classification accuracy for neuron identity (cerebel-
lum versus cortex) based on the loading vector weights of the three 
neuron-slicing components found by sliceTCA. We similarly reported 
the classification accuracy of trial identity (error versus correct, left 
versus right) based on the loading vector weights of the trial-slicing 
components.

Matrix rank of slices. To determine whether sliceTCA finds com-
ponents with higher matrix ranks compared to methods that do not 
demix slice types (neuron-slicing PCA and factor analysis with neuron 
loadings, neuron- and time-concatenated PCA and factor analysis with 
trial loadings), we performed SVD on the six slices (after centering) of 
the sliceTCA model shown in Fig. 4b, as well as on the scores of either 
trial-slicing or neuron-slicing PCA and factor analysis, after refolding 
the resulting scores into N × T or K × T matrices, respectively. We then 
compared these to the spectra of squared singular values obtained 
from the slices of the trial-slicing (Fig. 4e) or neuron-slicing compo-
nents (Supplementary Fig. 8). Factor analysis was performed using 
the ‘sklearn’ Python package59, which uses an SVD-based solver. For 
comparability with PCA and sliceTCA solutions, no factor rotations 
were performed.

Manifolds from sliceTCA reconstructions. To analyze the geometry 
of neural data, we reconstructed the low-slice-rank approximation of 
neural activity from the sliceTCA model separately for the cerebellum 
and premotor cortex. We then used LDA on both raw and reconstructed 
data to find the three axes that maximally separate left versus right 
correct trials between movement onset and reward (axis 1, Fig. 4g), 
movement onset time versus the time of reward in all correct trials 
(axis 2), and the time of reward versus post-reward (axis 3). We ortho-
normalized the three axes and projected raw and reconstructed data 
onto the new, 3D basis (Fig. 4h).

We then measured the distance ratio to compare the distance 
between trials of the same class versus the distance between trials of 
distinct classes (left versus right) in the full neural space. For the recon-
structed versus the full dataset, we averaged neural activity over a 
650-ms window centered at movement onset and measured the Euclid-
ean distance of the population response in each trial to the 
trial-averaged population response in its own trial type, compared to 
the Euclidean distance to the average population response of the 
respective other trial type: Δbetween/Δwithin, where ∆within = d(xL

k , ̄xL)  is  
the Euclidean distance between population vectors in each left trial  
to the mean population vector across all left trials (and vice versa for 
right trials), and ∆between = d(xL

k , ̄x R) is the Euclidean distance of popula-
tion vectors in each left trial to the mean population vector across all 
right trials (and vice versa for right trials).

Dataset 3 of electrophysiology across many brain regions 
during perceptual decision-making
Description of the dataset. The third analyzed dataset comprised 
recently published multiregion Neuropixels recordings (n = 303) in 
mice performing a perceptual decision-making task53. In the task, 
mice were presented a grating patch image with varying contrast (0%, 
25%, 35%, 50% or 100%), shown on the left or right sides of a screen. 
The mice were trained to move the image to the center of the screen 
using a steering wheel within a 60-s period to receive a sugary water 
reward. A correct response was registered if the stimulus was moved to 
the center, whereas an incorrect response was recorded if the stimulus 
was moved to the border of the screen. We selected a single example 
mouse (subject CSHL049 from the openly released electrophysiology 
data repository).

Additional preprocessing. We binned single-neuron spiking events 
in 10-ms windows. Owing to the variable response times across trials, 
we piecewise linearly warped data between stimulus onset and reward 
delivery or timeout onset to correspond to the median interval length 
and clipped the trial period to start 1 s before stimulus onset and to end 
2 s after reward delivery or timeout onset. We smoothed data with a 
Gaussian filter with σ = 20 ms and rescaled the activity of each neuron 
to a minimal and maximal value of 0 and 1 over all trials. We excluded 
neurons with mean firing rates below 0.2 Hz, leading to a total of n = 221 
neurons analyzed of n = 303 neurons recorded. Brain regions included 
the visual cortex (anterior layers 2/3, 4, 5, 6a and 6b as well as antero-
medial layers 2/3, 4, 5 and 6a; n = 85 neurons), hippocampal regions 
CA1 (n = 32 neurons) and dentate gyrus (molecular, polymorph and 
granule cell layers; n = 21 neurons), thalamus (including the posterior 
limiting nucleus and lateral posterior nucleus; n = 18 neurons) and the 
anterior pretectal and midbrain reticular nucleus (anterior pretectal 
nucleus, n = 22 neurons; midbrain reticular nucleus, n = 35 neurons) 
of the midbrain. In total, the resulting data tensor had dimensions of 
N = 221, T = 350 and K = 831.

Visualization of sliceTCA weights. In Fig. 5b, we scaled the rows of 
the neuron–time slices to a [0, 1] interval to highlight differences in the 
timing of peak activity between neurons. We then reordered neuron–
time slices by the peak activity within each region for each slice type 
separately to show characteristic differences between neural correlates 
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of behavioral variables. Trial–time slices were regrouped by trial type 
to show region-specific representations of task variables. Finally, neu-
ron–trial slices were reordered by the average weights across the first 
100 trials for each neuron within a region.

Reconstruction performance and component weights. For each neu-
ron, we estimated the goodness of fit of the sliceTCA reconstruction as

1 −
∑t,k(Xn,t,k − ̂Xn,t,k)

2

∑t,kX
2
n,t,k

We then quantified the contribution of the neuron-slicing components 
on the total sliceTCA reconstruction for each neuron n as the follow-
ing ratio:

f neuronn =
∑t,k

̂X neuron
n,t,k

∑t,k
̂Xn,t,k

where ̂X neuron describes the partial reconstruction of the data tensor 
from only the neuron-slicing components. We similarly defined the 
contributions of the time- and trial-slicing components to the sliceTCA 
reconstruction of each neuron n as f timen  and f trialn .

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets presented in this paper are available via figshare at https://
doi.org/10.6084/m9.figshare.24961917.v1 (ref. 60). Source data are 
available via GitHub at https://github.com/caycogajiclab/sliceTCA_
paper (ref. 61).

Code availability
A GPU-accelerated Python library for the sliceTCA data analysis pipe-
line (including preprocessing, model selection, model optimization 
and visualization of components) is available as a pip installable pack-
age at https://github.com/arthur-pe/slicetca (ref. 62). Additionally, 
code for the analyses in this paper is available at https://github.com/
caycogajiclab/sliceTCA_paper (ref. 61).
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Extended Data Fig. 1 | Tensor decomposition, matrix factorization, and 
covariability classes. a. A neuron-slicing component can be converted into 
a rank-1 matrix by unfolding the slice into a row vector (or equivalently, by 
unfolding the reconstructed 3-tensor into a matrix). A sliceTCA model comprised 
only of neuron-slicing components (that is, Rtime = Rtrial = 0) is equivalent to 
applying matrix factorization after unfolding the data tensor into an N × KT 
matrix (for example, as in ‘trial-concatenated PCA’). Therefore, a neuron-slicing 
component can be interpreted as a latent trajectory that varies over trials but 

which has fixed neural encoding weights. b-c. The trial-slicing (b) and time-
slicing (c) components can similarly be converted to rank-1 matrices. These 
components represent covariability across trials and time points, respectively.  
d. A TCA component can be represented as any of the three sliceTCA components 
by defining the slice to be the outer product of two of the loading vectors. This 
means that a single TCA component simultaneously corresponds to covariability 
across neurons, time, and trials.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Feedforward model of perceptual learning. a. Sample 
of the activity of a single neuron over six example trials (grey) as well as trial-
averaged activity (red). b. Evolution of the mean Go and No-go weight over 
learning. Shading represents the standard error of the mean. c. Recovered 
neuron-slicing (left) and time-slicing (right) components, plotted alongside 
ground truth values (grey). Weights for each neuron in the slice of the time-
slicing component are plotted separately for Go (green) and No-go (red) trials. 
The sliceTCA decomposition captures the ground truth exactly. d. Single neuron 

activity is better captured by sliceTCA with (bottom) and without (top) white 
noise added to the data tensor. e. Mean squared error of decomposing the 
activity of the feedforward model with added white noise for sliceTCA, TCA, and 
PCA as a function of the number of components used in the model. The dashed 
line represents the mean squared deviation between the noisy and the noiseless 
model. Adding white noise does not affect the performance of sliceTCA relative 
to TCA or PCA.
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Extended Data Fig. 3 | Linear RNN model of condition-specific neural 
sequences. a. Top: Two sequences are encoded into neural weights using the 
Schur decomposition (24). Bottom right: The initial condition continuously 
parametrizes which sequence is activated. Bottom left: In addition, the RNN 
receives a two-dimensional task-irrelevant stochastic input that varies from 
trial to trial. b. Sequential activity during a single trial, neurons sorted by peak 
activity. c. Singular values of the activity matrix. The two dominant singular 
values come from the two-dimensional input. Nevertheless, as expected from 
sequential activity, the singular value spectrum has a long, slowly-decaying 
tail (participation ratio of 7.57). In comparison, the singular values of the 
partial reconstruction from the two trial slicing components (which capture 

the neural sequences, see panel d) retain the long tail, confirming that the two 
dominant modes in the data are input-driven. d. SliceTCA components for 
Rtrial = Rneuron = 2, Rtime = 0. Neurons are sorted according to their peak activity 
in the slice of the first component. e. Example of single-neuron activity in the 
raw data and the SliceTCA reconstruction. f. Comparison of the variance of the 
activity captured by sliceTCA, TCA, and PCA with or without intrinsic noise (mean 
variance plus/minus standard deviation over n = 10 simulations of the RNN). g. 
Cross-validated variance explained by fitting sliceTCA (Rtrial = Rneuron = 2, Rtime = 0) 
to the RNN activity while systematically varying the level of noise added at the 
level of the circuit dynamics (intrinsic noise, red), low-dimensional inputs (input 
noise, blue), or neural activity itself (observation noise, green).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Analysis of the mixed covariability model used to 
decode reaching kinematics from motor cortical recordings (Dataset 
1). a. Ordinary least squares decoding of the hand velocity from different 
decompositions. For comparison, hand position and the mapping from the 
reconstruction of the trial-slicing only NMF model (Rneuron = 0, Rtime = 0, Rtrial = 12) 
are reproduced from Fig. 2. Also shown are the decoding performances using 
the fit of the mixed covariability model (Rneuron = 0, Rtime = 1, Rtrial = 12), based on 
the full reconstruction of all components in the model, as well as the partial 
reconstruction of the data tensor from only the time-slicing component or only 
the trial-slicing components. Note that adding the single time component to the 
mixed model before decoding decreases performance, indicating that it captures 
variability in the neural data that is not directly relevant to movement. Finally, we 
show the decoding performance based on the reconstruction from autoLFADS 
(27, fitted on the cloud-based NeuroCAAS platform; https://neurocaas.org/
analysis/20). b. Cross-validated model selection. Top: The cross-validated loss is 
displayed as a function of the number of time- and trial-slicing components (for 
0 neuron-slicing components). Bottom: Cross-validated loss as a function of the 

number of neuron- and trial-slicing components (for 0 time-slicing components). 
For 10 random seeds, data tensors were split in train- and test-data 80% and 20%, 
respectively), following a blocked masking procedure (Methods). Full black 
star marks the optimal model, and hollow black star marks the selected model 
analyzed here and in Fig. 2. Black thresholds represents the 95% loss elbow. c. 
Reach condition-specific structure in motor preparatory information is observed 
in time-slicing weights of PMd, but not of M1. Top: Correlation matrix between 
neural encoding weights for pairs of trials in the time-slicing matrix, showing 
similarity of PMd neuron weights for trials with similar reach direction and 
curvature (left/right indicate no maze/maze conditions, cf. Fig. 2f). Bottom: In 
contrast, M1 neuron weights reveal a lack of structure in its correlation matrices. 
d. Average fraction of the variance of PMd and M1 neuron activity explained by 
the single time-slicing component, separated by maze and no maze conditions. 
e. Comparison of sliceTCA and time-slicing NMF. Left: SliceTCA time-slicing 
component (Rtrial = 12, Rtime = 1, Rneuron = 0), cf. components of NMF applied to the 
time-unfolded data tensor for Rtime = 1 (middle) and Rtime = 13 (right). Neither time-
slicing NMF model appears to capture pre-movement preparatory activity.
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Extended Data Fig. 5 | Schematic of the two sliceTCA invariant 
transformations. a. Example of a within-slice-type invariant transformation in 
a slice-rank-2 tensor formed by adding and subtracting a slice-rank-1 component 
with the same loading vector as component 1 and the same slice as component 
2. These terms can be absorbed into the original two components, resulting in 

two equivalent decompositions. b. Example of a between-slice-type invariant 
transformation in a slice-rank-2 tensor. Here, a rank-1 tensor constructed by 
the two components’ loading vectors (green and yellow) and a third free vector 
(blue) is added and subtracted. These terms can be absorbed into the original two 
components, resulting in two equivalent decompositions.
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Extended Data Fig. 6 | Between-slice-type invariance in the feedforward 
model. a. The activity of the feedforward model (Extended Data Figure 2) can 
be decomposed into the sum of a time-slicing component (top) and a neuron-
slicing component (bottom). In this example, the Gaussian Process is not 
rectified and the data is not non-negative, leading to bleedthrough between 
the two components due to this invariance class (bottom, red rectangle shows 
discrepancy between model and ground truth). This invariance class was not 
observed in the original non-negative model (Fig. 1e–g, Extended Data Figure 2) 

because there are fewer permissible transformations when the factors are more 
constrained. b. Example of a rank-1 tensor that can be passed between the two 
components. Two of the loading vectors are identical to the loading vectors of 
the components in a. The third is unconstrained. c. By choosing the trial loading 
that minimizes a specified objective function, a unique solution can be found. 
Here the correlation between the activity of trial-neuron pairs was minimized in 
the neuron slicing component, resulting in a fit that matches the ground-truth 
values.
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Extended Data Fig. 7 | Drifting neural sequences have high slice rank. a. Over 
trials, the time point at which a neural sequence starts continuously drifts later 
and later within the trial. In the model, the activity at trial i ∈ {1, …, K} for neuron 

j ∈{1, …, N} and time point k ∈ {1, …, T} is given by Xijk = exp (−(
i+j−k
σT

)
2
). Here we 

used T = 2N = 2K, N = 100, σ = 0.1. b. Left: A neuron that activates early in the 
sequence begins to be activated later and later in time, for increasing trials. Right: 
similar drift for a neuron that fires late in the sequence. Therefore, in addition to 
there being a sequence of neural activation whose timing drifts from trial to trial 
(as in panel a), there is equivalently a sequence of activations over trials whose 

timing drifts from neuron to neuron. This symmetry of the sequences in the data 
tensor means that it can neither be captured by few neuron slicing components 
nor by few trial slicing components. c. SliceTCA gridsearch for the optimal 
number of components (fit on the full tensor, not cross-validated). The loss 
continues to decrease indefinitely as the number of components increases.  
d. Cross-validated sliceTCA gridsearch for the optimal number of components. 
Retaining blocks of trial x neuron x time creates a test set that is nearly 
completely decorrelated (in neuron, trial or time) from the train set; thus the test 
loss is close to random and larger in magnitude than in panel c due to overfitting.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | SliceTCA model selection and optimization. a. 
Cross-validated model selection procedure. We randomly assign blocks of 
consecutive time points (blue) within the data tensor as held out data. The 
remaining entries of the tensor are used as training data (white). To reduce 
correlations between the training and testing data, we discard a brief period from 
the ends of the held-out blocks (light blue) from both training and testing. We use 
only the interiors of these blocks as test data (dark blue). We run a 3D grid search 
on the cross-validated loss (right). We either choose the optimal model (red star) 
or a model at the ‘elbow’ of the loss function (red circle). b. Validation of the 
cross-validation procedure. For ten random seeds, data tensors were split in 
training data and held out data (80% and 20%, respectively), following a blocked 
masking procedure as described in Methods. Grid shows mean squared error loss 
for different numbers of components of each slice type, averaged across ten 
cross-validation folds. The ground truth model was a tensor formed by 
approximating the cortico-cerebellar dataset tensor using a decomposition of 
Rneuron = 3, Rtime = 1, Rtrial = 2 and subsequently adding independent Gaussian noise 
(σ = 0.1) to each tensor entry. The grid search recovers the correct number of 
components of each slice type (black star indicates optimal model). c. 
Hierarchical model optimization procedure. Schematic illustrates the three 
optimization stages to be performed in sequence (gray represents the entries 
which change at each stage). i. We first fit the model on all data (optimizing the 
MSE or ℒ1 loss), resulting in the approximation ̂X  to the data tensor X. ii. Next, we 
optimize the auxiliary loss ℒ2 (a function of the partial reconstructions ̂X neuron, 
etc.) in order to find a solution to the between-slice-type invariances. This can be 
considered as a regularization step that affects the relative weighting of each 
slice type. iii. Finally, the auxiliary loss function ℒ3 (a function of the loading 
vectors and slices, for example, u(r) and A(r)) is optimized to solve the factor 
rotation problem for each slice type separately (here, shown for the neuron slice 

type components). d. Results of running the tensor-passing (ℒ2) optimization 
step on the decomposition shown in Fig. 4, with 10 random seeds, so that the free 
vector of the rank-1 tensor was initialized differently each time. During 
optimization, the free vector is optimized to minimize the L2-norm of slices. Over 
250 iterations, the optimization procedure lead to a unique solution, observable 
in a perfect correlation between slice weights both for trial- (green, top) and 
neuron-slicing components (blue, bottom). Each transparent line is the pairwise 
correlation between two solutions found based on 10 different initialization 
seeds. e-h. Model similarity scores for all three datasets. For a given number of 
components, we fitted ten sliceTCA models from different parameter 
initializations. We then compared the similarity between the model with the 
lowest mean squared error (MSE) and all other models using a metric originally 
proposed in 56, and adapted from 4. For this, we unfolded each component’s slice 
into a vector and computed two angles per component: one corresponding to the 
loading vectors of the two models, and another corresponding to the unfolded 
slices. Components were matched using the Hungarian algorithm (as in 4). We 
report a similarity score that is averaged over all components (‘full model’) as well 
as slice type-specific similarity scores. Single small dots are scores for models 
from different initializations, color-coded by MSE (brighter colors indicate 
higher MSE). Lines denote average chance level over 100 shuffle repetitions, for 
which the elements of vectors of one component were permuted before 
computing the similarity score. e. Similarity scores for reaching dataset (Dataset 
1, shown in Fig. 2). See Supplementary Figure 6 to see components of the 
lowest-similarity model. f. Similarity scores for multi-region dataset during 
decision-making (Dataset 3, shown in Fig. 5). g-h. Similarity scores for cerebello-
cortical imaging data (Dataset 2, shown in Fig. 4) before (g) and after (h) 
hierarchical optimization of ℒ2 and ℒ3 to identify a unique solution.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Extended Data Fig. 9 | Cross-validated model selection and comparison to 
TCA for cerebello-cortical imaging data (Dataset 2). a. The cross-validated loss 
as a function of the number of time-slicing components. Transparent grey lines 
show different combinations of 0-5 neuron- and 0-5 trial-slicing components. 
This indicates that adding any time-slicing components leads to an overfitting 
of the data. b. The cross-validated loss as a function of the number of neuron- 
and trial-slicing components (for 0 time-slicing components). The filled star 
indicates the minimum loss (that is, the optimal model), while the black line 
indicates the 80% loss elbow. The hollow star indicates the model selected for 

further analysis in Fig. 4. c. TCA applied to the cerebello-cortical dataset. Cross-
validated loss as a function of the number of TCA components (grey curves 
indicate ten different cross-validation folds, with the mean shown in black). The 
solid red line shows the performance of the sliceTCA model shown in Fig. 4 (that 
is, at the elbow of the sliceTCA loss), while the dashed red line shows the optimal 
sliceTCA model (components shown in Supplementary Figure 7, dashed red line). 
d. Factors of the 6-component TCA model. Note that the first three and last three 
components show redundancy in the trial factors, while the corresponding time 
factors cover different periods of the task.
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Extended Data Fig. 10 | Cross-validated model selection, effects of temporal 
warping, and comparison to TCA for multi-region recordings during 
decision making (Dataset 3). a. Cross-validated model selection. For 10 
random seeds, data tensors were split in train- and test-data (80% and 20%, 
respectively), following a blocked masking procedure as described in Methods. 
Full black star marks the optimal model, and hollow black star marks the selected 
model analyzed in Fig. 5. Black thresholds describe a 95% loss elbow. b. Effect 
of piecewise linear warping on the example APN neuron shown in Fig. 5c. Trials 
are ordered by the time of reward (white line; for visibility of neural responses, 
line has been shifted left by 100 ms). c. Single-neuron response of the same 
ARN neuron in correct vs. incorrect trials without time-warping (c.f. Fig. 5c). d. 
To determine whether the three time-slicing components found by sliceTCA 
reconstructed an increasing baseline for most neurons or whether responses in 
single task periods changed more strongly than others, we compared the slope of 
linear trends over trials (for each neuron separately) across the three time-slicing 
components. Specifically, we fitted linear models with a multiplicative term for 

each neuron: wk,r = β0 + β1k + β2δr=2 + β3δr=3 + β4kδr=2 + β5kδr=3 + εk,r where wk,r is the 
weight in trial k for component r, and δr=2 = 1 if the weight belongs to component 
2, δr=2 = 0 otherwise (same for δr=3, whereas component 1 is the reference class). 
We performed analyses of variance for each neuron to test whether multiplicative 
terms explained a significant part of variance (at a Bonferroni-corrected 
significance level α = 0.05 with n = 221 neurons). We discarded neurons with non-
significant multiplicative terms (grey). For neurons with significant differences 
in the rate of change across time-slicing, we compared rates of change between 
components. Each neuron was classified by the highest absolute change 
coefficient and its sign, leading to six classes for three time-slicing components. 
e. 8-component TCA model on multi-region Neuropixel dataset. Trial loading 
vectors are color-coded by the behavioral or task variable most correlated with 
the weights (if any). Similarly to sliceTCA, component 1 was correlated with trial 
outcome and component 2 with the reaction time. However, components 3-8 tile 
the sequence of trials but have little correlation with trial outcome, reaction time 
or the block switching structure of the IBL task.

http://www.nature.com/natureneuroscience
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