
Nature Neuroscience | Volume 27 | June 2024 | 1199–1210 1199

nature neuroscience

https://doi.org/10.1038/s41593-024-01626-2Technical Report

Dimensionality reduction beyond neural
subspaces with slice tensor component
analysis

Arthur Pellegrino    1,2,3  , Heike Stein    1,3 & N. Alex Cayco-Gajic    1 

Recent work has argued that large-scale neural recordings are often well
described by patterns of coactivation across neurons. Yet the view that
neural variability is constrained to a fixed, low-dimensional subspace may
overlook higher-dimensional structure, including stereotyped neural
sequences or slowly evolving latent spaces. Here we argue that task-relevant
variability in neural data can also cofluctuate over trials or time, defining
distinct ‘covariability classes’ that may co-occur within the same dataset.
To demix these covariability classes, we develop sliceTCA (slice tensor
component analysis), a new unsupervised dimensionality reduction method
for neural data tensors. In three example datasets, including motor cortical
activity during a classic reaching task in primates and recent multiregion
recordings in mice, we show that sliceTCA can capture more task-relevant
structure in neural data using fewer components than traditional
methods. Overall, our theoretical framework extends the classic view of
low-dimensional population activity by incorporating additional classes of
latent variables capturing higher-dimensional structure.

Neural activity varies in relation to fluctuations in the environment,
changes in synaptic input, learning or adaptation, and heterogeneous
cell properties, creating variability across neurons, time and trials.
Recent work has emphasized that trial-to-trial variability is often cor-
related across populations of neurons1, generating low-dimensional
representations of sensory or behavioral variables. Indeed, analyzing
the structure of neural covariances has led to key insights into the infor-
mation encoded and computations performed by neural circuits2,3.
Such findings have driven an increase in the popularity of dimension-
ality reduction methods (for example, principal component analysis
(PCA)), which seek to capture structure in neural data by identifying
population-wide patterns of covariance. More recent work has advo-
cated instead for applying tensor-based methods (for example, tensor
component analysis (TCA)) that distinguish between changes in neural
trajectories that occur over fast (within-trial) and slow (between-trial)
timescales4–6. In these approaches, neural activity is assumed to be

constrained to a low-dimensional neural subspace (defined by a set of
latent variables) that is fixed over the course of an experiment.

However, this picture of low-dimensional latent variables fails to
account for some forms of structure in neural datasets. First, not all
population activity is described by covariance patterns across neurons.
For example, many brain areas produce temporal sequences in which
the latency of activation varies from neuron to neuron but that are
highly stereotyped across conditions7–11. Second, the neural encod-
ing weights for a given sensory stimulus may change over trials due to
adaptation, learning12,13 or representational drift14–16. These examples
demonstrate three different types (or ‘classes’) of ‘covariability’, by
which we mean structure in neural population recordings that can be
described by stereotyped patterns across neurons, trials or time. Yet,
because common neural dimensionality reduction methods typically
look for covarying population-wide patterns, they may miss these
additional forms of covariability in neural data.

Received: 6 December 2022

Accepted: 20 March 2024

Published online: 6 May 2024

 Check for updates

1Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Département D’Etudes Cognitives, Ecole Normale Supérieure, PSL
University, Paris, France. 2Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, UK. 3These authors
contributed equally: Arthur Pellegrino, Heike Stein.  e-mail: pellegrino.arthur@ed.ac.uk; natasha.cayco.gajic@ens.fr

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01626-2
http://orcid.org/0009-0007-1849-575X
http://orcid.org/0000-0002-0871-6076
http://orcid.org/0000-0003-3593-5773
http://crossmark.crossref.org/dialog/?doi=10.1038/s41593-024-01626-2&domain=pdf
mailto:pellegrino.arthur@ed.ac.uk
mailto:natasha.cayco.gajic@ens.fr

Nature Neuroscience | Volume 27 | June 2024 | 1199–1210 1200

Technical Report https://doi.org/10.1038/s41593-024-01626-2

In this Article, we argue that neural population activity is likely to
exhibit multiple covariability classes that are intermixed (Fig. 1d). To
provide intuition on how mixed covariability could arise at the level of
neural circuits, we first built a toy feedforward model of the sensory
cortex during a go/no-go task (Fig. 1e). In this model, a population of
linear cortical neurons received two sources of input in the context
of a go/no-go task (Fig. 1f and Extended Data Fig. 2). First, all neurons
received a sensory input that was time-locked to the stimulus. The pro-
jection weights were stimulus specific (either go or no-go) and plastic
(potentiation/depression for go/no-go stimuli, respectively), in line
with enhanced sensitivity to target stimuli in the sensory cortex during
perceptual learning20,21. Potentiation and depression rates were sto-
chastic and heterogeneous across neurons (Extended Data Fig. 2b,c and
Methods). Second, all neurons also received a top–down modulatory
input unrelated to task events, for example, due to temporal fluctua-
tions of arousal22. In this linear model, each neuron’s activity is simply
the summation of its sensory and top–down input currents (Fig. 1f).

From these minimal assumptions, the two input sources represent
two different classes of covariability. First, stimulus-locked sensory
inputs share the same characteristic temporal profile, with neural
encoding weights that vary over neurons and trials due to hetero-
geneity in potentiation and depression rates. This type of structure
corresponds to time covariability (Fig. 1c). In contrast, the top–down
input is fed through a static pattern of neural weights (as these synapses
are nonplastic) but fluctuates in strength over time and trials due to
variability in the modulatory signals. Therefore, this second type of
structure falls into the class of neural covariability (Fig. 1a). In principle,
the resulting population activity can be described by two components
capturing the sensory and top–down inputs (Methods). Yet, despite the
simplicity of this model, PCA, which relies on a single covariability class,
requires many components to capture the resulting population activ-
ity (Fig. 1g). This toy model illustrates how mixed covariability classes
can emerge from minimal assumptions regarding different sources of
heterogeneity in neural circuits and that they cannot be disentangled
using traditional dimensionality reduction methods.

SliceTCA disentangles mixed covariability
To disentangle mixed covariability in neural data, we must first return
to the mathematical formulation of PCA. Matrix factorization methods,
including PCA and non-negative matrix factorization (NMF), approxi-
mate a data matrix X as a sum of R components:

X ≈ ̂X =
R
∑
r=1

X (r). (1)

In neuroscience, X is generally a matrix of size N × KT containing the
activity of N neurons recorded over K trials, each containing T time
points. Each component X(r) is a rank-1 matrix defined by a vector of
neural weights describing different activation patterns across the popu-
lation and a vector of temporal weights describing how the strength of
these patterns changes in amplitude over the course of the experiment
(Fig. 1h). Through this low-rank constraint, these methods are typically
used to capture dominant patterns of neural covariability.

However, arranging neural data into matrix form limits the struc-
ture that can be captured, as matrix factorizations do not distinguish
between rapid fluctuations within a trial and slower variations across
trials4. This limitation can be addressed by structuring the data into an
N × T × K tensor, which can be similarly decomposed following equation
(1) into a low-rank tensor approximation. For this, we must generalize
the concept of a rank-1 matrix to tensors. Different definitions of the
tensor rank will capture different forms of structure in the data.

Here, we present sliceTCA, a new tensor decomposition method
based on the slice rank23 (Methods). A rank-1 matrix is defined as
the outer product of two vectors so that each column of the matrix
is a scaled version of the same column vector (Fig. 1h). Similarly, a

Here, we propose that neural circuits are likely to encode task-
relevant information in multiple co-occurring covariability classes.
To demonstrate this, we introduce sliceTCA, a new unsupervised
dimensionality reduction method able to identify and disentangle
components belonging to different covariability classes that are mixed
within the same dataset. This property contrasts sliceTCA from matrix
factorization methods (such as PCA), which capture a single covari-
ability class at a time, and from TCA, which identifies components
constrained to all of them simultaneously. As a result, we show that
sliceTCA can capture more structure in fewer components than either
of these methods. Based on theoretical and practical considerations
of the sliceTCA decomposition, we develop an analysis pipeline for
model selection, optimization and visualization that is implemented
in a readily applicable Python library.

After validating our method on simulated data, we illustrate the
advantages of the mixed covariability framework in three large-scale
neural datasets. First, we demonstrate that different covariability
classes encode distinct behaviorally relevant signals in motor cortical
recordings in nonhuman primates17. Next, in simultaneous imaging
data from cortical and cerebellar populations during a cued motor
task18, we show that sliceTCA uncovers task-relevant manifolds by
considering covariability across trials. Finally, we analyze a recent
dataset from the International Brain Laboratory (IBL)19 and show that
sliceTCA disentangles region-specific covariability classes across the
visual cortex, hippocampus, thalamus and midbrain. We then provide
a geometric intuition for how neural population activity is shaped by
latent variables belonging to the three different covariability classes.
Together, these results demonstrate the necessity of extending the
traditional view of latent variables and neural covariability to uncover
higher-dimensional latent structure. With sliceTCA, we propose a new
unsupervised dimensionality reduction method that uncovers coex-
isting classes of behaviorally relevant covariability in neural datasets.

Results
Multiple covariability classes
Neural activity often displays correlated fluctuations1. This form of
covariability in neural data is usually determined by the neuron-by-
neuron covariance matrix. Classic methods such as PCA capture the
neural covariance matrix to identify characteristic patterns of neural
weights whose time course of activation can vary freely from trial to
trial (Fig. 1a). Each of these patterns is represented by a different com-
ponent. However, there are other forms of structure in population
activity that are not captured by the neural covariance matrix and that
would be discarded within this framework. Heterogeneous latencies
or timescales in different neurons (Fig. 1b) have been widely reported
across brain regions, including in neural sequences7–11. Such temporal
patterns are often characteristic for trials of the same task condition.
Hence, such patterns represent a distinct kind of covariability in neural
data, in which population activity covaries over trials, whereas the time
courses of activation are heterogeneous across neurons (Fig. 1b and
Extended Data Fig. 1).

These two examples illustrate that population covariability falls
into multiple classes, which we call ‘neural covariability’ and ‘trial
covariability’. Similar to neural covariability, trial covariability can
be analyzed using the trial-by-trial covariance matrix, each element
of which describes the similarity between the time courses of the full
population response on two distinct trials. Indeed, using this approach,
previous work has argued that different cortical regions are better
described by trial covariability or neural covariability7. An additional
form of structure in population activity might follow a characteristic
temporal profile (say, locked to the time of stimulus presentation),
whereas its neural encoding profile might change from trial to trial
(Fig. 1c) due to adaptation or representational drift12,14–16. This gives rise
to a third covariability class corresponding to ‘temporal covariability’,
which is captured by the time-by-time covariance matrix.

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | June 2024 | 1199–1210 1201

Technical Report https://doi.org/10.1038/s41593-024-01626-2

slice-rank-1 tensor is defined as the outer product of a vector and a
matrix (or ‘slice’; Fig. 1i). Depending on how the tensor is sliced, these
components can capture any of the three covariability classes.

To see this, we may consider each slice type separately. First, a
neuron-slicing component is described by a vector of characteristic
neural weights and a matrix describing the time course for that com-
ponent over trials (Fig. 1a). This is the same class of neural covariability
captured by common applications of matrix factorizations in which the
data tensor is reshaped or ‘unfolded’ into an N × KT matrix (sometimes
referred to as ‘trial-concatenated’ matrix factorization; Extended Data
Fig. 1a). Similarly, the trial-slicing components capture trial covariabil-
ity: stereotyped neuron-specific temporal profiles that vary together in
amplitude over trials (Fig. 1b). Meanwhile, the time-slicing components
identify time covariability: a common temporal profile whose neural
encoding weights change from trial to trial, for example, due to learn-
ing, adaptation or drift (Fig. 1c).

If only one of these three slice types were fitted, sliceTCA would
be equivalent to a matrix factorization on the respective unfolding of

the data tensor (Extended Data Fig. 1a–c). Indeed, previous work has
argued for performing PCA on different unfoldings of the data ten-
sor to identify the slice type that provides the best approximation7.
Crucially, sliceTCA differs from this approach by fitting all three slice
types simultaneously, thereby demixing different covariability classes
that may be combined within the same dataset (Fig. 1j). SliceTCA is also
related to, yet distinct from, TCA (that is, the CP (canonical polyadic)
decomposition)4–6. TCA constrains each component to be described
by the outer product of three vectors of neural, trial and temporal fac-
tors, which requires that each component lies in the intersection of all
three covariability classes (Fig. 1d and Methods). To demonstrate the
conceptual difference between these methods, we applied sliceTCA
to our toy model (Fig. 1e). Indeed, sliceTCA was able to decompose the
activity into its two ground-truth components (Extended Data Fig. 2c),
whereas PCA and TCA required substantially more components to cap-
ture the data (Fig. 1g). SliceTCA also outperformed PCA and TCA in the
presence of noise (Extended Data Fig. 2d,e and Supplementary Fig. 1).
These results demonstrate that, by disentangling mixed covariability

cba

Time

TrialsNeuronsW
ei

gh
ts

W
ei

gh
ts

W
ei

gh
ts

Time Neurons

Time

N
eu

ro
ns

Tr
ia

ls

Tr
ia

ls

Characteristic
trial weights

Characteristic
temporal
weights

Characteristic
neural encoding
weights

Temporal
weights
vary across
trials

Neural
encoding
weights
vary across
trials

Temporal
weights
vary across
neurons

Cue Reward

Cue Reward Cue Reward

Neuron slicing Time slicingTrial slicing

Rank-1
matrix

h

=

1

–1

0

Time

N
eu

ro
ns

Matrix rank

Slice-rank-1
tensor

i

=

Time

N
eu

ro
ns

Tr
ial

s

Slice rank of a tensor

g

No. of components

Er
ro

r

0 2 4 6 8 10 12 14 16 18 20

0.2
0.4
0.6
0.8
1.0
1.2
1.4

0

TCA

Neuron-slicing PCA
Time-slicing PCA
SliceTCA

e

Go
No-go

Top–down
input

Sensory input

Linear feedforward model

j Rtrial trial-slicing
components

Rtime time-slicing
components

Rneuron neuron-slicing
components

≈ ...+ + ...+ + ...+

Time

N
eu

ro
ns SliceTCA

Tr
ial

s

R components = + +

f Input currents
Sensory Top–down

Go
No-go

Time

Tr
ia

ls

Intersection:
TCA

Covariability classes

Neuron-slicing
(trial-concatenated)
matrix factorization

Trial-slicing
matrix factorization

Across neurons
Across time

Union:
sliceTCA

d

Across trials

Fig. 1 | SliceTCA demixes covariability across neurons, time and trials.
a, Example of a latent variable that represents a fixed neural encoding but whose
temporal profile changes from trial to trial. b, Example of a latent variable that
scales in amplitude over trials but has a neuron-specific time course within a trial.
c, Example of a latent variable with a characteristic temporal profile within a trial
but whose neural encoding weights change over trials. d, Schematic of the three
covariability classes captured by sliceTCA. Matrix factorization methods such as
PCA capture only a single covariability class at a time depending on how the data
tensor is unfolded into matrix form. Because TCA treats neurons, trials and time
symmetrically, it requires each component to lie in the intersection of the three
classes. In contrast, sliceTCA represents the union of these three classes. e, Toy
model of perceptual learning during a go/no-go task. On each trial, a population
of linear neurons receives (1) a sensory input from one of two upstream sources
representing the go/no-go stimuli and (2) top–down modulation representing

stimulus-independent factors. Red indicates plastic weights. f, Evolution of
inputs over trials. Go/no-go inputs increase/decrease in strength over trials due
to synaptic potentiation/depression, whereas top–down inputs vary from trial
to trial but are nonplastic. g, Error as a function of the number of components
for different methods. h, Schematic of a rank-1 matrix. Each column of the matrix
is a scaled version of the same vector. Equivalently, the matrix can be written as
the outer product of that same column vector and a row vector representing the
scaling weights. i, Schematic of a slice-rank-1 tensor. Each ‘slice’ of the tensor
is a scaled version of the same matrix. The tensor can be written as an outer
product of that matrix (a ‘slice’) and a vector representing the scaling weights.
j, Schematic illustrating that sliceTCA approximates the data tensor as a low-
slice-rank approximation. Each component is a slice-rank-1 tensor, which can be
one of three types: neuron slicing, trial slicing or time slicing, corresponding to
the examples in a–c.

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | June 2024 | 1199–1210 1202

Technical Report https://doi.org/10.1038/s41593-024-01626-2

classes, sliceTCA is able to capture more structure in the data with fewer
components as compared to other methods.

While we were able to explore neural and temporal covariability in
the feedforward model, it neglected trial covariability, which can cap-
ture temporally rich population dynamics such as neural sequences.
Toward this end, we built a linear recurrent neural network (RNN) model
to generate high-dimensional, condition-specific sequences24 while
additionally integrating low-dimensional, condition-independent
inputs (Methods and Extended Data Fig. 3a–c). As designed, the RNN
activity could be decomposed into a few trial-slicing components
corresponding to the embedded sequences and a few neural-slicing
components corresponding to the inputs (Extended Data Fig. 3d).
Through this model, we were able to systematically examine the effects
of three different sources of noise: low-dimensional input noise, intrin-
sic noise in the circuit dynamics and observation noise (Methods).
As expected, sliceTCA was able to achieve near-optimal denoising of
observation noise (Extended Data Fig. 3g). Conversely, variability in the
RNN activity coming from input noise was entirely retained by sliceTCA;
this is because any variability in the inputs pushes the activity along a
low-dimensional subspace determined by the input projection. Finally,
sliceTCA performed well for intrinsic noise with a tendency to overfit
for higher noise levels. These results clarify the robustness of sliceTCA
to different sources and amounts of noise and provide insight into the
relationship between the slice rank and neural circuit dynamics.

Task-relevant information is distributed across slice types
Based on the results of our toy model, we predicted that different
slice types could capture different kinds of behaviorally relevant sig-
nals in neural data. We tested this hypothesis in a dataset comprising
population recordings of the primary motor cortex (M1) and dorsal
premotor cortex (PMd) during maze reaching and classic center-out
(no-maze) reaching tasks (Fig. 2a, hand position). To quantify decod-
ing performance, we linearly mapped population activity onto hand
velocity (Methods). As a benchmark, we first mapped trial-averaged
raw neural data onto kinematic trajectories, revealing a close match
between behavior and neural activity (Fig. 2a, trial-averaged raw data).
However, when we attempted to decode hand trajectories based on
individual trials, we observed considerable trial-to-trial variability that
corresponded poorly to kinematic data (Fig. 2a, raw data).

We reasoned that single-trial kinematic information might be
present in the data but obscured by behaviorally irrelevant neural
variability. If true, then the decoder should perform significantly
better on properly denoised data. To test this, we first used a com-
mon approach of fitting a low-rank approximation using NMF (R = 12
components) to the N × (TK) matrix of trial-concatenated neural
activity (‘neuron-unfolded’ data). Surprisingly, this decreased the
performance of the decoder (Fig. 2a, neuron-slicing NMF), suggest-
ing that the discarded variability contained information about hand
kinematics. We wondered whether a better performance could be
obtained with a method that explicitly identifies covariability across
trials. Indeed, TCA-denoised data displayed a better match to the hand
kinematics (R = 12 components; Fig. 2a, TCA). Yet, by constraining the
decomposition to be low tensor rank (and thus also discarding tem-
poral variability across neurons), TCA is unable to reconstruct neural
sequences at a sufficiently high temporal resolution to allow for precise
behavioral readout.

By performing TCA and NMF on the neuron-unfolded data tensor,
we have assumed that behaviorally relevant information in the data
is represented by neural covariability (Fig. 1d). However, previous
work has emphasized that neural activity in motor regions is better
described by stereotyped sequences that are distinct for each task
condition7,25. Following this intuition, we performed the same decoding
analysis on denoised trial-unfolded data, in which a T × (NK) matrix is
approximated using NMF (R = 12 components). Remarkably, this simple
change in the denoising strategy resulted in a significantly better match

between trial-to-trial variability in the data and the hand kinematics
(Fig. 2a, trial-slicing NMF). We further validated that the components
obtained by trial-slicing NMF corresponded to reach-tuned sequences
whose temporal orderings were reproducible across held-out data
(Supplementary Fig. 2). These results reveal that, in this dataset, behav-
iorally relevant information was encoded by trial covariability (specifi-
cally, neural sequences) rather than by neural covariability.

Trial- and neuron-concatenated NMFs constitute two special cases
of non-negative sliceTCA in which either neuron-slicing components
or trial-slicing components exclusively are fitted. Therefore, we next
asked whether we could identify additional information in the data
by demixing different classes of covariability with sliceTCA. Previous
work has identified preparatory signals in the PMd that indicate the
dynamics of the upcoming movement26. Therefore, we hypothesized
that we could capture preparatory signals in a time-slicing component
with a stereotyped ramping profile and neural weights encoding reach
targets and curvature on a trial-by-trial basis.

Toward this end, we used sliceTCA to add a single time-slicing com-
ponent to the previous model with 12 trial-slicing components (Fig. 2b
and Supplementary Fig. 3; Rneuron = 0, Rtrial = 12, Rtime = 1 selected based on
the elbow of the cross-validated loss (Extended Data Fig. 4b)). In both
the trial-slicing NMF model and the mixed covariability sliceTCA model,
the trial-slicing components identified sequential neural activations
for similar reach conditions that seemed to be continuously tuned to
target angles (Fig. 2c and Supplementary Fig. 3). Decoding from these
trial-slicing components (in either the mixed or unmixed model) led
to significantly better performance as compared to the neuron-slicing
and TCA models (Fig. 2e, Extended Data Fig. 4a and Supplementary
Fig. 4). Furthermore, despite being a (multi)linear method, sliceTCA
had a decoding performance on par with that of LFADS (latent factor
analysis via dynamical systems)27 for straight reaches and performed
better for the maze condition (P = 1.907 × 10−6, two-sided Wilcoxon
signed-rank test; Fig. 2e and Extended Data Fig. 4a). We addition-
ally noted that the trial-slicing partial reconstruction from sliceTCA
mapped onto hand kinematics slightly better in the mixed model
than in the trial-slicing-only model (Fig. 2e; P = 1.907 × 10−6, two-sided
Wilcoxon signed-rank test). Intriguingly, while the single time-slicing
component mapped poorly onto hand kinematics (Extended Data
Fig. 4a), its time course displayed a peak around 100 ms before move-
ment onset followed by a drop in amplitude (Fig. 2d), consistent with
a motor preparatory signal.

If the time-slicing component contains motor preparatory infor-
mation, we would further expect it to contain information regard-
ing the parameters of the upcoming movement26. Indeed, the neural
encoding weights in the PMd (but not M1; Extended Data Fig. 4c,d) were
correlated across similar conditions and encoded both reach direction
and curvature (Fig. 2f–h). Therefore, while the trial-slicing components
directly encoded motor sequences governing hand kinematics, the
time-slicing component contained primarily preparatory information
about movement parameters. Interestingly, simply applying NMF with-
out explicitly demixing covariability classes was not able to recover this
preparatory signal (Extended Data Fig. 4e and Supplementary Fig. 5).
Together, these results show that behaviorally relevant information in
neural data can be spread across different slice types, motivating the
need to demix covariability with sliceTCA.

Pipeline for sliceTCA model selection and optimization
Dimensionality reduction methods, while powerful, can prove challeng-
ing in practice. First, robustly identifying the optimal number of compo-
nents is a crucial yet challenging step in interpreting the dimensionality
of neural representations28,29. Even after the rank is fixed, invariances in
the decomposition may lead to multiple possible solutions (for exam-
ple, matrix factorizations are known to be invariant to invertible linear
transformations such as rotations), although adding a non-negativity
constraint (as in the case of NMF) confers better uniqueness properties

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | June 2024 | 1199–1210 1203

Technical Report https://doi.org/10.1038/s41593-024-01626-2

b
SliceTCA with only trial-slicing components
(trial-slicing NMF)

SliceTCA with mixed component types
(trial- and time-slicing)

c

Trials

0

1

W
ei

gh
t

−1.0 −0.5 0 0.5

Time (s)

0

50

100

150

N
eu

ro
ns

−1.0 −0.5 0 0.5

Time (s)

0

50

100

150
N

eu
ro

ns

0

0.3

No maze Maze

d

−1.0 −0.5 0 0.5
Time (s)

0 50 100 150

Neurons

N
o

m
az

e
M

az
e

Tr
ia

ls

W
eight

Hand position Raw data Neuron-slicing NMF Trial-slicing NMFa Trial-averaged
raw data

Time

N
eu

ro
ns

Tr
ial

s

TCA

Time

N
eu

ro
ns

Conditio
n (×12)(×12)(×12)

5 cm

5
cm

N
o

m
az

e
M

az
e

Time

≈

≈

+ +

+ + +

Tri
alsN

eu
ro

ns

Time Tri
alsN

eu
ro

ns

Trials
No maze Maze

0

1

W
ei

gh
t

0

1

W
ei

gh
t

0

0.3

W
eight

e f g

5
cm

5 cm

Target x

CW—CCW

h
Maze

Trials

N
o

m
az

e
M

az
e

No maze

Trials

Tr
ia

ls

–0.3 0 0.3 0.6 0.9

Trial- and time-
slicing sliceTCA

Trial-slicing NMF

Trial-averaged

Neuron-slicing NMF

TCA

Raw data

LFADS

No maze Maze

Cross-validated R2

0.50 Correlation

Ta
rg

et
 y

Fig. 2 | Time- and trial-slicing components identify preparatory and
kinematic information in motor cortical activity, respectively.
a, Behavioral and motor cortical trajectories (n = 182 neurons from M1 and
PMd) during a classic center-out reaching task with straight reaches (top)
and curved maze reaches (bottom; modified from ref. 52). Different colors
indicate different reach directions. Hand position: hand positions during the
experiment. Trial-averaged raw data: condition-wise trial-averaged reaches
(dashed lines) versus neural population activity (solid lines), projected onto
the two-dimensional (2D) subspace that best matches hand trajectories. Raw
data: raw population activity mapped onto hand trajectories at single-trial
resolution. Neuron-slicing NMF: denoised population activity mapped
onto hand trajectories (neuron-slicing NMF, 12 components; equivalent
to NMF performed on the trial-concatenated data matrix). TCA: denoised
population activity (TCA, 12 components) mapped onto hand trajectories.
Trial-slicing NMF: denoised population activity (trial-slicing NMF, 12
components) mapped onto hand trajectories. b, Schematic of a sliceTCA
model with multiple components of the same slice type versus a model with
mixed slice types. c, Two example trial-slicing components, with neurons
ordered by peak activation times of the first component. Sequential patterns

distinguish specific reach conditions (here, upper left versus upper right
straight reaches). d, The single time-slicing component, which displays
a high temporal weight preceding movement onset. Condition-specific
neural weights are shown in the slice. e, R2 of fivefold cross-validated velocity
decoding in each model (error bars represent the s.e.m. over n = 49 and
n = 53 test trials for the maze and no-maze conditions, respectively,
averaged over a fivefold cross-validation of 20 permutations of the trials).
f, Correlations between neural weights on the time-slicing component in the
PMd. Correlations were high for pairs of trials with similar reach direction
and curvature and low for dissimilar reaches. g, Mapping of average activity
in the time-slicing component before movement onset (from 0.75 to 0 s
before onset) onto reach targets, revealing a strong association (R2 = 0.95
and R2 = 0.91, center-out versus curved reaches). h, Partially reconstructed
activity from the time-slicing component, projected into a 3D subspace
identified to maximally separate clockwise (CW) versus counterclockwise
(CCW) movements and target x and y positions. Data points are clustered
according to both reach direction and curvature, indicating that the time-
slicing component encodes information about the dynamics of the upcoming
movement (dots, clockwise reaches; triangles, counterclockwise reaches).

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | June 2024 | 1199–1210 1204

Technical Report https://doi.org/10.1038/s41593-024-01626-2

compared to unconstrained matrix factorizations30. Thanks to the
tractability of sliceTCA, we were able to characterize its mathemati-
cal invariances (Extended Data Figs. 5 and 6). To provide objective
criteria for model selection and uniqueness, we developed a full analy-
sis pipeline for sliceTCA, including data preprocessing, model selec-
tion, model optimization and visualization (Fig. 3). First, trials must
be time-warped, trimmed or masked for the data to be shaped into
a tensor. Alignment to key events is an important consideration to
remove additional sources of variability that are not incorporated into
sliceTCA assumptions, such as sequences that are jittered or warped in
time31 (Extended Data Fig. 7). We have taken the approach of piecewise
linearly warping trials to task-relevant variables, but unsupervised
warping is a promising alternative32. Second, to choose the optimal
rank, we developed a rigorous cross-validation procedure to identify
the number of components of each slice type, which we validated on
ground-truth data (Extended Data Fig. 8a,b). Third, we identified the
two invariance classes leading to equivalent sliceTCA decompositions
(that is, for which different sets of weights of the components yield the
same reconstructed tensor approximation) (Methods and Extended
Data Figs. 5 and 6) and developed a hierarchical model optimization
that adds additional constraints in the form of ‘sub-losses’ that must
be minimized at three stages (Methods and Extended Data Fig. 8c,d).
Model similarity analysis across different parameter initializations
quantified the nonuniqueness of sliceTCA solutions (Extended Data
Fig. 8e–h and Supplementary Fig. 6) and confirmed that the hierar-
chical optimization procedure leads to unique solutions. We further
prove mathematically that a unique solution is guaranteed if each of
the sub-losses is unique (Supplementary mathematical notes). Using
a rigorous and standardized pipeline for model selection, fitting and
optimization allows the user to make a robust, principled choice of
sliceTCA decomposition for further interpretation.

Denoising task-relevant manifolds
With a standardized data analysis pipeline established, we next applied
unconstrained sliceTCA to a new dataset consisting of the z-scored fluo-
rescence traces of simultaneously imaged granule cells in the cerebel-
lum and pyramidal neurons in the premotor cortex of mice performing
a motor task (Fig. 4a)18. Using the sliceTCA analysis pipeline, we selected
a model with three trial-slicing components and three neuron-slicing
components at the elbow of the cross-validated loss function (Fig. 4b,c
and Extended Data Fig. 9a; similar components were observed in the
optimal model (Supplementary Fig. 7)). By comparison, TCA required 18
components to attain the same performance and displayed redundancy

in the fitted components (Extended Data Fig. 9c,d). The cross-validation
procedure resulted in no time-slicing components, as they consistently
led to an increased test loss for this dataset (Extended Data Fig. 9a). The
first trial-slicing component captured temporally distributed cerebel-
lar and cortical time courses that were common to both left and right
correct reaches but distinct from error reaches (Fig. 4b,d). In contrast,
the second trial-slicing component accounted for the differential acti-
vation in left versus right trials (Fig. 4b,d). A third component decayed
slowly over trials, possibly representing adaptation over the course of
the session (Fig. 4b).

In addition, the three neuron-slicing components captured
trial-specific activations of population modes localized around the
time of movement or reward (dashed lines, Fig. 4c), with prolonged
(and enhanced) activity in error trials, compared to correct trials, in the
first and third components (two-sided Mann–Whitney U test, P < 0.001
for both components). Interestingly, the second neuron-slicing com-
ponent captured differences between cerebellar and cortical activity
(Fig. 4c,d). We next asked how sliceTCA compares to matrix factori-
zation methods that do not demix neural and trial covariability. To
test this, we performed PCA and factor analysis on the neuron and
trial unfoldings of the data tensor (Fig. 4e and Supplementary Fig. 8).
Demixing covariability classes with sliceTCA resulted in components
with higher-dimensional structure in the slices (Fig. 4e and Supplemen-
tary Fig. 8c,d). This suggests that simply applying PCA to the tensor
unfoldings cannot capture as much variability in the data (for example,
in timing for individual neurons or trials) because it may be obscured
by other dominant covariability types. Together, these results show
that sliceTCA identifies both task-specific (left, right, error trials) and
region-specific (cerebellum versus cortex) variables by capturing the
structure of neural data across multiple covariability classes.

We next examined how applying sliceTCA affects reconstructed
neural activity (Fig. 4f). Toward this end, we compared the neural
representations of the raw data in neural space to the reconstructed
data from the sliceTCA model. The sliceTCA reconstruction captured
the same top principal components as the raw data, confirming that
it faithfully captured its overall structure (Supplementary Fig. 9). The
advantage of including both neural covariability and trial covariability
was reflected in the increased behavioral interpretability of the neural
representations. For this, we projected the data onto the dimension
that best separated left versus right correct trials during the period
between movement and reward. The axis found from the sliceTCA
reconstruction revealed more interpretable, denoised representa-
tions as compared to the dimension found from raw data (Fig. 4g).

Data
preprocessing

Cross-validated (CV)
model selection

Hierarchical
model optimization

Visualization
and further analysis

+ +

:
Trial 1 Trial 2

Time

N
eu

ro
ns

Tr
ial

s
Time

Neurons

Tr
ia

ls

Time

Tr
ial

s

N
eu

ro
ns

C
V

lo
ss

Test data
Discarded

Training data

+ +

R

1

:2

:3

X

Fig. 3 | SliceTCA model selection, optimization and analysis pipeline. First,
neural data are preprocessed to form a data tensor. In experiments with variable
trial lengths, this could include temporal warping, exclusion of outlier trials and/
or trimming to the time period of interest. Second, model selection is performed
to choose the number of components of each slice type (Rneuron, Rtrial, Rtime) based
on the cross-validated mean-squared error (MSE) loss (blue curve). For
cross-validation, we randomly assign blocks of consecutive time points (blue)
within the data tensor as held-out data. The remaining entries of the tensor are
used as training data (white). Specifically, the held-out entries are masked when
computing the loss used to optimize the model parameters. To reduce temporal

correlations between the training and testing data, we discard a brief period
from the ends of the held-out blocks (light blue) from both training and testing.
We use only the interiors of these blocks as test data (dark blue). Note that,
because there are three slice types, the optimization is a 3D grid search on the
cross-validated loss. Third, a hierarchical model optimization procedure is
performed to identify a unique solution to the two mathematically identified
invariance classes by optimizing the MSE loss ℒ1 followed by secondary and
tertiary losses ℒ2 and ℒ3 (Methods). After this procedure, the resulting loading
vectors and slices can be analyzed.

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | June 2024 | 1199–1210 1205

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Raw data, projected on LDA
axes found from sliceTCA

SliceTCA reconstruction,
projected on LDA axes

Movement
onset

Reward

∆ be
tw

ee
n/

∆ w
ith

in
∆between

−1 0 1

Eigenvalue number
(log)

10–5

104

0.2

Neuron 1

Left trial
Right trial

Neuron 2

LD
A

pr
oj

ec
tio

n

+

+

+

+

=

=

Left trial
Right trial

+

+

+

+

=

=

+

+

=

=

0.3
0.4
0.5
0.6
0.7
0.8

100 101 102

PCA FA

Slic
eTC

A

10–4

10–3

10–2

10–1

100

Neuron–time slices (trial-slicing component)

Reconstruction from trial-slicing
components

Reconstruction from neuron-slicing
components

Full reconstruction

Ei
ge

nv
al

ue
(n

or
m

al
iz

ed
)

Ei
ge

nv
al

ue
(n

or
m

al
iz

ed
)

PCA
FA
SliceTCA

−1 0 1

WeightWeight

Trial-slicing components Neuron-slicing components
Error vs. correct,
acc. = 0.91

20×
0.5 NA

a

d

e

f

g h i

b

c

40×
0.8 NA

Pure turns 1

0W
ei

gh
t

Error correction

1 mm

Left vs. right, acc. = 0.96 Cbl vs. ctx, acc. = 0.73

Cerebellum Cortex

Raw data, projected on LDA axis
found from raw data

SliceTCA reconstruction, projected
on LDA axis found from sliceTCA

Raw data, projected on LDA axis
found from sliceTCA

P < 0.001
P < 0.001

1

0

W
ei

gh
t 1 Error Left

Right

0

0 100 200

W
ei

gh
t

0 100 2000 100 200

Time (s) Time (s) Time (s)

1

–1

Right, err

Right, corr

Left, corr

Left, err

0

W
ei

gh
t

Tr
ia

ls
Cbl Ctx

1

–1

0

W
ei

gh
t

Cbl Ctx

1

–1

0

W
ei

gh
t

Cbl Ctx

Time (s) Time (s) Time (s)

–104

50

LD
A

pr
oj

ec
tio

n

–50

50 Cortex

6 Cerebellum
Cortex

Cerebellum

LD
A

pr
oj

ec
tio

n

–50

103

–103

50

–50

50

–50

4

2

0

Raw
 data

Slic
eTC

A

∆within

Neurons Neurons Neurons

0 2 0 2 0 2

Ctx

CblN
eu

ro
ns

TrialsTrialsTrials

0 2 0 2 0 2

Ctx

Cbl

Ctx

Cbl

Fig. 4 | SliceTCA denoises task representations in simultaneously imaged
cortical and cerebellar populations. a, Schematic of the experimental
setup. Image modified from ref. 18. NA, numerical aperture. b, Trial-slicing
components. Loading vector weights are colored according to trial type. In the
slices, neurons are sorted within each region (Cbl, cerebellum; Ctx, premotor
cortex) by the latency of the maximum activation in the first component.
Dashed lines indicate movement onset, mid-turn, movement end and reward.
c, Neuron-slicing components. In the slices, trials are separated by left/right
and correct (corr)/error (err). Within blocks, trials are plotted in increasing
order (ascending). d, Histograms of loading weights, colored by trial type and
region. We classified weight vectors (correct versus incorrect, left versus right
correct trials, cerebellum versus cortex). acc., accuracy. e, Left: eigenspectra of
the covariance matrices of the slices of the trial-slicing components identified
by PCA, factor analysis (FA) or sliceTCA, averaged over components (thick
lines; transparent lines indicate individual components). Right: leading
eigenvalue for each component. f, Single-neuron reconstructions of low-slice-

rank approximations. The full sliceTCA reconstruction (right) is obtained by
summing the contributions of all components from both slice types. g, Data
from ten example trials per condition, projected onto an axis that maximally
separates left and right correct trials between movement onset and reward. LDA,
linear discriminant analysis. h, Neural manifolds in an orthonormalized neural
subspace found with LDA (axis 1, same as g; axis 2 separates movement onset
versus reward; axis 3 separates reward expectation versus post-reward) from raw
data and sliceTCA reconstruction. i, Separation of left versus right trajectories
from full data and data denoised with sliceTCA. Δwithin (Δbetween) indicates the
distance of the population vector around the time of movement onset to the
center of the cluster of data points in its same (the opposite) trial class. Each
dot represents a different trial for n = 151 correct left and right trials. Error bars
represent the bootstrapped 95% confidence intervals of the mean. Left and right
trajectories are more separable after sliceTCA denoising (two-sided Wilcoxon
signed-rank test, P < 0.001 for both the cerebellum and premotor cortex).

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | June 2024 | 1199–1210 1206

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Similarly, the task-relevant neural manifolds, found by projecting
neural trajectories onto a subspace that separates activity along three
task-relevant dimensions (Methods), appeared substantially denoised
when sliceTCA was applied compared to a direct projection of the raw
data (Fig. 4h and Supplementary Fig. 9). We confirmed this denoising
effect by measuring the distance between left and right trials around
the time of movement onset in sliceTCA reconstructions as compared
to the raw data (Fig. 4i). Our results indicate that sliceTCA, by group-
ing behaviorally similar trajectories in an unsupervised manner,
increases the distance between trajectories of behaviorally distinct
trials. Together, these findings show that sliceTCA is able to denoise
task-relevant representations in neural data in an unsupervised fashion.

Identifying region-specific covariability patterns
Thus far, we have shown that mixed covariability occurs within the same
neural population. However, the need to consider multiple covariability
classes becomes even more crucial in multiregion recordings, as dif-
ferent brain areas are better described by different classes7. Yet, rely-
ing on different data tensor unfoldings for each region would require
that they be analyzed separately without leveraging the simultaneous
nature of such data. Therefore, we asked whether sliceTCA could demix
area-specific representations in distinct slice types.

To test this idea, we took advantage of a recently published dataset
consisting of Neuropixels recordings across six brain regions during
a perceptual decision-making task (Fig. 5a)19. Our cross-validation
procedure selected a model with eight components: two trial-slicing
components, three neuron-slicing components and three time-slicing
components (Extended Data Fig. 10a and Supplementary Fig. 10). The
two trial-slicing components identified variables related to behavioral
performance (Fig. 5b). The first trial-slicing component separated cor-
rect from incorrect trials (two-sided Mann–Whitney U test, P < 0.001),
and the corresponding slice was characterized by reward-locked tem-
poral response profiles in midbrain nuclei (anterior pretectal nucleus
and midbrain reticular nucleus), which we validated in single-neuron
peristimulus time histograms (PSTHs) (Fig. 5c) and in nonwarped
data (Extended Data Fig. 10b,c). The second trial-slicing component
instead featured temporally heterogeneous responses in all regions
and correlated inversely with the log reaction times (Pearson’s r = −0.35,
P < 0.001, n = 831 trials; Fig. 5b). We next asked how these compo-
nents contributed to the activity of different regions. The full sliceTCA
reconstruction explained 33–49% of neural activity, depending on the
region (Fig. 5d). Of this reconstructed activity, the two trial-slicing
components contributed considerably to neurons in the anterior
pretectal nucleus, midbrain reticular nucleus and thalamus (19 ± 10%,
mean ± s.d., n = 75 neurons; Fig. 5e). Thus, the trial-slicing components
identified stereotyped activations in subcortical regions (thalamus,
anterior pretectal nucleus and midbrain reticular nucleus) that were
linked to behavioral performance across trials.

In contrast, the three neuron-slicing components identified
three distinct clusters of neurons corresponding to cortical regions:
the hippocampus, dentate gyrus and visual cortex (Fig. 5f). These
components, therefore, represented population-wide covariabil-
ity patterns that were specific to each of these regions. The slice of
the hippocampus-preferring component was characterized by a
contrast-dependent activation between the sensory cue and reward
(correlation of stimulus-evoked responses with contrast, Pearson’s
r = 0.40, P < 0.001; Fig. 5f,g), a feature that was less prominent in the
dentate gyrus and not observed in visual cortex-preferring compo-
nents (r = 0.11, P = 0.002 for dentate gyrus, r = −0.05, P = 0.14 for visual
cortex). In the dentate gyrus-preferring component, we observed
post-reward suppression on correct (rewarded) trials, which was sig-
nificantly shorter on error trials (two-sided Mann–Whitney U test,
P < 0.001; Fig. 5f). The final visual cortex-preferring component
revealed pre-stimulus activation that increased in strength over trials
(Pearson’s r = 0.55, P < 0.001; Fig. 5f), possibly indicating the emergence

of a predictive signal of cue onset over the course of the experiment.
Each component contributed to a large fraction of the sliceTCA recon-
struction in its respective region (37 ± 21%, n = 138 neurons; Fig. 5h).
Therefore, the three neuron-slicing components represented different
task-relevant features that were separately encoded in hippocampal,
dentate gyrus and visual cortical population responses.

Finally, the remaining time-slicing components partitioned the
task duration into three distinct periods: early (pre-stimulus and stimu-
lus onset), late (post-reward) and reward periods (Fig. 5i). The corre-
sponding slices revealed smooth variations of the strength of each of
these components in single neurons over the course of the experiment.
While these changes appeared low-rank, simply replacing them with a
TCA component led to a drop in the reconstruction error (Supplemen-
tary Fig. 12). Furthermore, given the strong similarity of the three slices,
we asked whether the components could sum to a flat trial-varying
baseline for each neuron. However, we observed examples of a broad
range of modulation patterns of PSTHs, with slowly varying activity
that changed heterogeneously over trials for the three task periods
(for example, in Fig. 5j). Indeed, a substantial proportion of neurons
across all regions showed significantly different rates of change in trial
weights across the three components (analysis of variance, P < 0.05
with Bonferroni correction, n = 221 neurons; Extended Data Fig. 10d).
Moreover, these three components contributed substantially to the
sliceTCA reconstruction across all recorded regions (62 ± 18%, n = 213
neurons; Fig. 5k), demonstrating that the dataset was dominated by
time covariability. Therefore, we asked whether the task-relevant and
region-specific information observed in the trial and neural slice-type
components would be visible without explicitly demixing the covari-
ability classes with sliceTCA. However, simply applying NMF to the
relevant unfoldings led to neural loadings that were not clustered
by region and trial loadings that were not correlated with behavior
(Supplementary Fig. 13). In contrast to sliceTCA, TCA components
were less region-specific (Extended Data Fig. 10e). Together, these
results show that, by accounting for different classes of covariability,
sliceTCA is able to demix multiregion recording data into brain-wide
representations of task period, behaviorally relevant stereotyped
activity and population-wide patterns of covariability encoded by
individual regions.

Geometric interpretation of mixed covariability
Dimensionality reduction methods such as PCA allow for the inter-
pretation of neural representations as trajectories embedded in a
low-dimensional latent subspace within the full neural activity space.
In sliceTCA, the neuron-slicing components can be interpreted in the
same way owing to their relationship to standard matrix factorizations.
However, the time- and trial-slicing components have different interpre-
tations, as their loading vectors form bases of subspaces of the time and
trial spaces. How, then, can we grasp the time- and trial-slicing compo-
nents’ contributions to latent representations in neural activity space?

We can answer this question by considering the contribution from
each slice type separately. First, note that while the neuron-slicing
components are constrained to an Rneuron-dimensional subspace,
their trajectories within that subspace are unconstrained over trials
(Fig. 6, neuron-slicing component). Conversely, the trajectories of
the Rtime time-slicing components are constrained to be a linear com-
bination of a few common temporal profiles, but the neural weight
vectors can instead vary from trial to trial. Geometrically, this means
that the reconstruction from these components lies within an
Rtime-dimensional subspace that can now vary on each trial, but the
embedded low-dimensional trajectories will have similar shapes (Fig. 6,
time-slicing component). Finally, the Rtrial trial-slicing components’
neural weights change at every time point, whereas trial weights are
fixed. This corresponds to trajectories that are no longer embedded
in a low-dimensional subspace but that are instead constrained to be
linear combinations of stereotyped, potentially high-dimensional

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | June 2024 | 1199–1210 1207

Technical Report https://doi.org/10.1038/s41593-024-01626-2

trajectories (Fig. 6, trial-slicing component; see Supplementary Fig. 14
for an example with multiple components). In this way, the three covari-
ability classes that we have described can also be seen as three classes

of latent activity in neural state space. All three classes combine to form
the full reconstruction, which may appear more complex than any one
component type (Fig. 6, reconstruction).

RT

Error

Reward

Reward

Reward

Reward

Reward

Reward

Data

Data

Trial-slicing component 1

Trial-slicing component 2

Neuron-slicing component 1

Reconstruction

Reconstruction

Data

Reconstruction

Correct

a b

W
ei

gh
t 1

Other

Left

Err, left

Corr,
left

Corr,
right

Err, right

Right

–1 0 1 2

Tr
ia

ls

Tr
ia

ls

Time (s)

MRN
APN

TH
DG
CA

VIS

–1 0 1 2

Time (s)

Error

Correct

0
0 200 400 600 800

Trials

N
eu

ro
ns

N
eu

ro
ns

c

f

e

g h

i j k

d

W
ei

gh
t

N
or

m
al

iz
ed

ac
tiv

ity
N

or
m

al
iz

ed
ac

tiv
ity

1

0.15

G
oo

dn
es

s
of

 fi
t

1

0

VIS CA DG TH APN
MRN

0

0
0 200 400 600 800

Trials

W
ei

gh
t 1

0

VIS CA DG THAPN
MRN

Other

Neurons

Other
MRN
APN

TH
DG
CA

VIS

–1 0 1 2

Time (s)

0.15

0

–1 0 1 2

Time (s)

C
om

p.
w

ei
gh

t

1

0

C
om

p.
w

ei
gh

t

1

0

VIS CA DG TH APN
MRN

W
ei

gh
t 1

0

VIS CA DG THAPN
MRN

Other

Neurons
W

ei
gh

t 1

0

VIS CA DG THAPN
MRN

Other

Neurons

N
or

m
al

iz
ed

ac
tiv

ity

0.3

0

–1 0 1 2

Time (s)

Contrast

Trial number

N
or

m
al

iz
ed

ac
tiv

ity

0.3

0

C
om

p.
w

ei
gh

t

1

0

C
om

p.
w

ei
gh

t

1

0

C
om

p.
w

ei
gh

t

1

0

VIS CA DG TH APN
MRN

Neuron-slicing component 2

Neuron-slicing component 3

–1 0 1 2

Time (s)
–1 0 1 2

Time (s)

Err, left

Corr,
left

Corr,
right

Err, right

Tr
ia

ls

W
ei

gh
t 1

0

800

600

400

200

0

–1 0 1 2

Time (s)

Tr
ia

ls

W
ei

gh
t 1

0
–1 0 1 2

Time (s)

W
ei

gh
t 1

0
–1 0 1 2

Time (s)

VIS CA DG THAPN
MRN

Other

Neurons

800

600

400

200

0

Tr
ia

ls

VIS CA DG THAPN
MRN

Other

Neurons

800

600

400

200

0

Tr
ia

ls

VIS CA DG THAPN
MRN

Other

Neurons

–1 0 1 2

Time (s)

N
or

m
al

iz
ed

ac
tiv

ity

0.25

0

N
or

m
al

iz
ed

ac
tiv

ity
0.25

0

C
om

p.
w

ei
gh

t

1

0

Time-slicing component 1

C
om

p.
w

ei
gh

t

1

0

Time-slicing component 2

C
om

p.
w

ei
gh

t
1

0

Time-slicing component 3

VIS CA DG TH APN
MRN

Fig. 5 | SliceTCA identifies region-specific sensory and behavioral variables
in multiregion recordings. a, Schematic of the perceptual decision-making
task from the IBL. Image modified from ref. 53. Green (red) arrows and circles
indicate correct (incorrect) actions. b, Trial-slicing components: the loading
vector of component 1 shows a separation between correct (orange) and error
(black) trials. In component 2, the color scale in the loading vector indicates
the log reaction time (RT). In the corresponding slices: VIS, visual cortex; CA,
hippocampus; DG, dentate gyrus; TH, thalamus; APN, anterior pretectal nucleus;
MRN, midbrain reticular nucleus. White lines indicate stimulus onset and reward
or timeout onset. Slice weights are normalized to [0, 1] for each neuron separately
and sorted by the latency of the peak activation within each region (separately for
each component). c, Top: PSTH of an example neuron from the anterior pretectal
nucleus showing reward-locked activation for correct/error trials (pink/black).
Bottom: PSTH built from the full sliceTCA reconstruction. Arrowheads indicate
stimulus onset and reward. d, Reconstruction performance (Methods) of the
full sliceTCA model, separated by region. Black dots indicate individual neurons.
e, Contribution of each trial-slicing component to the overall reconstruction.

Comp. weight, component weight. f, Neuron-slicing components: trials are
grouped into blocks separately for different components. In component 1
(hippocampal region CA1 related), trials are grouped by contrast separately
for left/right trials (within left/right, contrast increases from bottom to top).
In components 2 (dentate gyrus related) and 3 (visual cortex related), trials are
grouped into blocks by left/right and correct/error. For all slices, within each
block, trials are sorted in increasing order (ascending). Each slice is normalized
to [0, 1]. g, Top: PSTH of an example hippocampal neuron for low to high contrast
(dark to light green). Bottom: PSTH built from the full sliceTCA reconstruction.
h, Contribution of each neuron-slicing component to the overall reconstruction.
i, Time-slicing components: in the slices, neurons are sorted within each region
according to increasing activation in early trials after normalizing weights
for each neuron to [0, 1] (same sorting across components). j, Top: PSTH of an
example visual cortical neuron for early to late trials (indigo to teal). Bottom,
PSTH built from the full sliceTCA reconstruction. k, Contribution of each time-
slicing component to the overall reconstruction.

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | June 2024 | 1199–1210 1208

Technical Report https://doi.org/10.1038/s41593-024-01626-2

This geometric view illustrates that, by fitting different covari-
ability classes, sliceTCA is able to capture latent trajectories that are
no longer confined to a linear subspace despite still being a multilinear
method. In contrast, traditional matrix factorization methods that
capture only a single covariability class are restricted to one of the
three geometric classes of latent activity in neural state space shown in
Fig. 6, whereas TCA constrains its components to obey the geometrical
constraints of all three classes simultaneously (Supplementary Fig. 15).
In sum, sliceTCA is able to capture a broader range of covariability
structure in neural data (and a broader range of latent representa-
tions in neural space) than related methods, all while remaining easily
interpretable.

Discussion
Neural activity is often interpreted as low-dimensional population
modes representing patterns of covariation across neurons. We have
advocated for an expansion of this view to describe three distinct
classes of covariability: across neurons, across time and across trials.
We further introduced sliceTCA, a new tensor decomposition that
demixes these covariability classes in large-scale neural data. Through
several example datasets, we demonstrated that sliceTCA captures
more task-relevant covariability in fewer components, allowing for
the discovery of intricate latent structure in population activity. Thus,
sliceTCA expands the classic view of neural representations toward
latent variables that are not constrained to a fixed low-dimensional
subspace.

Our framework of multiple covariability classes addresses key limi-
tations of the classic view on latent variables, which is unable to identify
several types of structure commonly found in neural data (for example,

neural sequences)7,25. Indeed, task-relevant sequences are a widespread
phenomenon observed across brain regions11,33,34. While we emphasized
the ability of trial covariability to capture condition-specific neural
sequences, we note that this class can capture more complex forms
of stereotyped temporal patterning across neurons35–37. In contrast,
population modes characterized by variable timing on different tri-
als (for example, in temporal difference learning38) are captured by
neural covariability. Lastly, temporal covariability captures stereo-
typed trajectories embedded in reaching direction-specific subspaces
within the neural state space39. We speculate that temporal covariability
could also capture latent subspaces that evolve slowly due to learning
or drift12,14. Our results support previous work arguing that different
brain regions are better described by different covariability classes7.
Importantly, we further show that, without demixing covariability,
task-relevant variability can be obscured by components of the domi-
nant slice type (Supplementary Figs. 5, 8 and 13). Therefore, demixing
covariability classes may be a crucial step when considering multire-
gion recordings that may contain qualitatively distinct computations in
different populations.

A long-standing challenge in systems neuroscience is the difficulty
of mapping neural variability to changes in behavior40. Despite being
unsupervised, sliceTCA was able to disentangle behavioral and task
information in each of the datasets presented. This may be due to two
factors: first, demixing covariability effectively ‘denoises’ components
representing task variables that would have otherwise been occluded
by other covariability classes. Second, trial-slicing components identify
changes that are common across trials, which tend to be defined by task
variables or behavioral outcomes. Indeed, we found that trial-slicing
components often correlated with behavioral variables. Moreover,
using feedforward and recurrent circuit models, we demonstrated
how sliceTCA could offer a window into the computational roles of
variables modeled by different slice types. Hence, we argue that the
classical view on latent neural representations, which assumes that
behaviorally relevant neural variability is correlated across neurons,
is overly reductionist and may miss many types of neural dynamics
underlying behavior.

A key advantage of matrix and tensor decompositions is their
simplicity. (Multi)linear methods can perform as well as nonlinear
methods in specific applications while remaining considerably more
interpretable (Extended Data Fig. 4a). Indeed, the analytical tractability
of sliceTCA enabled us to characterize its invariance classes and to pro-
pose a method to identify a unique solution in the unconstrained case
(Extended Data Fig. 8c). Identifying invariances is crucial for reproduc-
ibility and interpretation, as nonunique solutions may prohibit clear
comparisons across datasets41,42. This issue is ever more important with
the trend toward comparisons of neural data to task-trained neural
networks, whose representations are known to be sensitive to model
specifications43,44. Going forward, matrix and tensor decompositions
could prove useful for comparing latent representations by virtue of
their tractability.

SliceTCA is closely related to both TCA and PCA while offering
more flexibility by capturing multiple covariability classes. However,
in some cases, TCA or PCA may be sufficient to capture the data while
also offering other advantages. If no demixing is required, PCA has
the benefit of having a closed-form solution (but we note that PCA is
a special case of sliceTCA that could be identified through our pipe-
line). In contrast, the stronger constraints imposed by TCA mean that
it generally requires more components than PCA or sliceTCA yet has
fewer parameters per component. As such, TCA and sliceTCA represent
two sides of a trade-off between model parsimony and expressivity,
which could be balanced by combining their respective strengths
(Supplementary Fig. 12). Future work could generalize sliceTCA and
TCA using the partition rank45. However, careful consideration would
be required to fully understand the implications of a low-partition-rank
decomposition, including potentially new invariances.

r1

r1

r1

r1

r2

r2

r2

r3

r3

r3r2

r3

rn

rn rn

rn

Neuron-slicing
component

Reconstruction

Time-slicing
component

Trial-slicing
component

Trial

Trial

Trial

Trial

Time

Time

Time

Time

Fig. 6 | Different slice types capture latent variables with distinct geometric
properties. Neuron-slicing component: example of two neuron-slicing
components visualized in neural activity space. The latent activity is embedded
in a 2D subspace, but their trajectories within that subspace are unconstrained.
Time-slicing component: example of two time-slicing components. These are
also embedded within a 2D subspace, but that subspace may vary over trials.
Within each latent subspace, the latent trajectories have similar shape as they
are constrained to linear combinations of a few characteristic temporal weights.
Trial-slicing component: the trial-slicing components are not constrained to
any subspace, as the neural encodings may change at every time point. These
components describe linear combinations of a few potentially high-dimensional
latent trajectories such as neural sequences. Note that, here, only one component
is shown for clarity. In this case, the latent trajectory is simply re-scaled on
each trial. Reconstruction: after summing these components, the full latent
trajectories are not necessarily limited by any of the geometric constraints that
characterize individual slice types.

http://www.nature.com/natureneuroscience

Nature Neuroscience | Volume 27 | June 2024 | 1199–1210 1209

Technical Report https://doi.org/10.1038/s41593-024-01626-2

While tensor decompositions can be viewed as generalizations of
matrix factorizations, they have specific limitations (for example, they
are generally more computationally expensive46,47). Data tensors also
require trimming, masking or warping trials to the same length. These
preprocessing steps make implicit assumptions about the temporal
structure of latent variables: warping assumes that latent variables are
simply rescaled in time on different trials48, whereas trimming is more
suitable when latent variables have a fixed intrinsic temporal structure
independent of trial length (for example, background oscillations)32.
Because of these considerations, we note that sliceTCA may not be a
good fit for datasets in which these two kinds of temporal structure
are mixed, datasets that lack a systematic trial structure or datasets
in which activity is dominated by chaotic dynamics rather than pat-
terns of covariation. More generally, time warping is a thorny issue
for tensor decomposition when key events for alignment are unknown
(Supplementary Fig. 11). Toward this end, unsupervised time-warping
methods could help identify unlabeled events in the data, whether as a
preprocessing step32 or performed simultaneously with dimensional-
ity reduction31,49.

Together, tensor decompositions are useful for neural data, as they
allow for the discovery of patterns in trial-structured data. While we
focused on third-order tensors, data tensors of even higher order could
be imagined by adding legs corresponding to days, conditions or even
individuals50,51. Going forward, our framework of mixed covariability
could, therefore, help advance our understanding of behaviorally
relevant latent structure in high-dimensional neural data across brain
regions and subjects.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41593-024-01626-2.

References
1.	 Cunningham, J. P. & Yu, B. M. Dimensionality reduction for large-

scale neural recordings. Nat. Neurosci. 17, 1500–1509 (2014).
2.	 Panzeri, S., Moroni, M., Safaai, H. & Harvey, C. D. The structures

and functions of correlations in neural population codes. Nat. Rev.
Neurosci. 23, 551–567 (2022).

3.	 Jazayeri, M. & Ostojic, S. Interpreting neural computations by
examining intrinsic and embedding dimensionality of neural
activity. Curr. Opin. Neurobiol. 70, 113–120 (2021).

4.	 Williams, A. H. et al. Unsupervised discovery of demixed,
low-dimensional neural dynamics across multiple timescales
through tensor component analysis. Neuron 98, 1099–1115 (2018).

5.	 Harshman, R. A. et al. Foundations of the PARAFAC procedure:
models and conditions for an ‘explanatory’ multimodal factor
analysis. UCLA Work. Paper Phonet. 16, 1–84 (1970).

6.	 Carroll, J. D. & Chang, J.-J. Analysis of individual differences in
multidimensional scaling via an n-way generalization of ‘Eckart–
Young’ decomposition. Psychometrika 35, 283–319 (1970).

7.	 Seely, J. S. et al. Tensor analysis reveals distinct population
structure that parallels the different computational roles of areas
M1 and V1. PLoS Comput. Biol. 12, e1005164 (2016).

8.	 Pastalkova, E., Itskov, V., Amarasingham, A. & Buzsáki, G. Internally
generated cell assembly sequences in the rat hippocampus.
Science 321, 1322–1327 (2008).

9.	 Peters, A. J., Chen, S. X. & Komiyama, T. Emergence of
reproducible spatiotemporal activity during motor learning.
Nature 510, 263–267 (2014).

10.	 Okubo, T. S., Mackevicius, E. L., Payne, H. L., Lynch, G. F. & Fee,
M. S. Growth and splitting of neural sequences in songbird vocal
development. Nature 528, 352–357 (2015).

11.	 Harvey, C. D., Coen, P. & Tank, D. W. Choice-specific sequences in
parietal cortex during a virtual-navigation decision task. Nature
484, 62–68 (2012).

12.	 Hennig, J. A. et al. How learning unfolds in the brain: toward an
optimization view. Neuron 109, 3720–3735 (2021).

13.	 Gurnani, H. & Cayco Gajic, N. A. Signatures of task learning in
neural representations. Curr. Opin. Neurobiol. 83, 102759 (2023).

14.	 Rule, M. E., O’Leary, T. & Harvey, C. D. Causes and consequences
of representational drift. Curr. Opin. Neurobiol. 58, 141–147 (2019).

15.	 Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N. & Harvey, C.
D. Dynamic reorganization of neuronal activity patterns in parietal
cortex. Cell 170, 986–999 (2017).

16.	 Schoonover, C. E., Ohashi, S. N., Axel, R. & Fink, A. J.
Representational drift in primary olfactory cortex. Nature 594,
541–546 (2021).

17.	 Churchland, M. M. et al. Neural population dynamics during
reaching. Nature 487, 51–56 (2012).

18.	 Wagner, M. J. et al. Shared cortex–cerebellum dynamics in the
execution and learning of a motor task. Cell 177, 669–682 (2019).

19.	 International Brain Laboratory et al. Reproducibility of in-vivo
electrophysiological measurements in mice. Preprint at bioRxiv
https://doi.org/10.1101/2022.05.09.491042 (2022).

20.	 Poort, J. et al. Learning enhances sensory and multiple
non-sensory representations in primary visual cortex. Neuron 86,
1478–1490 (2015).

21.	 Chadwick, A. et al. Learning shapes cortical dynamics to
enhance integration of relevant sensory input. Neuron 111,
106–120 (2023).

22.	 Vinck, M., Batista-Brito, R., Knoblich, U. & Cardin, J. A. Arousal
and locomotion make distinct contributions to cortical activity
patterns and visual encoding. Neuron 86, 740–754 (2015).

23.	 Tao, T. & Sawin, W. Notes on the ‘slice rank’ of tensors.
WordPress terrytao.wordpress.com/2016/08/24/
notes-on-the-slice-rank-of-tensors/ (2016).

24.	 Goldman, M. S. Memory without feedback in a neural network.
Neuron 61, 621–634 (2009).

25.	 Mackevicius, E. L. et al. Unsupervised discovery of temporal
sequences in high-dimensional datasets, with applications to
neuroscience. eLife 8, e38471 (2019).

26.	 Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of
arm movements: a dynamical systems perspective. Annu. Rev.
Neurosci. 36, 337–359 (2013).

27.	 Keshtkaran, M. R. et al. A large-scale neural network training
framework for generalized estimation of single-trial population
dynamics. Nat. Methods 19, 1572–1577 (2022).

28.	 Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M. & Harris,
K. D. High-dimensional geometry of population responses in
visual cortex. Nature 571, 361–365 (2019).

29.	 Lanore, F., Cayco-Gajic, N. A., Gurnani, H., Coyle, D. & Silver, R. A.
Cerebellar granule cell axons support high-dimensional
representations. Nat. Neurosci. 24, 1142–1150 (2021).

30.	 Gillis, N. Nonnegative Matrix Factorization (SIAM, 2020).
31.	 Williams, A. H., Degleris, A., Wang, Y. & Linderman, S. W. Point

process models for sequence detection in high-dimensional
neural spike trains. Adv. Neural Inf. Process. Syst. 33, 14350–14361
(2020).

32.	 Williams, A. H. et al. Discovering precise temporal patterns in
large-scale neural recordings through robust and interpretable
time warping. Neuron 105, 246–259 (2020).

33.	 Parker, N. F. et al. Choice-selective sequences dominate
in cortical relative to thalamic inputs to NAc to support
reinforcement learning. Cell Rep. 39, 110756 (2022).

34.	 Zhou, S., Masmanidis, S. C. & Buonomano, D. V. Neural sequences
as an optimal dynamical regime for the readout of time. Neuron
108, 651–658 (2020).

http://www.nature.com/natureneuroscience
https://doi.org/10.1038/s41593-024-01626-2
https://doi.org/10.1101/2022.05.09.491042
https://terrytao.wordpress.com/2016/08/24/notes-on-the-slice-rank-of-tensors/
https://terrytao.wordpress.com/2016/08/24/notes-on-the-slice-rank-of-tensors/

Nature Neuroscience | Volume 27 | June 2024 | 1199–1210 1210

Technical Report https://doi.org/10.1038/s41593-024-01626-2

35.	 Feng, T., Silva, D. & Foster, D. J. Dissociation between the
experience-dependent development of hippocampal theta
sequences and single-trial phase precession. J. Neurosci. 35,
4890–4902 (2015).

36.	 Lakshmanan, K. C., Sadtler, P. T., Tyler-Kabara, E. C., Batista, A. P. &
Yu, B. M. Extracting low-dimensional latent structure from
time series in the presence of delays. Neural Comput. 27,
1825–1856 (2015).

37.	 Koay, S. A., Charles, A. S., Thiberge, S. Y., Brody, C. D. & Tank, D.
W. Sequential and efficient neural-population coding of complex
task information. Neuron 110, 328–349 (2022).

38.	 Amo, R. et al. A gradual temporal shift of dopamine responses
mirrors the progression of temporal difference error in machine
learning. Nat. Neurosci. 25, 1082–1092 (2022).

39.	 Sabatini, D. A. & Kaufman, M. T. A curved manifold orients
rotational dynamics in motor cortex. Preprint at bioRxiv
https://doi.org/10.1101/2021.09.09.459647 (2021).

40.	 Renart, A. & Machens, C. K. Variability in neural activity and
behavior. Curr. Opin. Neurobiol. 25, 211–220 (2014).

41.	 Dyer, E. L. et al. A cryptography-based approach for movement
decoding. Nat. Biomed. Eng. 1, 967–976 (2017).

42.	 Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A. &
Miller, L. E. Long-term stability of cortical population dynamics
underlying consistent behavior. Nat. Neurosci. 23, 260–270
(2020).

43.	 Lindsay, G. W., Mrsic-Flogel, T. D. & Sahani, M. Bio-inspired
neural networks implement different recurrent visual processing
strategies than task-trained ones do. Preprint at bioRxiv
https://doi.org/10.1101/2022.03.07.483196 (2022).

44.	 Williams, A. H., Kunz, E., Kornblith, S. & Linderman, S. Generalized
shape metrics on neural representations. In Proc. 35th
Conference on Neural Information Processing Systems (NeurIPS
2021) (eds Ranzato, M. et al.) 4738–4750 (Curran Associates,
2021); proceedings.neurips.cc/paper/2021/file/252a3dbaeb32e76
90242ad3b556e626b-Paper.pdf

45.	 Naslund, E. The partition rank of a tensor and k-right corners in 𝔽𝔽nq.
J. Comb. Theory Ser. A 174, 105190 (2019).

46.	 Kolda, T. G. & Bader, B. W. Tensor decompositions and
applications. SIAM Rev. 51, 455–500 (2009).

47.	 Bläser, M., Ikenmeyer, C., Lysikov, V., Pandey, A. & Schreyer, F. Variety
membership testing, algebraic natural proofs, and geometric
complexity theory. Preprint at https://arxiv.org/abs/1911.02534 (2019).

48.	 Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing
by temporal scaling of cortical responses. Nat. Neurosci. 21,
102–110 (2018).

49.	 Williams, A. H. Combining tensor decomposition and time
warping models for multi-neuronal spike train analysis. Preprint at
bioRxiv https://doi.org/10.1101/2020.03.02.974014 (2020).

50.	 Kuchibhotla, K. V. et al. Dissociating task acquisition from
expression during learning reveals latent knowledge. Nat.
Commun. 10, 2151 (2019).

51.	 Smith, M. A.-Y., Honegger, K. S., Turner, G. & de Bivort, B. Idiosyncratic
learning performance in flies. Biol. Lett. 18, 20210424 (2022).

52.	 Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Ryu, S. I.
& Shenoy, K. V. Cortical preparatory activity: representation
of movement or first cog in a dynamical machine? Neuron 68,
387–400 (2010).

53.	 International Brain Laboratory et al. Standardized and reproducible
measurement of decision-making in mice. eLife 10, e63711 (2021).

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2024

http://www.nature.com/natureneuroscience
https://doi.org/10.1101/2021.09.09.459647
https://doi.org/10.1101/2021.09.09.459647
https://doi.org/10.1101/2022.03.07.483196
https://doi.org/10.1101/2022.03.07.483196
http://proceedings.neurips.cc/paper/2021/file/252a3dbaeb32e7690242ad3b556e626b-Paper.pdf
http://proceedings.neurips.cc/paper/2021/file/252a3dbaeb32e7690242ad3b556e626b-Paper.pdf
https://arxiv.org/abs/1911.02534
https://doi.org/10.1101/2020.03.02.974014
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Methods
No original data were collected for this study. We analyzed data from
three previous datasets17–19. All experiments were approved by the
relevant bodies: the Institutional Animal Care and Use Committee of
Stanford University (dataset 1), the Administrative Panel on Laboratory
Animal Care and Administrative Panel on Biosafety of Stanford Univer-
sity (dataset 2), and the Institutional Animal Care and Use Committees
of Cold Spring Harbor Laboratory (dataset 3). Additional experimental
details can be found below.

Definition of the sliceTCA model
Matrix rank and matrix factorization. Consider a data matrix consist-
ing of N neurons recorded over T samples (time points): X ∈ ℝN×T .
Matrix factorization methods find a low-rank approximation ̂X fol-
lowing equation (1), in which each component is a rank-1 matrix:
X(r) = u(r) ⊗ v(r), where u(r) ∈ ℝN and v(r) ∈ ℝT are vectors representing
the neural and temporal coefficients, which are chosen to minimize
a loss function. In other words, the activity of neuron n at time t is
given by

̂Xn,t =
R
∑
r=1

u(r)n v(r)t (2)

A common choice of loss function is the MSE:

ℒ = 1
NT

‖
‖X − ̂X‖‖

2

F
(3)

Constraints may be added to the minimization of the loss, such as
non-negativity of the coefficients in NMF.

Slice rank and sliceTCA. A d-tensor is a generalization of a matrix to
d legs (that is, a data matrix is a 2-tensor). Here, we are specifically
concerned with 3-tensors typically used in neuroscience, in which the
three legs represent neurons, time and trial/condition: X ∈ ℝN×T×K .
SliceTCA extends the matrix factorization in equation (1) by fitting X
with a low ‘slice rank’ approximation23. A slice-rank-1 d-tensor is an
outer product of a vector and a (d − 1)-tensor. For the 3-tensors that
we have been considering, this corresponds to the outer product of a
‘loading’ vector and a 2-tensor, thus making this 2-tensor a ‘slice’ of
this slice-rank-1 tensor up to a scalar multiple determined by the load-
ing vector.

Each sliceTCA component can be one of three different slice
types. For example, a neuron-slicing component can be written as
X(r) = u(r) ⊗ A(r), where A(r) ∈ ℝT×K is the time-by-trial slice representing
the weights of the component across both time and trials and the vector
u(r) represents the neural loading vector. Components of other slice
types can be constructed similarly with their respective loading vectors
and slices: v(r) ∈ ℝT, B(r) ∈ ℝN×K for the time-slicing components and
w(r) ∈ ℝK, C(r) ∈ ℝN×T for the trial-slicing components. Put together,
this results in a decomposition of the following form:

̂Xn,t,k =
Rneuron
∑
r=1

u(r)n A(r)t,k +
Rtime
∑
r=1

v(r)t B(r)n,k +
Rtrial
∑
r=1

w(r)
k C (r)

n,t (4)

Because of the different slice types, each sliceTCA model can be
described by the hyperparameter three-tuple R = (Rneuron, Rtrial, Rtime),
defining the number of neuron-, trial- and time-slicing components,
for a total of Rneuron + Rtrial + Rtime components.

Relationship to TCA. The extension of matrix factorizations to TCA is
based on a different definition of tensor rank, in which a rank-1 tensor
is as an outer product of d vectors. Each component is defined by a set
of vectors corresponding to neuron, time and trial coefficients
u(r) ∈ ℝN,v(r) ∈ ℝT,w(r) ∈ ℝK for each component: X(r) = u(r) ⊗ v(r) ⊗ w(r).

Then, each element of the approximated data tensor can be written
as

̂Xn,t,k =
R
∑
r=1

u(r)n v(r)t w(r)
k (5)

In other words, a TCA component is a special case of a sliceTCA compo-
nent in which the slice is a rank-1 matrix. In this way, sliceTCA is more
flexible than TCA, as it has fewer constraints on the type of structure
that is identified in the data. However, this increase in flexibility comes
with the cost of an increased number of parameters, as sliceTCA fits
all the entries of each slice. The flexibility of sliceTCA also leads to
different invariance classes as discussed below. Finally, we note that
the two methods can, in principle, be merged by incorporating TCA
components into equation (4).

SliceTCA invariance classes
Transformations within a slice type. Matrix factorization methods
are known to be invariant to invertible linear transformations, includ-
ing, but not limited to, rotations of the loading vectors. For example,
suppose we decompose a matrix Y ∈ ℝN×T into a product of a matrix
of weights, W ∈ ℝN×R, and a matrix of scores, S ∈ ℝR×T . Consider any
invertible linear transformation F ∈ ℝR×R. Then, Y can be rewritten
as

Y = WS = WFF−1S = W̃ ̃S (6)

where W̃ = WF and ̃S = F−1S. As a result, matrix decompositions, such
as factor analysis, lead to not one solution but rather an invariance
class of equivalent solutions. Note that PCA avoids this problem by
aligning the first component to the direction of the maximum pro-
jected variance, as long as the eigenvalues of the covariance matrix
are distinct. However, other methods that do not have a ranking of
components are not able to use the same alignment. SliceTCA inherits
this same invariance class, as all the loading vectors within a given slice
type can be transformed in the same way as equation (6) to yield the
same partially reconstructed tensor for each slice type (Extended Data
Fig. 5a).

Transformations between slice types. SliceTCA has an additional
invariance class due to the fundamental properties of multilinear addi-
tion. For example, consider a slice-rank-2 tensor Y ∈ ℝN×T×K , which is
made of two components of different slice types. We will assume with-
out loss of generality that these are neuron- and time-slicing compo-
nents with corresponding slices V and U, such that

Yn,t,k = unVt,k + vtUn,k

Then, the following transformation can be performed for the arbitrary
vector z ∈ ℝK:

Yn,t,k = unVt,k + vtUn,k + unvtzk − unvtzk
= un (Vt,k − vtzk) + vt (Un,k + unzk)

= un ̃Vt,k + vtŨn,k

where ̃V = V − v⊗ z and Ũ = U + u⊗ z are transformations of the original
slices. This invariance class, therefore, corresponds to passing a tensor-
rank-1 tensor between two slices of differing slice types (Extended Data
Fig. 5b).

Note that two classes of transformations (within slice type and
between slice type) commute (see proposition 2.1 of Supplementary
mathematical notes); therefore, one cannot obtain a new transforma-
tion by, for example, applying the first transformation, followed by the
second and then the first again.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Identification of a unique sliceTCA decomposition. To find a uniquely
defined solution, we can take advantage of the natural hierarchy
between the two invariance classes. Specifically, let us first define the
partial reconstruction ̂X neuron of the low-slice-rank approximation ̂X
based on the neuron-slicing components; that is

̂X neuron =
Rneuron
∑
r=1

u(r) ⊗ A(r)

a n d l e t ̂X time a n d ̂X trial b e s i m i l a r l y d ef i n e d , s o t h a t
̂X = ̂X neuron + ̂X time + ̂X trial. Now, note that the within-slice-type transfor-

mations change the weights of the loading vectors and slices of all
components of a given slice type without changing the partial recon-
structions for each slice type. For example, applying these transforma-
tions to the neuron-slicing components would change u(r) and A(r) but
not ̂X neuron. On the contrary, the between-slice-type transformations
change the partial reconstructions ̂X neuron, ̂X time and ̂X trial, but not the
full reconstruction ̂X . Therefore, the key to identifying a unique solu-
tion is first to perform the between-slice-type transformations to
identify the unique partial reconstructions ̂X neuron, ̂X time and ̂X trial
and then perform the within-slice-type transformations to identify
the unique loading vectors and components.

We leveraged this hierarchy to develop a post hoc model optimiza-
tion into three steps, each with a distinct loss function. The first step
identifies a model that minimizes a loss function ℒ1 defined on the full
reconstruction (Extended Data Fig. 8c(i)), resulting in the approxima-
tion ̂X . Next, because of the two invariance classes, there is a continuous
manifold of solutions with different parameters (loading vectors and
slices) that, after being recombined, all result in the same ̂X and, there-
fore, have the same loss. Next, we use stochastic gradient descent to
identify the between-slice-type transformation that minimizes a sec-
ondary loss function ℒ2, which fixes ̂X neuron, ̂X time and ̂X trial without
affecting ̂X (Extended Data Fig. 8c(ii)). Finally, we identify the
within-slice-type transformation that minimizes a tertiary loss function
ℒ3 to arrive at the final components (loading vectors u(r), v(r), w(r) and
slices A(r), B(r), C(r)) without affecting ̂X neuron, ̂X trial and ̂X time (Extended
Data Fig. 8c(iii)). Each of the three loss functions can, in principle, be
chosen according to the constraints or normative assumptions most
relevant to the question at hand.

We note that, if we performed only the ℒ1 optimization step,
then different initializations would lead to different solutions for
the coefficients. Both the ℒ2 and ℒ3 steps are necessary to identify a
unique solution across the two invariance classes. If we applied only
ℒ3 after ℒ1, there would be no guarantee that ̂X neuron would be the
same for two seeds, as they could differ by more than just a rotation
due to the between-slice-type invariances; therefore, it would not
necessarily be possible to identify a unique solution. If we then
applied ℒ2 to correct this, we would need to reapply ℒ3 to come up
with a unique set of coefficients. Therefore, the most natural way to
identify a unique solution is to exploit the hierarchical structure of
the invariances by optimizing the invariances in the proposed order:
ℒ1, then ℒ2, then ℒ3. More precisely, we prove that, if each of these
objective functions leads to a unique solution, the decomposition
is unique under weak conditions (see theorem 2.7 in Supplementary
mathematical notes).

This procedure can also be understood more intuitively by con-
sidering the case in which there is only a single component type, in
which case sliceTCA reduces to a matrix factorization. Even then,
minimizing ℒ1 is not sufficient to determine a unique model due to
there being a continuum of factor rotations that yield the same ̂X .
PCA solves these invariances by constraining the factors to be orthog-
onal and ranking them by variance explained, resulting in a unique
solution (under certain weak conditions, for example, up to sign
reversals if all singular values are unique). This can be written through
an additional loss function (equivalent to ℒ3 in our framework). When

considering mixed slice types, the second step (minimizing ℒ2)
becomes necessary owing to the invariant transformations between
slice types.

Model selection, optimization and fitting
To fit sliceTCA for a given dataset arranged as a 3-tensor, we followed
the data analysis pipeline described in the main text. Below, we provide
details and hyperparameters for the steps involved in the pipeline.

Fitting sliceTCA with stochastic gradient descent. For a fixed choice
of R, model parameters (that is, the loading vectors and slices of all
components) were fitted using the optimizer Adam54 in Pytorch. Initial
parameters were randomly drawn from a uniform distribution over [−1,
1] or [0, 1] for unconstrained and non-negative sliceTCA, respectively.
Throughout, we optimized the MSE loss in equation (3) with a learning
rate of 0.02. Note that, during model selection, some of these entries
will be masked (that is, not be summed in the loss) for cross-validation
(see the next section). To introduce stochasticity in the computation
of the gradient, and thus avoid local minima, we additionally masked a
fraction of tensor entries so that they are not included in the calculation
of the loss. This fraction starts at 80% and decreases exponentially dur-
ing training with a decay factor of 0.5 over three (Fig. 2) or five blocks
of iterations (Figs. 4 and 5). Within each block, the mask indices are
randomly reinitialized every 20 of a total of 150 (Fig. 2), 200 (Fig. 4) or
100 iterations per block (Fig. 5). Run time scales approximately linearly
with the number of components (Supplementary Fig. 16). To obtain
an optimal model under a given R, we repeated the fitting procedure
ten times with different random seeds and chose the model with the
lowest loss.

Cross-validated model selection. To choose the number of com-
ponents in each slice type, we run a 3D grid search to optimize the
cross-validated loss. In addition to the decaying mask used during
model fitting, we masked 20% of the entries throughout the fitting
procedure as held-out data. These masked entries were chosen in
randomly selected 1-s (Fig. 4) or 150-ms blocks (Fig. 5) of consecu-
tive time points in random neurons and trials. Blocked masking of
held-out data (rather than salt-and-pepper masking) was necessary
to avoid temporal correlations between the training and testing data
due to the slow timescale of the calcium indicator or due to smooth-
ing effects in electrophysiological data. To protect further against
spuriously high cross-validation performance due to temporal cor-
relations, we trimmed the first and last 250 ms (Fig. 4) or 40 ms (Fig. 5)
from each block; these data were discarded from the test set, and
only the remaining interior of each block was used to calculate the
cross-validated loss. We repeated the grid search ten times with dif-
ferent random seeds for train–test split and parameter initialization
while keeping a constant seed for different R. Once the cross-validated
grid search was complete, we selected R* by identifying the model with
a minimum or near-optimal average test loss across seeds. Admis-
sible models are defined as those achieving a minimum of 80% of the
optimal performance for nonconstrained sliceTCA and 95% of the
optimal model performance for non-negative sliceTCA, as compared
to root-mean-squared entries of the raw data.

Hierarchical model optimization. For the first step of the model
optimization procedure, we chose the MSE loss for ℒ1:

ℒ1(u,A,v,B,w,C)

= 1
KNT

‖
‖‖‖
X − (

Rneuron
∑
r=1

[u(r) ⊗ A(r)] +
Rtime
∑
r=1

[v(r) ⊗ B(r)] +
Rtrial
∑
r=1

[w(r) ⊗ C (r)])
‖
‖‖‖

2

F

as in the model selection (essentially refitting the model with the spe-
cific ranks identified with the cross-validation procedure on the entire

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

data). For ℒ2, we used the sum of the squared entries of the three partial
reconstructions from each slice type:

ℒ2(x,y, z) =
‖
‖‖‖
̂X trial −∑

r,s
x(r,s) ⊗ v(s) ⊗w(r) − ∑

r,s
u(r) ⊗ y(r,s) ⊗w(s)‖‖‖‖

2

F

+
‖
‖‖‖
̂X time +∑

r,s
x(r,s) ⊗ v(s) ⊗w(r) − ∑

r,s
u(r) ⊗ v(s) ⊗ z(r,s)

‖
‖‖‖

2

F

+
‖
‖‖‖
̂X neuron +∑

r,s
u(r) ⊗ y(r,s) ⊗w(s) + ∑

r,s
u(r) ⊗ v(s) ⊗ z(r,s)

‖
‖‖‖

2

F

where x ∈ ℝRtime×Rtrial×N, y ∈ ℝRneuron×Rtrial×T and z ∈ ℝRneuron×Rtime×K . This can
be thought as a form of L2 regularization. For ℒ3, we chose orthogo-
nalization and variance explained ordering through singular value
decomposition (SVD).

We stress that the losses ℒ1, ℒ2 and ℒ3 may be chosen according
to the specific problem at hand. For example, different factor rota-
tions could be easily implemented into the hierarchical model opti-
mization, including varimax or even oblique (that is, nonorthogonal)
rotations. Therefore, while we chose an ℒ3 that constrained compo-
nents to be orthogonal, in general, sliceTCA does not necessarily
need to return orthogonal components. Finally, we remark that the
hierarchical model optimization procedure is valid only for uncon-
strained sliceTCA, as adding a non-negativity constraint restricts the
possible space of solutions. This also explains why non-negative
factorizations (for example, NMF) are known to suffer less from
uniqueness issues but also require more complex conditions to
guarantee uniqueness30. Future work could borrow from existing
methods for factor rotations specifically designed for NMF to extend
to non-negative sliceTCA55.

Model similarity. To estimate whether solutions found with sliceTCA
are unique in practice, we adopted a measure of the model similarity
of the solutions found from different random initializations4,56. This
score is based on computing the angle between a pair of vectors cor-
responding to the loading factors of two models after components
are matched according to the Hungarian algorithm. For each pair of
sliceTCA components, we unfolded the slice of each component into
a vector. Then, we computed the angle between the loading vectors,
the angle between the vectors resulting from unfolded slices, and their
average values.

Following previous work4, we computed this modified similar-
ity score for each of the ten randomly initialized models against the
model that achieved the lowest MSE loss. We calculated (1) the overall
model similarity and (2) the model similarity for each slice type, which
could be an informative diagnostic tool for model optimization in
future work. To establish a baseline chance level of similarity, we also
computed a shuffled model similarity score: for each slice type and
component, we shuffled the elements of the weight vectors of one of
the two models within the respective weight vectors before computing
their similarity score. We then calculated the mean similarity over 100
shuffle repetitions for each slice type.

Feedforward model of perceptual learning
We modeled a population of linear neurons receiving a sensory input
from upstream sources representing a go stimulus and a no-go stimu-
lus, as well as an input representing a top–down modulation that varied
from trial to trial. On each trial k, either the go or no-go stimulus was
activated, with probability P = 0.5 of presenting the same stimulus as
in the previous trial. Go/no-go inputs (xgo, xno) were assumed to follow
the same bell-shaped activation function st = e−(t−4)

2
 on the trials dur-

ing which their corresponding stimulus was presented, that is, xgot,k = st
if k was a go trial and xgot,k = 0 otherwise (and vice versa for the
no-go input).

The stochastic learning process of the go and no-go weights
wgo

k ,wno
k ∈ ℝN over trials was modeled as an Ornstein–Uhlenbeck pro-

cess, which was initialized at wgo
0 = wno

0 = 1 and evolved independently
across neurons:

dwgo
k = diag(ααα) (μgo −wgo

k)dk + σdWk

dwno
k = diag(ααα) (μno −wno

k)dk + σdWk

where αn ∼ 𝒰𝒰([0.2,0.8]) are the neuron-specific learning rates, and
μgo = 2, μno = 0, σ = 1.3. Furthermore, to keep weights non-negative and
simulate their saturation, we clamped them to [0, 2]. The process was
evaluated using a stochastic differential equation solver and sampled
at K evenly spaced points in [0, 10] representing K trials.

Top–down modulation was modeled as a rectified Gaussian
process:

xTDt,k = max(0, γ(t)), γ ∼ GP(0, κ)

with the temporal kernel:

κ(t1, t2) = exp (−
(t1 − t2)

2

2l2)

where l = √0.5. Top–down weights were nonplastic and distributed as
wTD

n ∼ 𝒰𝒰([0, 1]).
The activity of each neuron was thus given by

Xn,t,k = wgo
n,kx

go
t +wno

n,kx
no
t +wTD

n xTDt,k

= wS
n,kst +wTD

n xTDt,k

where the sensory input is combined into wS
n,k = wgo

n,k
go
k +wno

n,k(1 −
go
k),

where go is an indicator function that is 1 when trial k is a go trial and 0
if it is a no-go trial. By construction, the tensor X has a slice rank of 2, as
it can be written in the following form:

X = I S + ITD

where I Sn,t,k = wS
n,kst is a time-slicing component representing the

weighted, trial-specific sensory input and ITDn,t,k = wTD
n xTDt,k is a neuron-

slicing component representing top–down modulatory factors that
vary over trials. In our simulations, we used K = 100, T = 90, N = 80.

We fitted sliceTCA with non-negativity constraints to the synthetic
dataset, using five blocks of 200 iterations each with a learning rate that
decayed exponentially over blocks from 0.2 to 0.0125 and a mask that
decayed exponentially over blocks from 0.8 to 0.05. Masked entries
changed randomly every iteration. Initial parameters were drawn
uniformly over [0, 1].

RNN model of condition-dependent neural sequences
Model description. We built a model of a linear RNN that produces
recurrently generated sequences for different task conditions while
also receiving condition-independent inputs. To generate sequences,
we parameterize the connectivity matrix W ∈ ℝN×N by a Schur decom-
position24. Additionally, we let the central matrix have a block-diagonal
structure to embed multiple sequences into the dynamics. Formally,
we let W = USUT, where U is a unitary matrix and S is defined in block
structure as

S = [
(λ + ϵ)I− − λI 0

0 (λ + ϵ)I− − λI
]

where I ∈ ℝN/2×N/2 is the identity matrix and I− ∈ ℝN/2×N/2 is the matrix
with ones along its subdiagonal. The unitary matrix U was generated
as the left singular vector matrix of a random normal matrix.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Each block of S corresponds to the sequential dynamics for one of
the two noninterfering sequences. The specific sequence is selected by
the initial state of the network. This is parameterized through the first
and (N/2 + 1)th columns of U (that is, U1 and UN/2+1), which correspond to
the beginning of each sequence. The RNN also receives a 2D input that
is condition independent. To avoid interference with the sequences, we
mapped the input through the (N/2)th and the Nth columns of U (that
is, UN/2 and UN), as these are the elements corresponding to the end of
the sequence. In this way, we were able to generate RNN dynamics that
produce condition-specific sequences while also being influenced by
condition-independent inputs.

To test the effects of different sources of noise, we considered RNN
dynamics that are governed by stochastic differential equations. On
trial k, the population activity x(k)(t) ∈ ℝN and inputs u(k)(t) ∈ ℝ2 evolve
according to

{
dx(k) = (−x(k) +Wϕ(x(k)) + Bu(k))dt + σ1dW

(k)
1 x(k)(0) = c(k)1 U1 + c(k)2 UN/2+1

du(k) = A(k)u(k)dt + σ2dW
(k)
2 u(k)(0) = u(k)0

where B = [UN/2,UN], Aij ∼ 𝒩𝒩(0, 1/2) and dW i are infinitesimal
increments of a Wiener process. Furthermore, we took
[c(k)1 , c(k)1] = [cos(θ(k)), sin(θ(k))] , where θ(k) represents the angle of the
task variable. In our simulations, we used K = T = N = 200 and
took ϕ = id.

RNNs have three natural sources of noise: (1) noise at the level of
the dynamics of each neuron, σ1dW1, which we call intrinsic noise; (2)
input noise, σ2dW2; and (3) observation noise added to the full tensor,
Y = X + η, where ηijk ∼ 𝒩𝒩(0,σ3). Thus, by systematically varying σ1, σ2, σ3,
we can vary the magnitude of different sources of noise in the data.
Importantly, they have the property that for ϕ = id, 𝔼𝔼[Y] = X , where
y(k)(t) is the activity with σi ≠ 0 for at least one i and x(k)(t) is the activity
with σi = 0 for all i.

To evaluate the effect of these different sources of noise on sli-
ceTCA, we considered the variance explained κ = 1 − || ̂Y − Y||2F/||Y − ̄y||2F
as a function of the noise level ζ = ||Y − X||2F/||Y − ̄y||2F , where ̂Y is the
reconstruction from sliceTCA fit on Y. In the normalization term
above, ̄y ∈ ℝ is the average over all NTK entries of Y (but we note that
different marginalizations are possible57). An optimal denoiser (that
is, for which ̂Y = X) would yield κ = 1 − ζ. Meanwhile, a model that fully
captures the variability (including noise) in the data (that is, ̂Y = Y)
would have κ = 1.

Statistics and reproducibility
As we reanalyzed existing data, no statistical method was used to
predetermine sample sizes. Instead, we demonstrated the utility
of sliceTCA by choosing three previously published datasets repre-
senting a typical range of numbers of recorded neurons, time points
and trials. For the application of sliceTCA to these example datasets
and subsequent analyses, we randomly selected an example session
and animal for each dataset. General trends were confirmed by fit-
ting sliceTCA on other example sessions of the same dataset (not
shown). To ensure reproducibility, we have made available the datasets
for the sessions analyzed in this paper, along with the analysis code
(see the ‘Data availability’ and ‘Code availability’ sections below).
Model selection was performed as described in the ‘Model selection,
optimization and fitting’ section above. During cross-validation,
tensor entries (indexed by neurons, trials and blocks of time) were
randomly allocated (80–20%) into training versus held-out data using
a pseudo-random number generator. No blinding was performed,
as our method is unsupervised and was applied to the full dataset.
The investigators were not blinded to outcome assessment. Unless
otherwise specified, we performed two-sided nonparametric sta-
tistical tests. In Extended Data Fig. 10d, model assumptions were
not tested before performing analyses of variance. In dataset 3, we

excluded neurons with low firing rates (<0.2 Hz); otherwise, no data
were excluded from the analyses.

Dataset 1 of motor cortical recordings during a center-out and
maze reaching task
Description of the dataset. We analyzed a dataset of motor cortical
(M1, n = 90) and premotor cortical (PMd, n = 92) electrophysiological
recordings17. The dataset is curated and publicly available as part of the
‘Neural Latents Benchmark’ project58. Briefly, monkeys were trained
to perform a delayed center-out reach task to one of 27 locations in
both the maze condition (in which barriers were placed on the screen,
leading to curved optimal reach trajectories) and the no-maze condi-
tion with matched target locations (classic center-out task leading
to straight optimal reach trajectories). The go signal for movement
initiation appeared 0–1,000 ms after target onset and 1,000–2,600 ms
after the trial started with a fixation cue. We analyzed data from one
animal (monkey J) in a single session and randomly subselected 12
target locations, resulting in K = 246 single-target trials in the maze
reach conditions and K = 265 single-target trials in the 12 center-out
reach conditions with matched target locations.

Additional preprocessing. We calculated firing rates for bins of 10 ms,
which we then smoothed with a Gaussian filter with σ = 20 ms and
rescaled to minimum and maximum values of 0 and 1 over the course of
the experiment for each neuron separately. We selected a time period
starting 1 s before movement onset (thus including a substantial part
of the motor preparation period) and ending 0.5 s after movement
onset when the monkey had successfully reached the target position
in most trials. We did not time-warp the data. The resulting data tensor
had dimensions of N = 182, T = 150 and K = 511.

Supervised mapping of neural population activity onto kinematic
data. To identify the neural subspace from which 2D hand trajecto-
ries could be read out (Fig. 2a), we used ordinary least squares (OLS).
Specifically, we found weights that project the neuron-unfolded data
from the full neural space onto a 2D subspace that best maps onto
(x, y) hand velocity with a time delay of 100 ms to account for the lag
between neural activity and movement. When testing the decoding
analysis after dimensionality reduction, we instead applied OLS to
the reconstruction (or partial reconstruction (that is, from a single
slice type)) after reshaping it into an N × KT matrix. We also used OLS
to project time-averaged pre-movement activity onto target locations
(Fig. 2g). For Fig. 2h, we used LDA to identify the dimension that best
separates pre-movement averaged activity in clockwise versus coun-
terclockwise curved reaches in the maze condition. To plot activity in
a 3D neural subspace that contained information about the upcoming
movement, we then orthogonalized the two axes that map neural activ-
ity onto target locations to the axis that distinguishes clockwise and
counterclockwise movements.

For all decoding analyses, we calculated R2 values on left-out trials
in a fivefold cross-validation procedure performed on 20 permutations
of the trials. Decoding was performed on data from the period span-
ning 250 ms before to 450 ms after movement onset. For trial-resolved
data (Fig. 2a, raw data, neuron-slicing NMF, TCA, trial-slicing NMF), we
averaged trial-wise R2 values; for pre-movement information on target
positions, we calculated a single R2 value across trials for center-out
and maze reaching conditions. For trial-averaged data (Fig. 2a,
trial-averaged raw data), we performed twofold cross-validation by
averaging hand and neural trajectories separately for each fold and
then calculating R2 values averaged over conditions and folds.

Visualization of sliceTCA weights. The results of fitting non-negative
sliceTCA are shown in Fig. 2c,d and Supplementary Fig. 3. Each compo-
nent consists of a weight vector and a slice of corresponding weights
on the other two variables. Along the trial dimension, we sorted trials

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

by the angle of the target position and whether trials belonged to
center-out or maze reaching conditions. Along the neuron dimension
of trial-slicing components, neurons were sorted by the peak latency
of neural activity in the first component. For the time-slicing compo-
nent, neurons were sorted according to their mean activity in the first
reaching condition.

Correlation matrices. To assess the encoding similarity of movement
preparation in the time-slicing component, we calculated the K × K
correlation matrix of the neural encoding weights (that is, the rows of
the slice in Fig. 2d) for different pairs of trials, separately for center-out
and maze reach conditions, and for the PMd (Fig. 2f) and M1 (Extended
Data Fig. 4c). We sorted the resulting correlation matrices by the angle
of the target location (Fig. 2f).

Dataset 2 of cortico-cerebellar calcium imaging during a
motor task
Description of the dataset. We analyzed recently published calcium
imaging data consisting of simultaneously recorded cerebellar granule
cells (n = 134) and premotor cortical L5 pyramidal cells (n = 152) from a
head-fixed mouse performing a motor task in which a manipulandum
had to be moved forward and leftward or rightward for a reward18. After
a correct movement was completed, a water reward was delivered with
a 1-s delay, followed by an additional 3.5-s intertrial interval. Left versus
right rewarded turn directions were alternated without a cue after 40
successful trials. We analyzed data from one session of a mouse in an
advanced stage of learning, comprising a total of K = 218 trials. The data
were sampled at a 30-Hz frame rate. Calcium traces were corrected for
slow drifts, z-scored and low-pass filtered18.

Additional preprocessing. Owing to the freely timed movement
period, we piecewise linearly warped data to the median interval
lengths between movement onset, turn and movement end. The
remaining trial periods were left unwarped and cut to include data from
1.5 s before movement onset until 2.5 s after reward delivery, resulting
in a preprocessed N × T × K data tensor with N = 286, T = 150 and K = 218.

Visualization of sliceTCA weights. In Fig. 4b,c, we show the results of
a fitted sliceTCA model. We further reordered trials in the trial–time
slices according to trial type and neurons in the neuron–time slices
according to the peak activity in the first trial-loading component.
This allows for a visual comparison of the tiling structure across com-
ponents. We used Mann–Whitney U tests on the time-averaged activity
between reward and trial end in the trial–time slices. We used LDA to
determine the classification accuracy for neuron identity (cerebel-
lum versus cortex) based on the loading vector weights of the three
neuron-slicing components found by sliceTCA. We similarly reported
the classification accuracy of trial identity (error versus correct, left
versus right) based on the loading vector weights of the trial-slicing
components.

Matrix rank of slices. To determine whether sliceTCA finds com-
ponents with higher matrix ranks compared to methods that do not
demix slice types (neuron-slicing PCA and factor analysis with neuron
loadings, neuron- and time-concatenated PCA and factor analysis with
trial loadings), we performed SVD on the six slices (after centering) of
the sliceTCA model shown in Fig. 4b, as well as on the scores of either
trial-slicing or neuron-slicing PCA and factor analysis, after refolding
the resulting scores into N × T or K × T matrices, respectively. We then
compared these to the spectra of squared singular values obtained
from the slices of the trial-slicing (Fig. 4e) or neuron-slicing compo-
nents (Supplementary Fig. 8). Factor analysis was performed using
the ‘sklearn’ Python package59, which uses an SVD-based solver. For
comparability with PCA and sliceTCA solutions, no factor rotations
were performed.

Manifolds from sliceTCA reconstructions. To analyze the geometry
of neural data, we reconstructed the low-slice-rank approximation of
neural activity from the sliceTCA model separately for the cerebellum
and premotor cortex. We then used LDA on both raw and reconstructed
data to find the three axes that maximally separate left versus right
correct trials between movement onset and reward (axis 1, Fig. 4g),
movement onset time versus the time of reward in all correct trials
(axis 2), and the time of reward versus post-reward (axis 3). We ortho-
normalized the three axes and projected raw and reconstructed data
onto the new, 3D basis (Fig. 4h).

We then measured the distance ratio to compare the distance
between trials of the same class versus the distance between trials of
distinct classes (left versus right) in the full neural space. For the recon-
structed versus the full dataset, we averaged neural activity over a
650-ms window centered at movement onset and measured the Euclid-
ean distance of the population response in each trial to the
trial-averaged population response in its own trial type, compared to
the Euclidean distance to the average population response of the
respective other trial type: Δbetween/Δwithin, where ∆within = d(xL

k , ̄xL) is
the Euclidean distance between population vectors in each left trial
to the mean population vector across all left trials (and vice versa for
right trials), and ∆between = d(xL

k , ̄x R) is the Euclidean distance of popula-
tion vectors in each left trial to the mean population vector across all
right trials (and vice versa for right trials).

Dataset 3 of electrophysiology across many brain regions
during perceptual decision-making
Description of the dataset. The third analyzed dataset comprised
recently published multiregion Neuropixels recordings (n = 303) in
mice performing a perceptual decision-making task53. In the task,
mice were presented a grating patch image with varying contrast (0%,
25%, 35%, 50% or 100%), shown on the left or right sides of a screen.
The mice were trained to move the image to the center of the screen
using a steering wheel within a 60-s period to receive a sugary water
reward. A correct response was registered if the stimulus was moved to
the center, whereas an incorrect response was recorded if the stimulus
was moved to the border of the screen. We selected a single example
mouse (subject CSHL049 from the openly released electrophysiology
data repository).

Additional preprocessing. We binned single-neuron spiking events
in 10-ms windows. Owing to the variable response times across trials,
we piecewise linearly warped data between stimulus onset and reward
delivery or timeout onset to correspond to the median interval length
and clipped the trial period to start 1 s before stimulus onset and to end
2 s after reward delivery or timeout onset. We smoothed data with a
Gaussian filter with σ = 20 ms and rescaled the activity of each neuron
to a minimal and maximal value of 0 and 1 over all trials. We excluded
neurons with mean firing rates below 0.2 Hz, leading to a total of n = 221
neurons analyzed of n = 303 neurons recorded. Brain regions included
the visual cortex (anterior layers 2/3, 4, 5, 6a and 6b as well as antero-
medial layers 2/3, 4, 5 and 6a; n = 85 neurons), hippocampal regions
CA1 (n = 32 neurons) and dentate gyrus (molecular, polymorph and
granule cell layers; n = 21 neurons), thalamus (including the posterior
limiting nucleus and lateral posterior nucleus; n = 18 neurons) and the
anterior pretectal and midbrain reticular nucleus (anterior pretectal
nucleus, n = 22 neurons; midbrain reticular nucleus, n = 35 neurons)
of the midbrain. In total, the resulting data tensor had dimensions of
N = 221, T = 350 and K = 831.

Visualization of sliceTCA weights. In Fig. 5b, we scaled the rows of
the neuron–time slices to a [0, 1] interval to highlight differences in the
timing of peak activity between neurons. We then reordered neuron–
time slices by the peak activity within each region for each slice type
separately to show characteristic differences between neural correlates

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

of behavioral variables. Trial–time slices were regrouped by trial type
to show region-specific representations of task variables. Finally, neu-
ron–trial slices were reordered by the average weights across the first
100 trials for each neuron within a region.

Reconstruction performance and component weights. For each neu-
ron, we estimated the goodness of fit of the sliceTCA reconstruction as

1 −
∑t,k(Xn,t,k − ̂Xn,t,k)

2

∑t,kX
2
n,t,k

We then quantified the contribution of the neuron-slicing components
on the total sliceTCA reconstruction for each neuron n as the follow-
ing ratio:

f neuronn =
∑t,k

̂X neuron
n,t,k

∑t,k
̂Xn,t,k

where ̂X neuron describes the partial reconstruction of the data tensor
from only the neuron-slicing components. We similarly defined the
contributions of the time- and trial-slicing components to the sliceTCA
reconstruction of each neuron n as f timen and f trialn .

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets presented in this paper are available via figshare at https://
doi.org/10.6084/m9.figshare.24961917.v1 (ref. 60). Source data are
available via GitHub at https://github.com/caycogajiclab/sliceTCA_
paper (ref. 61).

Code availability
A GPU-accelerated Python library for the sliceTCA data analysis pipe-
line (including preprocessing, model selection, model optimization
and visualization of components) is available as a pip installable pack-
age at https://github.com/arthur-pe/slicetca (ref. 62). Additionally,
code for the analyses in this paper is available at https://github.com/
caycogajiclab/sliceTCA_paper (ref. 61).

References
54.	 Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization.

Preprint at https://arxiv.org/abs/1412.6980 (2014).
55.	 Gillis, N. Sparse and unique nonnegative matrix factorization

through data preprocessing. J. Mach. Learn. Res. 13, 3349–3386
(2012).

56.	 Tomasi, G. & Bro, R. A comparison of algorithms for fitting the
PARAFAC model. Comput. Stat. Data Anal. 50, 1700–1734 (2006).

57.	 Kobak, D. et al. Demixed principal component analysis of neural
population data. eLife 5, e10989 (2016).

58.	 Pei, F. et al. Neural Latents Benchmark ’21: evaluating latent
variable models of neural population activity. In Proc.
Neural Information Processing Systems Track on Datasets
and Benchmarks 1 (NeurIPS Datasets and Benchmarks 2021)

(eds Vanschoren, J. & Yeung, S.) (Curran Associates, 2021);
datasets-benchmarks-proceedings.neurips.cc/paper_files/
paper/2021/file/979d472a84804b9f647bc185a877a
8b5-Paper-round2.pdf

59.	 Pedregosa, F. et al. Scikit-learn: machine learning in Python.
J. Mach. Learn. Res. 12, 2825–2830 (2011).

60.	 Stein, H. Pellegrino_Stein_Cayco-Gajic_2024_Nat-Neuro. figshare
https://doi.org/10.6084/m9.figshare.24961917.v1 (2024).

61.	 Stein, H. & Pellegrino, A. caycogajiclab/sliceTCA_paper. GitHub
github.com/caycogajiclab/sliceTCA_paper (2023).

62.	 Stein, H. & Pellegrino, A. arthur-pe/slicetca. GitHub github.com/
arthur-pe/slicetca (2023).

Acknowledgements
We thank J. Barbosa, M. Hennig, K. Kuchibhotla, A. Litwin-Kumar,
A. Onken, Y. Sweeney and the members of the Cayco-Gajic laboratory
for comments on the paper. We additionally thank A. Chadwick for
helpful discussions on an early stage of the paper and M. Wagner
for sharing his data. We are also grateful to the IBL, the Churchland/
Shenoy laboratories and the Neural Latents Benchmark project for
making their processed and curated data freely available. We thank
the NeuroCAAS team for helping with fitting and assessing autoLFADS.
This work was funded by the European Molecular Biology Organization
(ALTF 471-2021 to H.S.) and the Agence Nationale de la Recherche
(ANR-20-CE37-0004 and ANR-17-EURE-0017 to N.A.C.-G.). The funders
had no role in study design, data collection and analysis, decision to
publish or preparation of the manuscript.

Author contributions
A.P., H.S. and N.A.C.-G. conceptualized the project. A.P. and H.S.
designed the data analysis pipeline. A.P. and H.S. performed
data analysis investigations. A.P., H.S. and N.A.C.-G. designed the
feedforward model. A.P. wrote the mathematical notes. N.A.C.-G.
wrote an initial draft of the paper, which all authors reviewed and
revised. N.A.C.-G. supervised the project.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s41593-024-01626-2.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s41593-024-01626-2.

Correspondence and requests for materials should be addressed
to Arthur Pellegrino or N. Alex Cayco-Gajic.

Peer review information Nature Neuroscience thanks Alex Williams
and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

http://www.nature.com/natureneuroscience
https://doi.org/10.6084/m9.figshare.24961917.v1
https://doi.org/10.6084/m9.figshare.24961917.v1
https://github.com/caycogajiclab/sliceTCA_paper
https://github.com/caycogajiclab/sliceTCA_paper
https://github.com/arthur-pe/slicetca
https://github.com/caycogajiclab/sliceTCA_paper
https://github.com/caycogajiclab/sliceTCA_paper
https://arxiv.org/abs/1412.6980
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/979d472a84804b9f647bc185a877a8b5-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/979d472a84804b9f647bc185a877a8b5-Paper-round2.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/979d472a84804b9f647bc185a877a8b5-Paper-round2.pdf
https://doi.org/10.6084/m9.figshare.24961917.v1
https://github.com/caycogajiclab/sliceTCA_paper
https://github.com/arthur-pe/slicetca
https://github.com/arthur-pe/slicetca
https://doi.org/10.1038/s41593-024-01626-2
https://doi.org/10.1038/s41593-024-01626-2
https://doi.org/10.1038/s41593-024-01626-2
https://doi.org/10.1038/s41593-024-01626-2
http://www.nature.com/reprints

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Extended Data Fig. 1 | Tensor decomposition, matrix factorization, and
covariability classes. a. A neuron-slicing component can be converted into
a rank-1 matrix by unfolding the slice into a row vector (or equivalently, by
unfolding the reconstructed 3-tensor into a matrix). A sliceTCA model comprised
only of neuron-slicing components (that is, Rtime = Rtrial = 0) is equivalent to
applying matrix factorization after unfolding the data tensor into an N × KT
matrix (for example, as in ‘trial-concatenated PCA’). Therefore, a neuron-slicing
component can be interpreted as a latent trajectory that varies over trials but

which has fixed neural encoding weights. b-c. The trial-slicing (b) and time-
slicing (c) components can similarly be converted to rank-1 matrices. These
components represent covariability across trials and time points, respectively.
d. A TCA component can be represented as any of the three sliceTCA components
by defining the slice to be the outer product of two of the loading vectors. This
means that a single TCA component simultaneously corresponds to covariability
across neurons, time, and trials.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Extended Data Fig. 2 | See next page for caption.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Extended Data Fig. 2 | Feedforward model of perceptual learning. a. Sample
of the activity of a single neuron over six example trials (grey) as well as trial-
averaged activity (red). b. Evolution of the mean Go and No-go weight over
learning. Shading represents the standard error of the mean. c. Recovered
neuron-slicing (left) and time-slicing (right) components, plotted alongside
ground truth values (grey). Weights for each neuron in the slice of the time-
slicing component are plotted separately for Go (green) and No-go (red) trials.
The sliceTCA decomposition captures the ground truth exactly. d. Single neuron

activity is better captured by sliceTCA with (bottom) and without (top) white
noise added to the data tensor. e. Mean squared error of decomposing the
activity of the feedforward model with added white noise for sliceTCA, TCA, and
PCA as a function of the number of components used in the model. The dashed
line represents the mean squared deviation between the noisy and the noiseless
model. Adding white noise does not affect the performance of sliceTCA relative
to TCA or PCA.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Extended Data Fig. 3 | Linear RNN model of condition-specific neural
sequences. a. Top: Two sequences are encoded into neural weights using the
Schur decomposition (24). Bottom right: The initial condition continuously
parametrizes which sequence is activated. Bottom left: In addition, the RNN
receives a two-dimensional task-irrelevant stochastic input that varies from
trial to trial. b. Sequential activity during a single trial, neurons sorted by peak
activity. c. Singular values of the activity matrix. The two dominant singular
values come from the two-dimensional input. Nevertheless, as expected from
sequential activity, the singular value spectrum has a long, slowly-decaying
tail (participation ratio of 7.57). In comparison, the singular values of the
partial reconstruction from the two trial slicing components (which capture

the neural sequences, see panel d) retain the long tail, confirming that the two
dominant modes in the data are input-driven. d. SliceTCA components for
Rtrial = Rneuron = 2, Rtime = 0. Neurons are sorted according to their peak activity
in the slice of the first component. e. Example of single-neuron activity in the
raw data and the SliceTCA reconstruction. f. Comparison of the variance of the
activity captured by sliceTCA, TCA, and PCA with or without intrinsic noise (mean
variance plus/minus standard deviation over n = 10 simulations of the RNN). g.
Cross-validated variance explained by fitting sliceTCA (Rtrial = Rneuron = 2, Rtime = 0)
to the RNN activity while systematically varying the level of noise added at the
level of the circuit dynamics (intrinsic noise, red), low-dimensional inputs (input
noise, blue), or neural activity itself (observation noise, green).

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Extended Data Fig. 4 | See next page for caption.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Extended Data Fig. 4 | Analysis of the mixed covariability model used to
decode reaching kinematics from motor cortical recordings (Dataset
1). a. Ordinary least squares decoding of the hand velocity from different
decompositions. For comparison, hand position and the mapping from the
reconstruction of the trial-slicing only NMF model (Rneuron = 0, Rtime = 0, Rtrial = 12)
are reproduced from Fig. 2. Also shown are the decoding performances using
the fit of the mixed covariability model (Rneuron = 0, Rtime = 1, Rtrial = 12), based on
the full reconstruction of all components in the model, as well as the partial
reconstruction of the data tensor from only the time-slicing component or only
the trial-slicing components. Note that adding the single time component to the
mixed model before decoding decreases performance, indicating that it captures
variability in the neural data that is not directly relevant to movement. Finally, we
show the decoding performance based on the reconstruction from autoLFADS
(27, fitted on the cloud-based NeuroCAAS platform; https://neurocaas.org/
analysis/20). b. Cross-validated model selection. Top: The cross-validated loss is
displayed as a function of the number of time- and trial-slicing components (for
0 neuron-slicing components). Bottom: Cross-validated loss as a function of the

number of neuron- and trial-slicing components (for 0 time-slicing components).
For 10 random seeds, data tensors were split in train- and test-data 80% and 20%,
respectively), following a blocked masking procedure (Methods). Full black
star marks the optimal model, and hollow black star marks the selected model
analyzed here and in Fig. 2. Black thresholds represents the 95% loss elbow. c.
Reach condition-specific structure in motor preparatory information is observed
in time-slicing weights of PMd, but not of M1. Top: Correlation matrix between
neural encoding weights for pairs of trials in the time-slicing matrix, showing
similarity of PMd neuron weights for trials with similar reach direction and
curvature (left/right indicate no maze/maze conditions, cf. Fig. 2f). Bottom: In
contrast, M1 neuron weights reveal a lack of structure in its correlation matrices.
d. Average fraction of the variance of PMd and M1 neuron activity explained by
the single time-slicing component, separated by maze and no maze conditions.
e. Comparison of sliceTCA and time-slicing NMF. Left: SliceTCA time-slicing
component (Rtrial = 12, Rtime = 1, Rneuron = 0), cf. components of NMF applied to the
time-unfolded data tensor for Rtime = 1 (middle) and Rtime = 13 (right). Neither time-
slicing NMF model appears to capture pre-movement preparatory activity.

http://www.nature.com/natureneuroscience
https://neurocaas.org/analysis/20
https://neurocaas.org/analysis/20

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Extended Data Fig. 5 | Schematic of the two sliceTCA invariant
transformations. a. Example of a within-slice-type invariant transformation in
a slice-rank-2 tensor formed by adding and subtracting a slice-rank-1 component
with the same loading vector as component 1 and the same slice as component
2. These terms can be absorbed into the original two components, resulting in

two equivalent decompositions. b. Example of a between-slice-type invariant
transformation in a slice-rank-2 tensor. Here, a rank-1 tensor constructed by
the two components’ loading vectors (green and yellow) and a third free vector
(blue) is added and subtracted. These terms can be absorbed into the original two
components, resulting in two equivalent decompositions.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Extended Data Fig. 6 | Between-slice-type invariance in the feedforward
model. a. The activity of the feedforward model (Extended Data Figure 2) can
be decomposed into the sum of a time-slicing component (top) and a neuron-
slicing component (bottom). In this example, the Gaussian Process is not
rectified and the data is not non-negative, leading to bleedthrough between
the two components due to this invariance class (bottom, red rectangle shows
discrepancy between model and ground truth). This invariance class was not
observed in the original non-negative model (Fig. 1e–g, Extended Data Figure 2)

because there are fewer permissible transformations when the factors are more
constrained. b. Example of a rank-1 tensor that can be passed between the two
components. Two of the loading vectors are identical to the loading vectors of
the components in a. The third is unconstrained. c. By choosing the trial loading
that minimizes a specified objective function, a unique solution can be found.
Here the correlation between the activity of trial-neuron pairs was minimized in
the neuron slicing component, resulting in a fit that matches the ground-truth
values.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Extended Data Fig. 7 | Drifting neural sequences have high slice rank. a. Over
trials, the time point at which a neural sequence starts continuously drifts later
and later within the trial. In the model, the activity at trial i ∈ {1, …, K} for neuron

j ∈{1, …, N} and time point k ∈ {1, …, T} is given by Xijk = exp (−(
i+j−k
σT

)
2
). Here we

used T = 2N = 2K, N = 100, σ = 0.1. b. Left: A neuron that activates early in the
sequence begins to be activated later and later in time, for increasing trials. Right:
similar drift for a neuron that fires late in the sequence. Therefore, in addition to
there being a sequence of neural activation whose timing drifts from trial to trial
(as in panel a), there is equivalently a sequence of activations over trials whose

timing drifts from neuron to neuron. This symmetry of the sequences in the data
tensor means that it can neither be captured by few neuron slicing components
nor by few trial slicing components. c. SliceTCA gridsearch for the optimal
number of components (fit on the full tensor, not cross-validated). The loss
continues to decrease indefinitely as the number of components increases.
d. Cross-validated sliceTCA gridsearch for the optimal number of components.
Retaining blocks of trial x neuron x time creates a test set that is nearly
completely decorrelated (in neuron, trial or time) from the train set; thus the test
loss is close to random and larger in magnitude than in panel c due to overfitting.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Extended Data Fig. 8 | See next page for caption.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Extended Data Fig. 8 | SliceTCA model selection and optimization. a.
Cross-validated model selection procedure. We randomly assign blocks of
consecutive time points (blue) within the data tensor as held out data. The
remaining entries of the tensor are used as training data (white). To reduce
correlations between the training and testing data, we discard a brief period from
the ends of the held-out blocks (light blue) from both training and testing. We use
only the interiors of these blocks as test data (dark blue). We run a 3D grid search
on the cross-validated loss (right). We either choose the optimal model (red star)
or a model at the ‘elbow’ of the loss function (red circle). b. Validation of the
cross-validation procedure. For ten random seeds, data tensors were split in
training data and held out data (80% and 20%, respectively), following a blocked
masking procedure as described in Methods. Grid shows mean squared error loss
for different numbers of components of each slice type, averaged across ten
cross-validation folds. The ground truth model was a tensor formed by
approximating the cortico-cerebellar dataset tensor using a decomposition of
Rneuron = 3, Rtime = 1, Rtrial = 2 and subsequently adding independent Gaussian noise
(σ = 0.1) to each tensor entry. The grid search recovers the correct number of
components of each slice type (black star indicates optimal model). c.
Hierarchical model optimization procedure. Schematic illustrates the three
optimization stages to be performed in sequence (gray represents the entries
which change at each stage). i. We first fit the model on all data (optimizing the
MSE or ℒ1 loss), resulting in the approximation ̂X to the data tensor X. ii. Next, we
optimize the auxiliary loss ℒ2 (a function of the partial reconstructions ̂X neuron,
etc.) in order to find a solution to the between-slice-type invariances. This can be
considered as a regularization step that affects the relative weighting of each
slice type. iii. Finally, the auxiliary loss function ℒ3 (a function of the loading
vectors and slices, for example, u(r) and A(r)) is optimized to solve the factor
rotation problem for each slice type separately (here, shown for the neuron slice

type components). d. Results of running the tensor-passing (ℒ2) optimization
step on the decomposition shown in Fig. 4, with 10 random seeds, so that the free
vector of the rank-1 tensor was initialized differently each time. During
optimization, the free vector is optimized to minimize the L2-norm of slices. Over
250 iterations, the optimization procedure lead to a unique solution, observable
in a perfect correlation between slice weights both for trial- (green, top) and
neuron-slicing components (blue, bottom). Each transparent line is the pairwise
correlation between two solutions found based on 10 different initialization
seeds. e-h. Model similarity scores for all three datasets. For a given number of
components, we fitted ten sliceTCA models from different parameter
initializations. We then compared the similarity between the model with the
lowest mean squared error (MSE) and all other models using a metric originally
proposed in 56, and adapted from 4. For this, we unfolded each component’s slice
into a vector and computed two angles per component: one corresponding to the
loading vectors of the two models, and another corresponding to the unfolded
slices. Components were matched using the Hungarian algorithm (as in 4). We
report a similarity score that is averaged over all components (‘full model’) as well
as slice type-specific similarity scores. Single small dots are scores for models
from different initializations, color-coded by MSE (brighter colors indicate
higher MSE). Lines denote average chance level over 100 shuffle repetitions, for
which the elements of vectors of one component were permuted before
computing the similarity score. e. Similarity scores for reaching dataset (Dataset
1, shown in Fig. 2). See Supplementary Figure 6 to see components of the
lowest-similarity model. f. Similarity scores for multi-region dataset during
decision-making (Dataset 3, shown in Fig. 5). g-h. Similarity scores for cerebello-
cortical imaging data (Dataset 2, shown in Fig. 4) before (g) and after (h)
hierarchical optimization of ℒ2 and ℒ3 to identify a unique solution.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Extended Data Fig. 9 | Cross-validated model selection and comparison to
TCA for cerebello-cortical imaging data (Dataset 2). a. The cross-validated loss
as a function of the number of time-slicing components. Transparent grey lines
show different combinations of 0-5 neuron- and 0-5 trial-slicing components.
This indicates that adding any time-slicing components leads to an overfitting
of the data. b. The cross-validated loss as a function of the number of neuron-
and trial-slicing components (for 0 time-slicing components). The filled star
indicates the minimum loss (that is, the optimal model), while the black line
indicates the 80% loss elbow. The hollow star indicates the model selected for

further analysis in Fig. 4. c. TCA applied to the cerebello-cortical dataset. Cross-
validated loss as a function of the number of TCA components (grey curves
indicate ten different cross-validation folds, with the mean shown in black). The
solid red line shows the performance of the sliceTCA model shown in Fig. 4 (that
is, at the elbow of the sliceTCA loss), while the dashed red line shows the optimal
sliceTCA model (components shown in Supplementary Figure 7, dashed red line).
d. Factors of the 6-component TCA model. Note that the first three and last three
components show redundancy in the trial factors, while the corresponding time
factors cover different periods of the task.

http://www.nature.com/natureneuroscience

Nature Neuroscience

Technical Report https://doi.org/10.1038/s41593-024-01626-2

Extended Data Fig. 10 | Cross-validated model selection, effects of temporal
warping, and comparison to TCA for multi-region recordings during
decision making (Dataset 3). a. Cross-validated model selection. For 10
random seeds, data tensors were split in train- and test-data (80% and 20%,
respectively), following a blocked masking procedure as described in Methods.
Full black star marks the optimal model, and hollow black star marks the selected
model analyzed in Fig. 5. Black thresholds describe a 95% loss elbow. b. Effect
of piecewise linear warping on the example APN neuron shown in Fig. 5c. Trials
are ordered by the time of reward (white line; for visibility of neural responses,
line has been shifted left by 100 ms). c. Single-neuron response of the same
ARN neuron in correct vs. incorrect trials without time-warping (c.f. Fig. 5c). d.
To determine whether the three time-slicing components found by sliceTCA
reconstructed an increasing baseline for most neurons or whether responses in
single task periods changed more strongly than others, we compared the slope of
linear trends over trials (for each neuron separately) across the three time-slicing
components. Specifically, we fitted linear models with a multiplicative term for

each neuron: wk,r = β0 + β1k + β2δr=2 + β3δr=3 + β4kδr=2 + β5kδr=3 + εk,r where wk,r is the
weight in trial k for component r, and δr=2 = 1 if the weight belongs to component
2, δr=2 = 0 otherwise (same for δr=3, whereas component 1 is the reference class).
We performed analyses of variance for each neuron to test whether multiplicative
terms explained a significant part of variance (at a Bonferroni-corrected
significance level α = 0.05 with n = 221 neurons). We discarded neurons with non-
significant multiplicative terms (grey). For neurons with significant differences
in the rate of change across time-slicing, we compared rates of change between
components. Each neuron was classified by the highest absolute change
coefficient and its sign, leading to six classes for three time-slicing components.
e. 8-component TCA model on multi-region Neuropixel dataset. Trial loading
vectors are color-coded by the behavioral or task variable most correlated with
the weights (if any). Similarly to sliceTCA, component 1 was correlated with trial
outcome and component 2 with the reaction time. However, components 3-8 tile
the sequence of trials but have little correlation with trial outcome, reaction time
or the block switching structure of the IBL task.

http://www.nature.com/natureneuroscience

1

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

M
a

rc
h

 2
0

2
1

Corresponding author(s): N Alex Cayco Gajic, Arthur Pellegrino

Last updated by author(s): Jan 16, 2024

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No original data was collected for this study, therefore no software was used for data collection.

Data analysis Analysis code for the manuscript is available at https://github.com/caycogajiclab/sliceTCA_paper. A GPU accelerated Python library for the

sliceTCA data analysis pipeline can be found at https://github.com/arthur-pe/slicetca. All code is based on Python 3.8.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets

- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

For this study we analyzed three datasets: 1) an openly available motor cortical dataset during reaching from the Neural Latents Benchmark (https://

neurallatents.github.io/) 2) an openly available Neuropixel dataset from mice during perceptual decision making from the International Brain Laboratory (https://

www.internationalbrainlab.com/data), and 3) a previously published cerebello-cortical imaging dataset generously provided by Dr Mark Wagner (https://

2

n
atu

re p
o

rtfo
lio

 | rep
o

rtin
g

 su
m

m
ary

M
a

rc
h

 2
0

2
1

doi.org/10.1016/j.cell.2019.02.019). Source data is available at: https://github.com/caycogajiclab/sliceTCA_paper and the data for the analyzed sessions are

available on Figshare: https://figshare.com/articles/dataset/Pellegrino_Stein_Cayco-Gajic_2024_Nat-Neuro/24961917/1

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Since we re-analyzed existing data, no statistical method was used to predetermine sample size. Instead, we demonstrated the utility of our

analyses and sliceTCA by choosing three previously published datasets representing a typical range of numbers of recorded neurons,

timepoints, and trials as used in the field (Churchland et al., 2012; Wagner et al., 2019; IBL et al., 2022).

Data exclusions For the IBL dataset, we excluded neurons with very low firing rates (<0.2 Hz).

Replication To ensure reproducible findings, we have released all data analysis code on GitHub: https://github.com/caycogajiclab/sliceTCA_paper

In addition, a GPU accelerated Python library for the sliceTCA data analysis pipeline is available as a pip-installable package at: https://

github.com/arthur-pe/slicetca

Randomization During cross-validation, tensor entries (indexed by neurons, trials and blocks of time) were randomly allocated (80-20%) into training vs. held-

out data using a pseudo-random number generator.

Blinding No blinding was performed for cross-validation, as the analyses were performed automatically through Python scripts.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

	Dimensionality reduction beyond neural subspaces with slice tensor component analysis

	Results

	Multiple covariability classes

	SliceTCA disentangles mixed covariability

	Task-relevant information is distributed across slice types

	Pipeline for sliceTCA model selection and optimization

	Denoising task-relevant manifolds

	Identifying region-specific covariability patterns

	Geometric interpretation of mixed covariability

	Discussion

	Online content

	Fig. 1 SliceTCA demixes covariability across neurons, time and trials.
	Fig. 2 Time- and trial-slicing components identify preparatory and kinematic information in motor cortical activity, respectively.
	Fig. 3 SliceTCA model selection, optimization and analysis pipeline.
	Fig. 4 SliceTCA denoises task representations in simultaneously imaged cortical and cerebellar populations.
	Fig. 5 SliceTCA identifies region-specific sensory and behavioral variables in multiregion recordings.
	Fig. 6 Different slice types capture latent variables with distinct geometric properties.
	Extended Data Fig. 1 Tensor decomposition, matrix factorization, and covariability classes.
	Extended Data Fig. 2 Feedforward model of perceptual learning.
	Extended Data Fig. 3 Linear RNN model of condition-specific neural sequences.
	Extended Data Fig. 4 Analysis of the mixed covariability model used to decode reaching kinematics from motor cortical recordings (Dataset 1).
	Extended Data Fig. 5 Schematic of the two sliceTCA invariant transformations.
	Extended Data Fig. 6 Between-slice-type invariance in the feedforward model.
	Extended Data Fig. 7 Drifting neural sequences have high slice rank.
	Extended Data Fig. 8 SliceTCA model selection and optimization.
	Extended Data Fig. 9 Cross-validated model selection and comparison to TCA for cerebello-cortical imaging data (Dataset 2).
	Extended Data Fig. 10 Cross-validated model selection, effects of temporal warping, and comparison to TCA for multi-region recordings during decision making (Dataset 3).

