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Alzheimer’s disease (AD) is the most common cause of 
dementia in the elderly. Accumulation of intercellular  
β​-amyloid plaques and intracellular neurofibrillary tangles 

are two hallmarks of AD that may drive neuronal death and the cor-
responding dramatic loss of cognitive abilities. A complex interac-
tion between genetic and environmental factors likely contributes to 
the molecular processes that drive AD. Although genetic variation 
in specific genes increases the risk of AD1, age is the strongest known 
risk factor2. How molecular processes of aging predispose to AD,  
or become deregulated in AD, remains to be understood.

Studies in model organisms such as yeast and Caenorhabditis ele-
gans show that epigenetic factors that integrate environmental stim-
uli into structural changes in the chromatin are major determinants 
of whole organism aging, mean lifespan and health span3. In mouse, 
epigenetic marks such as histone acetylation are associated with 
learning and age-related memory decline4,5. Histone acetylation is 
reduced at memory genes in mouse models for AD, and treatments 
with nonselective histone deacetylase inhibitors aiming to reverse 
loss of acetylation have shown promising results in restoring synap-
tic and cognitive plasticity in mouse models of AD5.

The power and unbiased nature of genome-wide studies can 
reveal mechanisms previously unknown to contribute to disease 
pathogenesis. However, their application to the study of human 
brain has been limited by the availability of postmortem tis-
sue and the stability of nuclear molecules. Nonetheless, several 
studies have examined the stability of the chromatin, including 
histone H3 acetylation and methylation, under different condi-
tions of postmortem interval, tissue pH, tissue storage (frozen 
versus fixed) and chromatin preparation (native versus cross-
linked); these studies have shown that histone modifications can 
be stably detected within a wide range of postmortem interval 
(5–72 h) and pH (6.0–6.8)6–10. The past ~5 years have seen several 

interrogations of the human brain epigenome through chroma-
tin immunoprecipitation sequencing (ChIP-seq) studies showing 
chromatin changes, for example H3K4me3, during development 
and substance abuse11,12.

Among the histone acetylation marks, H4K16ac is a key modifi-
cation because it regulates chromatin compaction, gene expression, 
stress responses and DNA damage repair13–16. In model organ-
isms, modulators of H4K16ac play a role in whole organism aging 
and cellular senescence17,18. Also, senescent cells display H4K16ac 
enrichment over promoter regions of expressed genes19. Therefore, 
we considered that epigenetic regulation by H4K16ac may be 
involved in aging of the human brain and perhaps in the progres-
sion of AD. Here we compare the genome-wide profiles of H4K16ac 
in the brain tissue of AD patients with age-matched and younger 
individuals without dementia, to elucidate key mechanisms that 
drive AD. In particular, our findings indicate that the normal course 
of age-related, and perhaps protective, changes in brain H4K16ac 
is perturbed in AD. Our findings provide insights into epigenetic 
alterations that underlie AD pathology and provide a foundation 
for investigating pharmacological treatments targeting chromatin 
modifiers that could ameliorate the progression of AD.

Results
H4K16ac is redistributed during normal aging and AD. To begin 
to elucidate the role of H4K16ac in aging and AD, we profiled the 
genome-wide enrichment of H4K16ac by ChIP-seq in the lateral 
temporal lobe (one of the regions affected early in AD) of postmor-
tem brain tissue from either cognitively normal elder individuals 
(hereafter ‘Old’, n =​ 10, mean age =​ 68), AD subjects (n =​ 12, mean 
age =​ 68), or younger cognitively normal subjects (hereafter ‘Young’, 
n =​ 9, mean age =​ 52; Fig. 1a and Supplementary Table 1). All selected 
AD subjects had high levels of AD neuropathological changes while 
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the Young and Old controls had no change or minimal changes. In 
addition, to reduce the number of explanatory variables to a mini-
mum, we controlled for gender (mainly male subjects), comorbid-
ity (excluding cases with other neuropathologies) and neuronal loss 
(excluding cases with severe loss; see Methods section “Brain tissue 
samples” for full description).

We performed H4K16ac ChIP-seq in individual brain sam-
ples, marking each sequencing library with a unique bar code, 
and subsequently pooled sequencing reads across samples of the 
same group to improve coverage and sensitivity of peak detec-
tion (Supplementary Table 2). H4K16ac peaks were detected in 
each group using the MACS2 peak calling method (false discov-
ery rate <​ 1 ×​ 10−3), and differential peak enrichment was statisti-
cally assessed by considering the enrichment of the corresponding 
region in individual ChIP-seq samples.

Because neuronal loss could potentially account for some of the 
H4K16ac changes observed in AD, we additionally quantified neu-
ron percentages in the samples through NeuN (a neuron-specific 
mark) immunostaining of temporal lobe sections (Supplementary 
Fig. 1a). This showed a mild but not significant trend in neuronal 
reduction in both normal aging and AD (Supplementary Fig. 1b; 
P =​ 0.087, one-way ANOVA). Despite this mild trend, we addition-
ally assessed whether there was any correlation between neuronal 
proportions across all samples and H4K16ac peaks detected in the 
combined data analysis. To improve accuracy, neuron proportions 
for this analysis were measured by flow cytometry in NeuN-stained 
nuclei isolated from the same brain region used for ChIP-seq (see 
Methods section “Neuron quantification by flow cytometry” and 
Supplementary Table 1). Using principal component analysis of 
the top 10,000 peaks by standard deviation (s.d.) we measured the 
Spearman’s correlation coefficient for the first two principal compo-
nents, PC1 and PC2, which revealed no correlation between neuro-
nal fractions and H4K16ac (Spearman’s ρ​ PC1 =​ –0.006; Spearman’s 
ρ​ PC2 =​ 0.076), highlighting a lack of contribution from any neuro-
nal losses. Furthermore, to reduce the risk of this potentially con-
founding variable to a minimum, we masked from the analysis the 
top 50,000 peaks associated with neuronal proportion (10% of such 

peaks) by Spearman’s ρ​ (see Methods section “ChIP-seq analysis” 
for details) and then processed the data downstream.

Using this method to call peaks in each study group, we 
detected ~239,000 peaks in Young, ~349,000 peaks in Old and 
~323,000 peaks in AD subjects (Fig. 1b), indicating an overall 
increase in the total number of H4K16ac peaks with age but not 
with AD. Representative peaks at the SLC35D1 gene, which codes 
for a nucleotide sugar transporter, provided a clear example of the 
higher accumulation around the transcription start site (TSS) in 
Old compared to Young or AD subjects (Fig. 1c); comparison of 
the individual samples showed similar accumulations of higher 
levels in Old compared to Young or AD subjects (Supplementary 
Fig. 2). The lower number of peaks in AD subjects compared to 
Old could reflect either loss or lack of complete H4K16ac upregu-
lation with age in AD subjects. However, when comparing peaks 
across the three study groups, both gains and losses were evi-
dent, despite the overall higher number of peaks in Old (Fig. 1d). 
Comparison of the constitutive peaks (~114,000 peaks common 
to Young, Old and AD subjects) with the remaining peaks in each 
group showed that at least 50% of peaks in each group were redis-
tributed, thus suggesting that Young, Old and AD subjects had 
different chromatin states (Fig. 1d).

Examination of the enrichment profile of the constitutive 
H4K16ac peaks showed a bimodal distribution around the TSS 
(Fig. 1e) compared to TSSs where no H4K16ac peaks were called 
(Fig. 1f). Similarly to the trend observed in overall peak num-
ber (Fig. 1b), the constitutive TSS peaks showed a higher level 
of H4K16ac in Old compared to similar levels in Young and AD 
subjects (Fig. 1e). In addition to the constitutive TSS peaks, we 
detected smaller intergenic peaks corresponding to regulatory ele-
ments, such as enhancers (Fig. 1g). Thus, both the total number of 
H4K16ac peaks and the level of acetylation at the TSS of constitu-
tive peaks were higher in Old compared to Young or AD subjects.

We examined the genome-wide locations of H4K16ac accu-
mulation in our data relative to previous observations. Because 
no H4K16ac ChIP-seq data are available in the brain, we com-
pared our results with genome-wide H4K16ac data from mouse20 
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Fig. 1 | H4K16ac is redistributed during normal aging and AD. a, Coronal section of human brain indicating the lateral temporal lobe (red circle) used in 
this study. b, Bar plot of total number of H4K16ac peaks. c, UCSC Genome browser track view of H4K16ac peak at the SLC35D1 gene promoter in Young, 
Old and AD subjects. d, Venn diagram of peak overlap among Young, Old and AD subjects. e–g, Meta-profile of H4K16ac enrichment at (e) TSSs (±​1 kb) 
of constitutive peaks; (f) TSS (±​1 kb) where no peak is detected; and (g) intergenic constitutive peaks (peaks shared across Young, Old and AD subjects).
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(Supplementary Fig. 3a) and human cells15 (Supplementary Fig. 3b). 
The comparisons revealed a high degree of similarity in peak location 
and genomic compartmentalization, with 68% of human fibroblast 
peaks (IMR90 cells) being detected in the constitutive brain peaks, 
confirming the reliability of our data. Furthermore, tissue enrichment 
analysis showed brain as the top enriched category (Supplementary 
Fig. 3c) in the constitutive peaks, providing further confidence to 
proceed with the analysis.

To gain insight into the dynamics of the H4K16ac changes, 
we quantified the number of peaks that were gained or lost in 
each pairwise situation. Comparison of Young and Old revealed 
a substantially higher number of peaks gained in Old (~196,000) 
than lost in Old (~86,000; Fig. 2a). Comparison between Old and 
AD subjects indicated a higher number of peaks lost in AD sub-
jects (~166,000) than gained in AD subjects (~140,000; Fig. 2b). 
Comparison of Young to AD subjects showed a higher number 
of peaks gained with AD than lost (~177,000 peaks gained versus 
~92,000 peaks lost; Fig. 2c). This analysis underscored that the 
redistribution in H4K16ac peaks was remarkably different during 

normal aging compared to AD: during aging, H4K16ac trends 
toward gains, whereas in AD it trends toward losses.

Given the overall increase in H4K16ac peaks with aging, we wanted 
to gain further insight into its dynamics. We therefore expanded our 
analysis to quantitative measurements of H4K16ac enrichment. This 
would also ensure that the observed trends were statistically signifi-
cant, since patient heterogeneity could in principle contribute to vari-
able peaks. For each peak detected in Young, Old or AD subjects, we 
measured the corresponding area under the curve in each patient and 
compared it across the three study groups. When comparing Young to 
Old, we detected ~20,000 peaks with significant increase in H4K16ac 
and ~7,000 peaks with significant loss in H4K16ac with age (P <​ 0.05, 
Welch’s t test; Fig. 2d,g). In contrast, comparison of Old to AD sub-
jects showed a reversed pattern in H4K16ac gains and losses, with 
~25,000 peaks with H4K16ac losses and ~9,000 peaks with H4K16ac 
gains in AD subjects (P <​ 0.05, Welch’s t test; Fig. 2e,h). The number 
of H4K16ac peaks gained or lost in the Young-to-AD subjects com-
parison was similar, with ~11,000 peaks lost versus ~13,000 peaks 
gained in AD subjects (P <​ 0.05, Welch’s t test; Fig. 2f,i).
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To assess the genomic locations of peaks with significant 
H4K16ac changes relative to TSSs, we first divided these peaks into 
quintiles based on distance to the nearest TSS and measured the 
change in enrichment. In the Young-to-Old comparison (Fig. 2j), 
we found that the variance in H4K16ac fold-change was smaller 
in the quintile closest to the TSS, despite the fact that the median 
values were invariant across all quintiles. This was not the case for 
the comparison of Old to AD subjects or for Young to AD subjects 
(Fig. 2k,l), where there were no differences in variance across the 
quintiles. The smaller variance near the TSS for gains in Old (Fig. 2j) 
may point to a functional impact of H4K16ac on the proximal gene, 
which is possibly lost in AD. Thus, changes in H4K16ac associated 
with age, and with disease in AD subjects, appear to preferentially 
affect the regulatory regions most likely to impact gene expression.

To specifically address whether H4K16ac changes affect nearby 
gene expression, we performed RNA-seq in individual patient sam-
ples from the same brain region (Supplementary Table 3). Overall, 
we found a positive linear correlation between the enrichment at 
the closest H4K16ac peak (relative to the TSS) and gene expres-
sion in Young, Old and AD subjects (Supplementary Fig. 4a–c). 
In addition, a mild correlation was evident between the magnitude 
of differential gene expression and differential enrichment of the 
nearest H4K16ac peak for the significantly (P <​ 0.05, false discovery 

rate <​ 0.05) differentially expressed genes (P values of correlation 
ranging between 1 ×​ 10−1 and 4 ×​ 10−29; Supplementary Fig. 4d–f). 
We also observed agreement between published microarray datasets 
of gene expression from hippocampal sections21 and our RNA-seq 
dataset (Supplementary Fig. 5). Taken together, these data indicate 
that the changes in H4K16ac associated with age and AD correlated 
with nearby gene expression.

H4K16ac changes during normal aging are negatively corre-
lated with changes in AD. We next asked whether the direction 
of H4K16ac changes is correlated with the processes of aging and 
disease, as how these processes interrelate is an important and 
outstanding question in the neurodegeneration field. To do this, 
we made pairwise comparisons of H4K16ac fold-changes for all 
peaks among the three processes: Young-to-Old representing aging; 
Old-to-AD subjects representing disease; and Young-to-AD sub-
jects representing components of aging mixed with components 
of disease. The relationships between these three sets of H4K16ac 
changes are represented in three-dimensional space, where each 
comparison is represented as a projection onto two-dimensional 
space (Fig. 3a). This analysis revealed a positive linear correlation 
between aging and aging mixed with disease (Young-to-Old versus 
Young-to-AD subjects; Fig. 3b), thus demonstrating a component of 
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normal aging in AD. Also, a positive linear correlation was detected 
between aging mixed with disease and disease alone (Young-to-AD 
subjects versus Old-to-AD subjects; Fig. 3c), suggesting a strong, 
age-independent disease component. In clear contrast, a remark-
able and robust negative linear correlation was observed between 
aging and disease (Young-to-Old versus Old-to-AD subjects; 
Fig. 3d). This latter finding indicates that aspects of normal aging 
fail to occur or are dysregulated in AD and is consistent with the 
observations above of an opposite trend in H4K16ac enrichments 
during normal aging and AD, with predominant gains in normal 
aging and predominant losses in AD (Fig. 2). Indeed, as discussed 
below, the negative correlation between aging and disease clarifies 
an important question in the field, that is, whether AD is a simple 
exacerbation of aging or rather a dysregulation of aging. Our results 
reveal the more complex latter scenario, where there is a clear com-
ponent of dysregulation of aging in the pathology of AD.

Three classes of H4K16ac changes detected in AD: age-regulated, 
age-dysregulated and disease-specific. Having established an over-
all pattern of H4K16ac changes in aging and disease, we focused 
on identification of functional pathways. For gene ontology (GO) 
analysis, we considered all significant H4K16ac changes (P <​ 0.05, 
Welch’s t test; Fig. 4a,d) up to 10 kb from TSSs to include regula-
tory elements such as enhancers. Categories of genes showing sig-
nificantly increased or decreased H4K16ac (P <​ 0.05, Welch's t test) 
during aging included terms related to response to oxygen levels, 
insulin stimulus, aging, inflammatory response, defense response, 
phosphorylation, actin filaments, etc., the majority of which have 
been shown to be altered in the aging brain and in cellular senescence 

(Supplementary Fig. 6a,b and Supplementary Table 4)22–25. Gene sets 
with H4K16ac gains or losses in AD included GO terms related to 
myeloid differentiation, cell death, and Wnt and Ras signal trans-
duction (Supplementary Fig. 6c,d). These functional categories are 
in agreement with published reports of aging and AD-specific path-
ways. For example, immunity is known to be involved in the pathol-
ogy of AD26, and the Wnt signaling pathway, required for synaptic 
transmission and plasticity, is downregulated by β​-amyloid in AD27,28. 
Also, the Aβ​42 oligomers have been shown to enhance the Ras–ERK 
signaling pathways, inducing tau hyperphosphorylation in AD29,30.

To gain additional insight into the regulation of these genes, we 
analyzed the DNA sequence under the H4K16ac peaks near the 
TSSs of these genes (within 1 kb) for occurrence of transcription 
factor binding sites using SeqPos in the Cistrome site31. Binding 
sites for REST, a repressor of neuronal genes in nonbrain tissue 
and neuroprotective to aging brain32,33, were enriched in genes that 
had loss of H4K16ac with age (Fig. 4c). On the other hand, CEBPA 
(a regulator of proliferation and myeloid differentiation) sites were 
more enriched in genes with upregulated H4K16ac in AD (Fig. 4e). 
CEBPA expression has been correlated to clinical scores of incipient 
AD and is induced in microglia activated upon hypoxic stress34,35. 
It is therefore striking that our analyses revealed regulatory ele-
ments under H4K16ac peaks that control both stress response 
(REST) and immunity (CEBPA). Most notably, we detected enrich-
ment for binding sites for the transcription factor HIC1, involved 
in p53-mediated DNA-damage response36 and Wnt signaling path-
ways37, at both classes of genes exhibiting increased H4K16ac with 
aging and decreased H4K16ac in AD (Fig. 4b,f).

Given the finding of HIC1-motif enrichment in genes with 
H4K16ac peaks displaying opposing gains in aging as compared 
to losses with AD, we wanted to determine more globally whether 
the H4K16ac changes were occurring at the same peak locations. 
A  three-way comparison of H4K16ac enrichments comparing 
Young, Old and AD subjects simultaneously was performed to 
determine how the changes in AD were related to aging. This anal-
ysis allowed detection of three major classes of H4K16ac changes 
that we defined in relation to AD: age-regulated, age-dysregulated 
and disease-specific (Fig. 5a–f). Because the patients were col-
lected and sequenced in two replication sets, their similarities were 
assessed by clustering over the three classes of peaks, revealing that 
they separated primarily by study group (Supplementary Fig. 7). 
Age-regulated changes were defined as changes that are established 
with normal aging (either gains or losses) and are maintained in 
AD (Fig. 5a,d). Age-dysregulated changes are those that are estab-
lished with age (either gains or losses) and either fail to be estab-
lished or fail to be maintained in AD (Fig. 5b,e). Disease-specific 
changes are gains or losses specific to AD and not seen with nor-
mal aging (Fig. 5c,f). In each of the three classes, the number of 
significant gains and losses (P <​ 0.05, one-way ANOVA) were simi-
larly represented, except for the age-dysregulated class, in which the 
losses in AD were more pronounced (Fig. 5b,e; ~2,000 gains versus  
~10,000 losses); this was anticipated given the trends seen in Fig. 2.

A functional analysis of genes showing H4K16ac changes in each 
of the three major classes was then performed. We considered all 
H4K16ac peaks within 10 kb from the TSS of the closest gene to 
include regulatory elements (Fig. 5g–l and Supplementary Table 5). 
Compared to the two-way analysis, the three-way analysis traced 
the enrichment changes of a peak across aging and disease, thereby 
specifying the exact functional pathway dysregulated. For example, 
categories related to neuron and synapses were found in both age-
regulated and disease-specific classes of changes, pointing at neu-
roplasticity as a known feature of brain aging and early stages of 
dementia38,39. On the other hand, categories related to immunity 
and stress response, such as to hypoxia, were found in age-regulated 
and age-dysregulated classes of changes. It is known that immunity 
and stress responses are induced in aging22,23 and that excessive 
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glia activation is a feature of AD40; this points at age-dysregulation 
of immunity as a possible mechanism in AD. Regulation of cell 
death was present as a top category in age-dysregulated changes, 
reminiscent of REST-mediated stress response in aging, and in 
AD33. Notably, a category related to chromatin modifications was 
present among the age-regulated GO terms, pointing at a role for 
epigenetics in aging and disease. This opens the question of how 
genetic risk factors for AD relate to epigenetic changes; this rela-
tionship has only recently been explored in the context of human 
tissue aging and age-related diseases.

Regions of H4K16ac changes are enriched for AD single-nucleo-
tide polymorphisms and regulatory expression quantitative trait 
loci. Genome-wide association studies (GWAS) of single nucleotide 
polymorphisms (SNPs) identify genetic variants associated with 
specific traits and complex diseases. Often these disease-associated 
SNPs are located outside of gene bodies and may coincide with 
genetic elements that are subject to epigenetic regulation, such as 
enhancers and promoters affecting gene expression. Since H4K16ac 

is known to mark both active enhancers and promoters20, we con-
sidered that there may be a significant overlap between the H4K16ac 
changes that we defined in AD and the AD SNPs that have emerged 
from GWAS. To examine this, we used a curated list of disease-asso-
ciated SNPs (GWAS association P <​ 1 ×​ 10−5) passing two stages of 
clinical testing in the International Genomics of Alzheimer’s Project 
meta-analysis study, which includes four different GWAS datasets41, 
and applied INRICH, an interval-based GWAS analysis tool, to 
infer their overlap with regions of H4K16ac changes.

SNPs that are in linkage disequilibrium were merged into one 
region (using PLINK, a whole-genome association analysis tool), 
ultimately yielding a total of 260 merged SNP regions. We then 
examined these merged SNP regions for overlap with H4K16ac 
alterations in each of the three major classes described above 
(Fig. 6a–c). Notably, we found significant associations between the 
AD SNPs and both the age-regulated and disease-specific changes 
(P =​ 0.0018 and P =​ 0.0118, respectively; Fig. 6d), but not the age-
dysregulated changes (P =​ 0.4071; Fig. 6d; see Fig. 6e for an example 
genomic view of disease-specific associated SNPs).
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To further assess the extent to which H4K16ac peaks mark regu-
latory elements involved in AD, we overlapped them with expres-
sion quantitative trait loci (eQTLs) detected in AD studies. eQTLs 
are genetic variants that have a substantial effect on the expression 
level of an mRNA transcript and therefore tend to mark transcrip-
tional regulatory elements42. Because no meta-analysis has yet been 
performed with AD eQTLs, we chose one dataset43 with relatively 
high numbers of eQTLs and used a bootstrapping method followed 
by a Bonferroni correction to test the significance of association 
with each of the three classes of H4K16ac changes.

We used a dataset of eQTLs in temporal cortex from subjects 
with AD (n =​ 202) and subjects with non-AD pathologies (n =​ 197; 
other brain pathologies)43. This dataset contains significant eQTLs 
from the AD cases (85,359 SNP transcript pairs), eQTLs from the 
non-AD cases (68,337 SNP transcript pairs) and eQTLs from the 
combined set of AD and non-AD cases (156,134 SNP transcript 

pairs), and it was highly powered due to sample size as well as an 
imputation scheme (HapMap2) that allowed more SNPs to be ana-
lyzed for eQTL activity. In performing this analysis we found signifi-
cant enrichments for all combinations of peak and eQTL conditions 
(Bonferroni P values ranging from 9 ×​ 10−4 to 3.96 ×​ 10−1; Fig. 6f 
and Supplementary Table 6), suggesting that all classes of H4K16ac 
peaks harbor regulatory elements involved in AD pathology as well 
as other neurodegenerative processes. Additional analysis on the 
same dataset using GREGOR44, a tool for assessing the enrichment 
between genetic variants and genomic elements, confirmed an asso-
ciation between AD eQTLs and the three classes of H4K16ac peaks 
(P values ranging from 4.69 ×​ 10−50 to 4.46 ×​ 10−14; Fig. 6g).

To assess the specificity of these enrichment results to AD 
eQTLs and not to any other unrelated but highly powered eQTLs, 
we examined the enrichment in our peaks with eQTL datas-
ets from the GTEx (Genotype–Tissue Expression) project45 that 
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include eQTL analyses of normal human tissues (including blood 
and nonbrain). Across the 44 datasets tested, we found significant 
enrichment in two datasets only: ‘Cells_Transformed_fibroblasts’ 
for age-regulated and age-dysregulated peaks and ‘Thyroid’ for age-
dysregulated only (P =​ 0.0132); we found none for disease-specific 
peaks (Supplementary Fig. 8). Because only 2 of 44 datasets showed 
significant enrichments in our classes of peaks, and none for the 
disease-specific peaks, as expected for normal tissue eQTLs, these 
findings accentuate the significance of the association with AD 
eQTLs selectively.

Overall, these data underscore the significant association of AD 
GWAS SNPs and AD eQTLs with H4K16ac changes defined by the 
analysis of Young, Old and AD subject brains. This relationship 
emphasizes the biological relevance of chromatin changes to the 
genetic factors impacting AD.

Discussion
We report the first genome-wide profile of a histone modification in 
human brains affected with AD. Given that age is the number one 
risk factor for late-onset AD, we carefully designed our study to take 
into account epigenetic changes associated with aging by includ-
ing brain samples from younger and older adults, to reveal how 
aging affects the epigenetic profile of AD. To our knowledge, such 
a comparison has not been performed previously, as most studies 
have used mouse models, which do not naturally develop AD with 
age and are artificially induced to develop plaques and tangles and 
which therefore can only be used to study the downstream conse-
quences of these pathologies. In contrast, our study traces the natu-
ral changes in AD with age in human brain tissue.

We studied the acetylation of H4K16ac due to its ties with aging in 
model organisms and senescence in mammalian cell culture17–19,46–48. 
Comparison of Young and Old samples revealed a redistribution of 
H4K16ac with age characterized by a greater number of gains than 
losses (Fig. 2a,d). This finding is in general agreement with studies in 
yeast and mammalian senescent cells, where H4K16ac is observed to 
increase at specific genomic loci with age17–19. In contrast to normal 
aging, comparison of Old and AD subjects revealed a redistribution 
of H4K16ac in AD subjects, with more losses than gains (Fig. 2b,e). 
These data are congruent with analyses of histone acetylation in mouse 
models of AD, in which loss of acetylation (H2BK5ac, H3K14ac, 
H4K5ac and H4K12ac) occurs at neuronal genes49. Additionally, a 
targeted proteomics approach in human brains showed reduction 
of H3K18ac and H3K23ac in AD50. Our comparison of H4K16ac 
changes between aging and AD revealed that changes during aging 
and changes during disease are negatively correlated.

These analyses point to a model wherein Alzheimer’s disease is 
not simply an advanced state of normal aging, but rather dysregu-
lated aging that may induce disease-specific chromatin structural 
changes and/or transcription programs. Indeed, the three-way com-
parison of Young, Old and AD subjects revealed a specific class of 
H4K16ac changes in AD subjects that were opposite to normal age-
established changes (Fig. 5). Hence this suggests that certain normal 
aging changes could guard against AD and thus, when dysregulated, 
predispose to AD (Fig. 5b). A similar trend of age-dysregulation in 
AD has been observed for the transcriptional co-repressor REST, 
which increases with age but decreases in AD and plays a neuro-
protective role in aging through modulation of H3K9ac33. However, 
no genome-wide assessment of REST has been performed in the 
human brain. For H4K16ac changes that are age-regulated and 
maintained in AD, these changes could predispose, be protective 
or simply correlate with aging with no effect on disease. In addition 
to the two classes of H4K16ac changes that are age-dependent, we 
observed a third class of changes that we defined as disease-specific. 
These changes (for example, affecting neuronal function) could 
be secondary to the age-associated changes, but contribute to the 
pathogenesis of the disease.

Finally, by assessing the relationship between AD eQTLs with 
the H4K16ac changes, we found significant association with the 
three classes of H4K16ac changes, indicating that our analysis can 
pinpoint regulatory mechanisms discovered through SNP analysis 
of AD patients. Further, the significant overlap of the AD GWAS 
SNPs with age-regulated and disease-specific peaks, but not age-
dysregulated peaks, highlights the discovery of additional regula-
tory mechanisms through our epigenomic analysis and supports the 
inclusion of epigenomic GWAS in understanding complex diseases.

Our study proposes a mechanism to explain how age is a risk fac-
tor for AD: a particular histone modification, whose accumulation 
is strongly associated with aging, is dysregulated in AD. These find-
ings and their replication in future work using patients from other 
biobanks open the possibility that prevention of age-dysregulation 
at the chromatin level may be a therapeutic avenue for AD.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41593-018-0101-9.
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Methods
Brain tissue samples. Postmortem human brain samples from lateral 
temporal lobe (Brodmann area 21 or 20) were obtained from the Center for 
Neurodegenerative Disease Research (CNDR) brain bank at the University of 
Pennsylvania (Penn). Informed consent for autopsy was obtained for all patients 
and the study was approved by the Penn Institutional Review Board (Penn IRB). 
The CNDR autopsy brain bank protocols were exempted from full human research 
(research on tissue derived from an autopsy is not considered human research; 
see https://humansubjects.nih.gov/human-specimens-cell-lines-data). A detailed 
description of the brain bank standard operating procedures has been reviewed 
elsewhere51. A neuropathological diagnosis of AD was established based on 
the presence of plaques and tangles using the CERAD scores and Braak stages, 
respectively52,53. The CERAD plaque score assesses the burden of neuritic plaques 
(0 and A–C in order of increasing frequency) in the neocortex. Braak staging 
is based on the progression of neurofibrillary tangles from the transentorhinal 
cortex (stage I) to widespread neocortical pathology including primary visual 
cortex (stage VI). The tissue samples were selected based on the presence of 
plaques and neurofibrillary tangles using the CERAD scores and Braak stages, 
respectively52,53. All selected AD cases had high levels of AD neuropathological 
changes (Braak =​ V/VI and CERAD =​ C; Supplementary Table 1). The Young and 
Old control brains had no or minimal neuritic amyloid plaques (CERAD =​ 0) or 
neurofibrillary tangles (CERAD =​ 0). None of the AD cases had other coincident 
neurodegenerative diseases. Control subjects had no deposits consistent with a 
frontotemporal lobar degeneration– or Lewy body–related pathology diagnosis. 
AD cases with severe neuronal loss were not included. The neuronal loss was 
originally assessed through semiquantitative measurements by hematoxylin and 
eosin (H&E) staining by board-certified neuropathologists of the CNDR. The H&E 
scoring for neuronal loss ranges from 0–3, where 0 signifies no neuronal loss 
and 3 is severe neuronal loss. Only cases with neuronal loss of 1 or 2 (mild or 
moderate) were included.

Quantification of neuron abundance by IF. Neural percentages in the samples 
were also quantified by NeuN immunofluorescence staining, as described54.  
Briefly, formalin-fixed, paraffin-embedded (FFPE) temporal lobe tissue sections  
(5 µ​m thick) were placed on glass slides at the CNDR (University of Pennsylvania). 
Slides were deparaffinized and hydrated by serial washes in xylene followed by 
100%, 90% and 70% ethanol and ddH2O. Antigen retrieval was performed by 
keeping the slides in 10 mM citrate, pH 6.0, for 25 min in a chamber exposed to 
boiling water. Slides were blocked with subsequent incubations in 1 mg/mL sodium 
borohydride and 5% goat serum in PBS with 0.25% Triton X-100 / 0.1% BSA. 
Slides were incubated with 1:500 dilution of anti-NeuN antibody (MAB377, EMD 
Millipore55) overnight at 4 °C, washed with PBS / 0.1% BSA / 0.1% Triton X-100, 
and incubated 90 min at room temperature (20–25 °C) with Oregon Green 488 
anti-mouse antibody (Life Technologies). Slides were subsequently incubated with 
1 ug/mL DAPI for 10 min to visualize nuclei, and autofluorescence was blocked by 
incubation with 0.1% Sudan Black in 70% ethanol. Cover glasses were mounted 
on the slides using Fluoromount-G mounting medium (Southern Biotech) and 
slides were visualized on an Olympus BX60 Widefield Fluorescence Microscope 
using a Hamamatsu ORCA-ER CCD camera running Slidebook 5.5 software. 
For each slide we visualized 20–30 fields from random locations in each of the 
gray and white matter. NeuN+ cells were quantified by marking manually in a 
blinded fashion in Microsoft Paint and subsequently counting on Cell Profiler 
(Broad Institute). Total cell numbers were obtained by automated counting of 
DAPI+ objects in Cell Profiler. Tissue from each of the Young (n =​ 9), Old (n =​ 10) 
and AD groups (n =​ 12), also used for H4K16ac ChIP-seq, were stained and 
quantified. One slide was analyzed per patient. For the combined white and gray 
matter percentages, the counts per field of white and gray matter were averaged by 
weighting the gray matter count by 2.7 and white matter count by 1, to reflect the 
composition of the human temporal cortex56.

ChIP-seq. ChIP-seq was performed as previously described17 with modifications 
for brain preparation. Briefly, 200 mg brain tissue from each patient was minced 
on ice and nuclei were prepared by dounce homogenization in nuclei isolation 
buffer (50 mM Tris-HCl at pH 7.5, 25 mM KCl, 5 mM MgCl2, 0.25 M sucrose) 
with freshly added protease inhibitors and sodium butyrate, followed by 
ultracentrifugation on a 1.8-M sucrose cushion. Nuclei pellet was resuspended in 
2 mL PBS and cross-linked in 1% formaldehyde for 10 min at room temperature. 
Crosslinking reactions were quenched with addition of glycine to 125 mM for 
5 min followed by two washes in cold PBS. We then lysed 2 ×​ 106 nuclei in nuclei 
lysis buffer (10 mM Tris-HCl at pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5 mM 
EGTA, 0.1% sodium-deoxycholate, 0.5% N-lauroylsarcosine) with freshly added 
protease inhibitors and sodium butyrate, and chromatin was sheared using a 
Covaris S220 sonicator to ~250 bp. Equal aliquots of sonicated chromatin were 
used per immunoprecipitation reaction with 5 µ​L H4K16ac antibody (Millipore, 
#07-32915,19) preconjugated to Protein G Dynabeads (Life Technologies), and 10% 
of the amount was saved as input. ChIP reactions were incubated overnight at 4 °C 
with rotation and washed three times in wash buffer. Immunoprecipitated DNA 
was eluted from the washed beads, purified and used to construct sequencing 
libraries with 5 ng of DNA (ChIP or input) using the NEBNext Ultra DNA library 

prep kit for Illumina (New England Biolabs, NEB). Libraries were multiplexed 
using NEBNext Multiplex Oligos for Illumina (dual index primers) and single-
ended sequenced (75 bp) on the NextSeq 500 platform (Illumina) in accordance 
with the manufacturer’s protocol.

ChIP-seq analysis. ChIP-seq tags generated with the NextSeq 500 platform were 
de-multiplexed with the bcl2fastq utility and aligned to the human reference 
genome (assembly NCBI37/hg19) using Bowtie v1.1.157, allowing up to two 
mismatches per sequencing tag (parameters: -m 1–best). Peaks were detected 
using MACS258 (tag size =​ 75 bp; FDR <​1 ×​ 10−3) from pooled H4K16ac tags of 
patients belonging to the same study group (Young, Old or AD subjects) along with 
treatment-matched input tags as control. Within each pooled sample, peaks whose 
termini were within 150 bp were merged into one peak. The MTL method59 was 
then used to compare H4K16ac enrichment across the three study groups. A ‘region 
of analysis across the three study groups’ was defined by having at least one peak 
called in Young, Old or AD subjects. Furthermore, if peaks across the three 
study groups had their centers within 200 bp distance, the entire area including 
these peaks (from peak to peak termini) was considered one unique region of 
analysis. H4K16ac enrichment was then calculated by summing the H4K16ac tags 
overlapping this unique region of analysis and adjusting them by a per-patient 
reads-per-million (RPM) scalar coefficient and by the size of the region of analysis 
(in kb). Adjusted tag counts were averaged over all patients belonging to the same 
study group and input subtracted, resulting in an H4K16ac enrichment value, or 
AUC (area under the curve). AUC values were then transformed in log2(AUC +​ 1)  
for downstream analysis. Statistical significance of differential H4K16ac 
enrichments was assessed by performing a Welch’s t test for two-way comparisons 
(i.e., Young vs. Old) or one-way ANOVA for three-way comparisons (Young vs. 
Old vs. AD subjects). Scatter plots, histograms and box plots of ChIP-seq data were 
visualized using Python package Seaborn (v0.7.1.) or Matplotlib (v 1.5.1.).

Removal of confounding factors. A principal component analysis (PCA) was 
performed in R using the top 10,000 H4K16ac peaks by s.d. across all patients. 
The first two principal components (PC1 and PC2) were examined for rank 
correlation with neuronal proportions measured by flow cytometry, yielding 
Spearman’s ρ​ PC1 =​ 0.006; Spearman’s ρ​ PC2 =​ 0.076. The PCA was also performed 
on the ~30,000 differentially enriched H4K16ac peaks in the three classes 
(age-regulated, age-dysregulated, disease-specific) combined, and rank correlation 
was re-assessed, yielding Spearman’s ρ​ PC1 =​ –0.261 and Spearman’s ρ​ PC2 =​ 0.375. 
To correct for the mild correlation between neuronal proportion and the two PCs, 
all peaks were assessed for correlation between H4K16ac enrichment and neuronal 
proportion on a per-patient basis, and the top 50,000 peaks by correlation were 
masked. PCA was then redone on the differentially enriched H4K16ac peaks, 
and the correlation analysis yielded Spearman’s ρ​ PC1 =​ 0.008 and Spearman’s 
ρ​ PC2 =​ 0.133. Peak masking was done using custom python scripts while R was 
used for the PCA and correlation analyses.

Neuron quantification by flow cytometry. To remove the contribution of 
neuronal loss to the H4K16ac peak analysis, we measured neuronal proportions by 
NeuN staining and flow cytometry analysis in nuclei isolated from the same tissue 
regions used for ChIP-seq (values reported in Supplementary Table 1). Isolated 
nuclei (prepared as in the ChIP-seq protocol) were stained with an anti-NeuN 
antibody (Millipore # MAB 377×​60; Alexa Fluor-488 conjugated) in presence of 5% 
goat serum and incubated in the dark for 1 h. NeuN-stained nuclei were analyzed 
on a BD LSR II flow cytometer (at the UPenn FACS core facility) with gates set 
according to nuclei size, NeuN intensity and an IgG control.

Genome browser tracks. Generation and visualization of ChIP-seq tracks 
was conducted as follows. BED files of each aligned dataset were converted 
into coverage maps using the BEDtools utility genomeCoverageBed. Resulting 
bedGraphs were scaled by using the RPM (reads per million) coefficient, a measure 
of the millions of tags sequenced per sample to correct for sequencing efficiency 
biases, and subsequently normalized by subtracting an input coverage map. Finally, 
BigWig files were generated and uploaded on the UCSC (University of California 
Santa Cruz) Genome Browser.

Meta-profiles. Meta-profiles of H4K16ac enrichment at TSSs were generated 
by taking a 2-kb window around the TSS of all RefSeq genes associated with 
an H4K16ac peak in Young, Old and AD subjects (or genes associated with no 
H4K16ac peak) and tabulating the average of H4K16ac enrichment (AUC) in 
20-bp intervals. A meta-profile of intergenic peaks was generated similarly by 
selecting a 2-kb window around the center of H4K16ac peaks detected in each 
of Young, Old and AD subjects and not overlapping with gene bodies or 1-kb 
upstream promoter regions.

Functional analysis. Downstream functional analysis of genes targeted by 
H4K16ac changes was performed by associating each RefSeq transcript to its 
nearest peak. Gene ontology (GO) enrichment analysis of genes associated with 
significant H4K16ac changes was performed using DAVID (David Bioinformatics 
Resources v6.7)61. For representation of GO terms in the text figures, terms with 
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shared genes were collapsed to a single representative term. Also, if one GO term 
was a subset of another GO term, that GO term was dropped in favor of the other 
(see Supplementary Tables 4 and 5 for a complete list of biological process (BP), 
cellular component (CC), molecular function (MF) and tissue at FDR <​ 10%; FDR 
<​10% represents the threshold of significance in DAVID). DNA motif analysis was 
performed using SeqPos in the Cistrome site31 with default parameters and DNA 
motif scanning window =​ 1.2 kb.

RNA-seq. Total RNA was isolated from 20 mg frozen brain tissue using the 
RNAeasy Mini kit (Qiagen) coupled to an RNase-free DNase step (Qiagen). 
Ribosomal RNA was removed using the rRNA Depletion kit (NEB) and the 
resulting RNA was used to construct sequencing libraries using the NEBNext Ultra 
Directional RNA library Prep Kit for Illumina (NEB). Libraries were multiplexed 
using NEBNext Multiplex Oligos for Illumina (dual index primers) and single-
ended sequenced (75 bp) on the NextSeq 500 platform (Illumina) in accordance 
with the manufacturer’s protocol.

RNA-seq tags reads were aligned to the human reference genome (assembly 
GRCh37.75/hg19) using STAR with default parameters. Alignments with a 
mapping score <​10 were discarded using SAMtools and alignments mapped to 
mitochondria and chrUn (contigs that cannot be confidently placed on a specific 
chromosome) were removed using BEDtools. FeatureCounts was used to generate 
a matrix of mapped fragments per RefSeq annotated gene, from which genes 
annotated by RefSeq as rRNA were discarded. Analysis for differential gene 
expression was performed using the DESeq2 R package with FDR <​0.05. For 
comparison of our RNA-seq data to published microarray data in the hippocampus 
of AD and control patients21, the published data were downloaded from NCBI’s 
GEO (accession GSE28146) and requantified using Limma. Transcripts were 
then organized into deciles by overall expression in control or AD subjects and 
compared to old or AD subjects RNA-seq respectively.

Association between AD SNPs and H4K16ac changes. To curate a list of 
Alzheimer’s-associated SNPs, a set of 2,371 SNPs passing stage I and stage II 
GWAS meta-analysis with P ≤​ 1 ×​ 10−5 were downloaded from the International 
Genomics of Alzheimer’s Project (IGAP)41. INRICH62 was used to infer the 
relationship between H4K16ac changes and PLINK-joined63 AD GWAS SNP 
intervals (linkage due to HapMap release 23) using standard parameters. The set 
of all H4K16ac changed peaks, filtered for a one-way ANOVA P <​ 0.05, was the 
background for the experiment.

IGAP is a large two-stage study based on GWAS of individuals of European 
ancestry. In stage 1, IGAP used genotyped and imputed data on 7,055,881 single 
nucleotide polymorphisms (SNPs) to meta-analyze four previously-published 
GWAS datasets consisting of 17,008 Alzheimer’s disease cases and 37,154 controls 
(The European Alzheimer’s Disease Initiative, EADI; the Alzheimer Disease Genetics 
Consortium, ADGC; the Cohorts for Heart and Aging Research in Genomic 
Epidemiology consortium, CHARGE; the Genetic and Environmental Risk in 
AD Consortium, GERAD). In stage 2, 11,632 SNPs were genotyped and tested for 
association in an independent set of 8,572 Alzheimer’s disease cases and 11,312 
controls. Finally, a meta-analysis was performed combining results from stages 1 and 2.

eQTL data processing and sampling analysis. For the Zou et al. data43, eQTL data 
tables were downloaded from the National Institute on Aging Genetics of Alzheimer’s 
Disease Data Storage Site at the University of Pennsylvania, funded by the National 
Institute on Aging (grant U24-AG041689-01). The original paper analyzed samples 
from cerebellum in addition to temporal cortex, but we only used the temporal cortex 
data due to the cortical origin of our H4K16ac measurements and because regulatory 
elements are variable across brain regions64. Custom awk-based bash scripts, available 
by request, were used to convert eQTL data tables into BED format using the liftOver 
utility from the UCSC Genome Browser65 to convert annotations from the hg18 
genome build to hg19 to overlap with the H4K16ac peaks. Twelve AD, 10 non-AD, and 
18 combined-condition eQTLs were unmapped by liftOver. We then used the intersect 
tool from the bedtools suite66 to overlap our H4K16ac peaks with the eQTL bed files.

For the sampling analysis, the shuffle tool from bedtools was used to generate 
10,000 sets of matched control intervals, where unmappable regions, as defined by 
the DAC blacklisted regions, were downloaded from the UCSC genome browser and 
ENCODE67. For each dataset, custom scripts, also available by request, were used 
to summarize the overlap counts in easily parse files that were then read into the R 
programming language, which was used to perform the empirical enrichment analyses.

GREGOR enrichment analysis. The GREGOR tool requires LD-pruned sets 
of variants as input, so the sets of significant eQTLs for each target gene in each 
condition were pruned using PLINK v1.90b2i 64-bit68 with a cutoff of R2 ≥​ 0.7 to 
define the LD blocks and using data from the phase 3 version 1 (11 May, 2011) 
European population of the 1,000 Genomes Project69. Then, using the matching 
reference data, the GREGOR tool was run on each set of pruned eQTLs against 
the H4K16ac BED format files, using an R2 threshold of 0.7, an LD window size of 
1,000,000 bp and a minimum of 500 control SNPs for each index eQTL.

Statistical analysis. Statistical analysis of ChIP-seq data was performed with 
Welch’s t test (two-sided) or one-way ANOVA (one-sided). Differences were 

considered statistically significant for P <​ 0.05 (uncorrected for multiple hypothesis 
testing). Statistical analysis of RNA-seq data was performed using DESeq 
(Wald test) and differences were considered statistically significant for P <​ 0.05 
(FDR <​ 0.05, controlled by Benjamini–Hochberg). For all figures derived by the 
analysis of ChIP-seq data (all figures except Supplementary Fig. 4), sample sizes 
were Young =​ 9; Old =​ 10; AD =​ 12 (independent brain samples). For RNA-seq 
analysis (Supplementary Fig. 4), the sample size was Young =​ 8; Old =​ 10; AD =​ 12 
(independent brain samples, from the same subjects as those used for the  
ChIP-seq experiments). No statistical methods were used to predetermine sample 
sizes, but our sample sizes are similar to those reported in previous studies in the 
field70,71. Data distribution was assumed to be normal, but this was not formally 
tested. Data collection and analysis were not performed blind to the conditions of 
the experiments, except for quantitative analysis of IF staining. Samples were not 
subject to randomization, but were assigned to experimental group based on their 
age and disease status (Young, Old and AD subjects). No data points were excluded 
from the analyses.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Data availability. The data that support the findings of this study are available 
through the NCBI Gene Expression Omnibus (GEO) repository under accession 
number GSE84618.

Code availability. Code and pipeline for the analyses performed in this study are 
available at http://165.123.66.72/btracks/sulfa/Nativio.11112017.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Sample size was based on literatures in the field and tissue sample availability within the 
CNDR biobank (University of Pennsylvania) with following selection criteria: age, gender, 
disease stage and neuronal loss. Study group (Young, Old and AD) comparisons were subject 
to a Welch’s t-test (2-way comparison) or 1-way Anova (3-way comparison).

2.   Data exclusions

Describe any data exclusions. No data were excluded from the analyses

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

Because tissue samples were collected and ChIP-sequenced in two replication sets, their 
similarity was assessed by clustering over the three classes of peaks (Age-regulated; Age-
dysregulated; Disease-specific) - see Fig. S7.  All attempts at replication were successful.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Tissue samples were allocated (no randomization) into three different study groups based on 
age and disease: cognitively normal elder individuals (“Old”, N=10, mean age=68), AD 
subjects (“AD”, N=12, mean age=68), or younger cognitively normal subjects (“Young”, N=9, 
mean age=52) - see Table S1 for patient information. In order to reduce the number of 
explanatory variables to a minimum, we controlled for gender (mainly male subjects), 
comorbidity (excluding cases with other neuropathologies) and neuronal loss (excluding cases 
with sever loss).

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Tissue samples were selected based on criteria matching each study group (Young; Old or AD) 
and therefore not subject to blinding. However, NeuN stained nuclei (Fig. S1) were counted in 
a blind fashion for each tissue sample.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

For ChIP-seq analysis, we used: Bowtie v1.1.1 (to align sequencing tags to the human 
reference genome); MACS2 (to call peaks); MTL method (Chen et al., 2008) (to compare 
ChIP-seq enrichment across the three study groups). For RNA-seq analysis, we used: STAR 
(to align sequencing tags to the human reference genome); SAMtools and BEDtools (to 
remove tags with mapping score < 10 or mitochondria tags); DESeq2 R package for 
differential gene expression analysis. Pipeline and code for the ChIP-seq analysis are 
available at http://165.123.66.72/btracks/sulfa/Nativio.11112017. For AD SNP and AD eQTL 
enrichment analysis, we used INRICH and custom awk-based bash scripts (available by 
request), respectively. 
For neuronal quantification by IF, we used: Slidebook 5.5 software (to visualize slides on the 
Olympus BX60 Microscope); Microsoft Paint (to mark NeuN positive nuclei) and Cell Profiler 
(to count DAPI+ objects).

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

No unique materials were used
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9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

For ChIP-seq:  
- H4K16ac antibody: cat # 07-329; Millipore at http://www.emdmillipore.com/US/en/
product/Anti-acetyl-Histone-H4-Lys16-Antibody,MM_NF-07-329 
 
For neuron quantification by IF:  
- NeuN antibody: cat # MAB377; EMD Millipore at http://www.emdmillipore.com/US/en/
product/Anti-NeuN-Antibody-clone-A60,MM_NF-MAB377 
- Oregon Green 488 anti-mouse antibody (Life Technologies) 
 
For neuron quantification by flow cytometry: 
- NeuN antibody (Alexa Fluor®488 conjugated): cat # MAB 377X, EMD Millipore at http://
www.emdmillipore.com/US/en/product/Anti-NeuN-Antibody-clone-A60-Alexa-Fluor488-
conjugated,MM_NF-MAB377X 
- anti-mouse IgG antibody (Alexa Fluor®488 conjugated): cat # A21202, ThermoFisher at 
https://www.thermofisher.com/antibody/product/Donkey-anti-Mouse-IgG-H-L-Highly-Cross-
Adsorbed-Secondary-Antibody-Polyclonal/A-21202

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

no animals were used

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Tissue samples were categorized based on age, gender, disease stage and neuronal loss. 
Detailed patient information is provided in Table S1.
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ChIP-seq Reporting Summary
 Form fields will expand as needed. Please do not leave fields blank.

    Data deposition
1.  For all ChIP-seq data:

a.  Confirm that both raw and final processed data have been deposited in a public database such as GEO.

b.  Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

2.   Provide all relevant data deposition access links. 
The entry may remain private before publication.

The ChIP-seq and RNA-seq data are available through NCBI Gene Expression 
Omnibus (GEO) repository under accession number GSE84618.

3.  Provide a list of all files available in the database 
submission.

Files available in the GEO: Fastq; bigWig and BED files.

4.   Provide a link to an anonymized genome browser 
session (e.g. UCSC), if available.

No longer applicable

    Methodological details
5.   Describe the experimental replicates. Tissue samples were categorized into three different study groups based on age 

and disease: Young (N=9, mean age=52); Old (N=10, mean age=68); AD (N=12, 
mean age=68) - see Table S1 for patient information. Because tissue samples were 
collected and ChIP-sequenced in two replication sets, their similarity was assessed 
by clustering over the three classes of peaks (Age-regulated; Age-dysregulated; 
Disease-specific) - see Fig. S7.  

6.   Describe the sequencing depth for each 
experiment.

Sequencing and alignment statistics (number of total tags, uniquely aligned tags 
and % uniquely aligned tags) is provided for each of the 31 samples in Table S2 
(ChIP-seq) and Table S3 (RNA-seq).

7.   Describe the antibodies used for the ChIP-seq 
experiments.

- H4K16ac antibody: cat # 07-329; Millipore at http://www.emdmillipore.com/US/
en/product/Anti-acetyl-Histone-H4-Lys16-Antibody,MM_NF-07-329

8.   Describe the peak calling parameters. Peaks were detected using MACS 2 (tag size = 75 bp; FDR < 1x10-3)

9.   Describe the methods used to ensure data quality. ChIP-seq data quality was assessed by comparing the genomic sites of 
H4K16ac enrichment with previously published H4K16ac data from other cell 
lines.

10. Describe the software used to collect and analyze 
the ChIP-seq data.

ChIP-seq libraries were sequenced (75bp) on the NextSeq 500 platform 
(Illumina) and data collected using BaseSpace (Illumina). For the ChIP-seq 
analysis we used: Bowtie v1.1.1 (to align sequencing tags to the human 
reference genome); MACS2 (to call peaks); MTL method (Chen et al., 2008) (to 
compare ChIP-seq enrichment across the three study groups). Pipeline and 
codes for the ChIP-seq analysis are available at 
http://165.123.66.72/btracks/sulfa/Nativio.11112017
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