
Nature Methods | Volume 20 | December 2023 | 2058–2067 2058

nature methods

Analysis https://doi.org/10.1038/s41592-023-02043-2

Comprehensive benchmarking and 
guidelines of mosaic variant calling 
strategies

Yoo-Jin Ha1,2, Seungseok Kang    1,2, Jisoo Kim    1, Junhan Kim1, Se-Young Jo    1,2 & 
Sangwoo Kim    1,2,3 

Rapid advances in sequencing and analysis technologies have enabled 
the accurate detection of diverse forms of genomic variants represented 
as heterozygous, homozygous and mosaic mutations. However, the best 
practices for mosaic variant calling remain disorganized owing to the 
technical and conceptual difficulties faced in evaluation. Here we present 
our benchmark of 11 feasible mosaic variant detection approaches based 
on a systematically designed whole-exome-level reference standard 
that mimics mosaic samples, supported by 354,258 control positive 
mosaic single-nucleotide variants and insertion-deletion mutations and 
33,111,725 control negatives. We identified not only the best practice for 
mosaic variant detection but also the condition-dependent strengths and 
weaknesses of the current methods. Furthermore, feature-level evaluation 
and their combinatorial usage across multiple algorithms direct the way for 
immediate to prolonged improvements in mosaic variant detection. Our 
results will guide researchers in selecting suitable calling algorithms and 
suggest future strategies for developers.

Postzygotic mutations continuously occur along the zygote-to-adult 
trajectory, resulting in genetic mosaicism. Recently, the capabilities 
to examine the mosaic mutations at the genome level have led to a 
series of discoveries, including the mutational processes and land-
scapes involved in the development1–3 and aging4 of human and non-
human organisms5, the causes of neurological disorders6 and cancer 
predispositions7. As research questions are being answered, grow-
ing attention and demand are required for the complete investiga-
tion of mosaicism, warranted by the accurate detection of mosaic  
mutations.

The detection of mosaic mutations is an intricate process, from its 
conceptualization. Given the definition of genetic mosaicism (that is, 
the presence of two or more genotypes), the scope of mosaic mutations 
has been loosely defined; conventional somatic mutations can also be 
seen as mosaicism because they cause genetic differences within an 

individual. Moreover, severe difficulties lie in the technical side that 
confound the methodological principles. For example, mosaic muta-
tions acquired during development may be present in multiple tissues, 
complicating the use of controls. Variant allele frequencies (VAFs) of 
mosaic mutations appear in a broad range, from extremely low (less 
than 1%) to the level of heterozygous germline variants (approximately 
50%), depending on the time and location of the occurrence and can 
be also largely unbalanced among shared tissues2. This ambiguity is 
well reflected in the usage of a disparate set of approaches applied for 
recent studies, such as targeting variants with unlikely VAFs for normal 
zygosity in a single sample8,9, searching for shared variants in a pair of 
samples10 and taking advantage of machine-learning algorithms11,12. 
These circumstances urgently demand rigorous cataloging and assess-
ment of mosaic detection algorithms, as has been done for germline 
and somatic variants13–18, but it requires a more sophisticated design 
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The 39 mixtures are categorized into three types, M1 (nine mix-
tures), M2 (12 mixtures) and M3 (18 mixtures) based on the cell line 
combinations, each of which has different sets of mutations (8,812, 
6,954 and 10,639 mutations in M1, M2 and M3). Biologically, these 
categories symbolize three distinct descendants, which contain both 
common and lineage-specific mosaic variants of diverse VAFs acquired 
from cumulative cell line mixing. Every mixture in a same category 
shares the mutation sites, but the final mutations are represented in 
different VAFs depending on the cell line compositions. Consequently, 
we secured 345,552 and 8,706 high-confidence SNVs and INDELs for 
control positives, and 33,093,574 nonvariants and 18,151 germline 
sites for control negatives from the 39 mixtures (Methods); the large 
number of control positives required a postrecalibration process for 
precision and F1 score, which we applied in the evaluation (Methods). 
The control positive variants were enriched in low VAF (70% of the vari-
ants under 10% VAF) to reflect the currently known VAF distribution 
of mosaic variants (Extended Data Fig. 1 and Supplementary Table 1).

Comparison between the mixtures of different categories ena-
bles testing for both shared and sample-specific mosaic variants of 
different VAFs. Selecting a pair of mixtures, out of 741 possible com-
binations (Methods), covers nearly complete scenarios for mosaic 
mutation detection, regarding variant sharing and its compositions. 
Sequencing data from deep whole-exome sequencing (1,100×) and its 
multistep-down sampling (125×, 250× and 500×) of the 39 mixtures 
were used for evaluation.

We selected 11 mosaic detection strategies for evaluation. The 
inclusion criteria were: (1) algorithms that explicitly aim to detect 

and a reliable ground truth to cover the full extent of scenarios that 
mosaic variants can represent.

Here, we present a robust benchmark of 11 state-of-the-art mosaic 
single-nucleotide variant (SNV) and insertion-deletion (INDEL) detec-
tion approaches based on a comprehensive reference standard that 
serves a ground truth. The benchmark and the reference standard 
have been systematically designed to evaluate the performance of 
the algorithms concerning multiple conditions that users will face 
in their analyses; these include VAFs, sequencing depth, variant 
types, variant sharing, VAF balances and the use of matched con-
trols. We provide measured accuracies, strengths and weaknesses 
of the algorithms, as well as the best detection practice in different 
conditions. Finally, we suggest potential strategies for improved 
detection of mosaic mutations that can be applied at the user and  
developer levels.

Results
Benchmark setting
The benchmark dataset was prepared using a recently constructed 
reference standard19. Briefly, the reference standard material is a collec-
tion of 39 mixtures of six pregenotyped normal cell lines. When mixed, 
germline SNVs and INDELs of the cell lines form mosaic-like mutations 
of a wide VAF spectrum (0.5–56%) that can be used as the ground truth. 
Likewise, confirmed nonvariant sites (reference homozygous) can be 
seen as control negatives. We designed the cell line mixing procedure to 
mimic the mutation acquisition process under cellular differentiation, 
such as early embryonic development (Fig. 1a,b, left).
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Fig. 1 | A benchmark overview. a, Mosaic variant acquisition from a zygote and 
its representation in an individual is shown. Mosaic variants can exist in sample-
specific or shared form. b, Cumulative mixing of six pregenotyped normal cell 
lines to construct the ground truth, mimicking the mosaic variant acquisition 
process during early development. Thirty-nine mixtures are categorized into 
three mosaic types, M1–M3, depending on the compositions of the mixed cell 

lines. Eleven detection strategies were evaluated in single sample and/or paired 
sample under various criteria such as VAF, sequencing depth, error type, call 
set consistency, use of control, VAF balance and misclassification. Images of the 
human body outline, blood in a tube and DNA were adapted from Adobe Stock 
(stock.adobe.com) under an extended license.
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mosaic mutations11,12,20, (2) procedures previously used to discover 
mosaic variants9,21 and (3) algorithms that can be adapted for mosaic 
mutation detection via simple usage modifications10 (Methods). 
The 11 strategies were classified into four major categories based on 
their baseline algorithms: mosaic, somatic, germline and ensemble 
(Extended Data Fig. 1). The mosaic category includes three algorithms 
designed to specifically target mosaic mutations: MosaicHunter 
(MH)20, MosaicForecast (MF)11 and DeepMosaic (DM)12, which exploit 
Bayesian, Random-Forest and image-based deep-learning algorithms, 
respectively. The somatic and germline categories include the three 
most frequently used variant callers Mutect2 (ref. 22) (MT2), Strelka2 
(ref. 23) (STK2) and HaplotypeCaller24 (HC), with or without previously 
applied modifications. Modified filtrations were applied to MT2 to 
allow mutant alleles in control samples for shared variant calling10 
(Methods). For HC, modified ploidy assumptions (ploidy 20, HC-p20 

and ploidy 200, HC-p200) were applied to detect low- to medium-level 
mosaic mutations based on the most recent recommendation9 (setting 
ploidy to the 20% of the overall sequencing coverage) (see Supplemen-
tary Notes for other options). There was only one ensemble approach, 
M2S2MH, that integrates three different callers (MH, MT2 and STK2) 
with additional read-level filtration21.

Evaluation of single-sample-based calling
This task aims to sort out true mosaic variants from sequencing arti-
facts and germline variants using one sample (without a matched con-
trol) (Fig. 2a). Most approaches primarily target the variants within 
intermediate VAFs (5–35%) that are not likely acquired by sequencing 
artifacts (less than 1–5%) or germline variants (50–100%). We evalu-
ated six currently applicable approaches (MH, MF, DM, MT2-to (MT2 
tumor-only mode), HC-p20 and HC-p200) for mosaic SNV and four 
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Fig. 2 | Evaluation of single-sample-based calling. a, A schematic overview of 
mosaic variant detection in a single sample. True mosaic variants with VAFs should 
be distinguished from the germline variants and diverse nonvariant sites. Thirty-
nine samples of truth sets were used for evaluation. b,c, Sensitivity, precision, 
F1 score, AUPRC and the false positive rate (log10FP/1Mbp) in different VAF bins 
categories are shown. The dashed line with dots depicts the theoretical upper 
limit for sensitivity and F1 score by depletion of mutant alleles in sequencing data 
at low VAFs (Supplementary Notes). The two vertical lines with gray dashes refer 
to VAFs of 5 and 10%. The y axis of log10(FP rate) is shown as a square root. b, SNV 
detection performance of six applied approaches in the eight VAF bins (less than 1, 
1–2, 2–3, 3–4, 4–7.5, 7.5–9.6, 9.6–25 and ≥25%) with 1,100× data. c, INDEL detection 
performance of four applied approaches in the seven VAF bins (less than 1, 1–2, 
2–4, 4–5, 5–9.6, 9.6–16 and ≥16%) with 1,100× data. d, The log2 ratios of precision 

to the sensitivity are shown by using 39 truth sets of the six SNV callers. The bars 
depict the first and third quantiles and hexagonal stars show medians. e, Similarity 
of call sets between different approaches. The similarities were calculated using 
the Jaccard index. NA shows when the union of the call sets did not apply (or exist). 
f, Euler diagram illustrating the relative size and the relationships between sets 
shows the inconsistency of the variant call sets within each approach toward four 
different depths: 125×, 250×, 500× and 1,100×. The consistency of true positives 
and two different types of false positives (nonvariant and germline) using 39 truth 
sets are shown with colored parts representing the call set specific to each depth 
(nVennR). MH, MosaicHunter; DM, DeepMosaic; MT2-to, Mutect2 tumor-only 
mode; HC-p20, HC with ploidy option 20; HC-p200, HC with ploidy option 200; 
TP, true positive. Source data for this figure are provided.
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approaches (MF, MT2-to, HC-p20 and HC-p200) for mosaic INDEL  
detection (Methods).

For mosaic SNVs, MF and MT2-to showed the best performance 
in low to medium VAF ranges (4–25%); MT2-to was higher in sensitivity 
and lower in precision than MF (Fig. 2b). Most of the performance gain 
in MF and MT2-to was achieved at low VAFs (less than 10%) supported 
by high sensitivity, whereas the absolute number of false positives was 
high (false positives per 1 Mbp = 0.69 in MT2-to, 0.71 in MF and 0–0.29 
in the others). In the high-VAF area (more than or equal to 25%), MF and 
MH performed best in terms of F1 score, whereas MF and HC-p200 
were best in terms of the area under the precision-recall curve (AUPRC) 
(Fig. 2b). This indicates that HC has a margin for improvement by 
parameter optimization in high-VAF mosaic SNV calling. For INDELs, 
MF showed the best performance for all VAF ranges in terms of the F1 
score, but the overall accuracy was lower than that of SNVs (Fig. 2c). 
No current algorithms could efficiently detect INDELs of a very low 
(less than 5%) VAF even at an ultra-high (1,100×) depth. Similar to that 
in SNVs, HC-p20 and HC-p200 marked the best AUPRCs at medium to 
high-VAF ranges (more than or equal to 16%). We further found that 
MF and MT2-to also showed a good balance between precision and 
sensitivity (log2 ratio = −0.31 and −0.78 in MF and MT2-to), whereas the 
other tools were more biased toward precision (DM = 1.8, MH = 3.08 
and HC = 0.53–4.91) (Fig. 2d).

Comparisons among the different call sets identified the overall 
discordance between the algorithms (Fig. 2e). Except between MT2-to 
and MF or HC-p20 and HC-p200, no two sets of called mosaic vari-
ants agreed more than 32% (percentage agreement 8–32, Fig. 2e left). 
Moreover, the agreement was far lower in false positive calls, forming 
a distinctive error set for each algorithm, mostly in low VAFs (less than 
10%) (Fig. 2e right, Extended Data Fig. 2). This tendency was shown in all 
sequencing depths tested (Supplementary Fig. 1a,b). By these results, 
the following conjectures about the combinatorial use of multiple 
callers could be inferred: (1) each algorithm finds distinct parts of the 
true mosaic variants and can be complemented by each other (Supple-
mentary Fig. 1c), (2) most of the false positive calls from one algorithm 
can be successfully filtered in others, but (3) simple ways to use two or 
more callers (for example, taking intersection) would substantially 
lower accuracy. We tackle this problem more thoroughly later in this 
study to compose a better ensemble approach in single-sample analysis 
than those generally used so far.

We further investigated the advantage of sequencing depth on 
performance. As expected, sensitivity and precision were improved in 
most approaches with the increase in sequencing depth, for both SNVs 
and INDELs (Supplementary Fig. 2). For example, the F1 score of MF was 
0.20, 0.38, 0.54 and 0.62 at 125×, 250×, 500× and 1,000×, respectively. 
The only exception was DM, which marked the best performance at 
250×, where the algorithm was trained12. It indicates that diversifying 
sequencing depth in training data is encouraged for deep-learning 
algorithms. Conversely, we found an unexpectedly large amount of 
depth-specific true and false positive calls in all algorithms (Fig. 2f 
and Supplementary Fig. 1d for INDEL). This observation indicates that 
the use of high-depth sequencing has not been optimized for mosaic 
variant detection. Because the loss of (previously detected) true calls 
and the gain of (previously eliminated) false calls in a higher depth 
are algorithmically undesirable, future efforts should be made to take 
advantage of high-depth sequencing data properly.

Evaluation of paired-sample-based calling
Multi-sampling is a growing option for optimal mosaic variant profiling. 
Here, we evaluate mosaic variant calling from a paired (two) sample, 
either one or both of which are affected to form sample-specific or 
shared variants, respectively (Fig. 3a). Detection of a sample-specific 
mosaic variant is equivalent to the conventional somatic variant detec-
tion problem. By contrast, detecting shared variants is more challeng-
ing because of the increased uncertainty about variant compositions. 

For example, VAFs of mosaic variants can be substantially varied or 
absent within samples depending on their developmental lineages, 
local proliferation and selective pressure across tissues1. While no single 
variant caller has tried to detect shared mosaic variants, there have been 
a few attempts to apply existing algorithms with modified usages10,21.

We evaluated 11 and eight strategies that could be applied to detect 
mosaic SNVs and INDELs in paired samples, respectively. These strate-
gies can be divided into two major categories: single genotyping and 
joint genotyping (Fig. 3b). Single genotyping initially calls variants in 
each sample independently, and then finds mosaic variants by com-
bining the two call sets (Methods). We applied MH, MF, DM, MT2-to, 
HC-p20 and HC-p200 to the single-genotyping approaches for SNVs 
and MF, MT2-to, HC-p20 and HC-p200 for INDELs. The joint-genotyping 
category considers both samples together at the same time to call 
sample-specific and/or shared mosaic variants. MT2 and STK2 were eli-
gible for detecting sample-specific mosaic SNVs and INDELs. Modified 
MH paired mode (MHP-m; Methods) were applicable to detect shared 
SNVs only, whereas Modified MT2 paired mode (MT2-m; Methods) 
were applicable to detect both shared SNVs and INDELs. M2S2MH was 
the only strategy that directly targeted the shared mosaic SNVs per se 
along with sample-specific SNVs and INDELs (Methods).

In sample-specific mosaic SNV detection, three of the 
joint-genotyping methods, MT2, STK2 and M2S2MH, showed best 
accuracy (Fig. 3c,d) throughout all sequencing depths (Supplemen-
tary Figs. 3 and 4). In particular, higher sensitivity at low VAF (less 
than 10%) (0.72, 0.72 and 0.70 in MT2, STK2 and M2S2MH, respec-
tively) than the others (0.01–0.06) was observed (Fig. 3e and Sup-
plementary Fig. 4). These tools also marked higher precision at low 
VAFs (MT2 = 0.58, M2S2MH = 0.70, STK2 = 0.4) than single-genotyping 
methods (MF = 0.33 and MT2-to = 0.37), suggesting the benefit of 
joint genotyping. In sample-specific INDEL detection, MT2 and STK2 
marked the best accuracy in low/high (less than 5% and greater than 
25%), and intermediate VAFs (5–25%), respectively. M2S2MH showed 
almost perfect precision with lower sensitivity, which can be useful for 
prioritizing call sets (Supplementary Figs. 5 and 6).

In shared mosaic variant detection, MF showed the best overall 
F1 score (MF = 0.92) (Fig. 3c,d, data points in the plane). However, the 
performance was largely variable to conditions, especially to VAFs 
(Extended Data Fig. 3). Partitioning the VAF space of a sample pair into 
16 (= 4 × 4) areas depicted the landscape of the local best performers 
(Fig. 3f,g). For SNVs, MT2-to marked the best F1 score in nine areas, 
mostly of intermediate VAFs (5–25%). MF performed best in two areas 
where variants in both samples are in low (less than 5%) and high (greater 
than 25%) VAFs, the former of which is frequently the main target in cur-
rent mosaicism studies. In three areas of higher VAFs (greater than 25%), 
germline approaches (HC-p20 and HC-p200) showed the best perfor-
mance, especially with high sensitivity. For INDELs, with the more com-
plex pattern of the best-performing callers, MT2-to, MF and HC-p20/
p200 generally outperformed others as in SNV detection (Fig. 3g).  
Using the identified VAF-specificity, we constructed and tested an 
instant ensemble strategy that selects call sets only from the local 
best performers to find a substantial improvement in overall F1 score 
for SNVs (0.89 to 0.96) and INDELs (0.52 to 0.60) from the best single 
callers, which we expect to direct future development.

Finally, we analyzed the effect of VAF imbalance (that is, the same 
variant is presented in different VAFs) in the detection of shared mosaic 
variants (Fig. 3h). Most algorithms showed reduced sensitivity for 
unbalanced (more than or equal to twofold VAF difference) mosaic 
variants. However, we found that MHP-m, MT2-m and M2S2MH were 
robust to the imbalance, demonstrating the effectiveness of joint 
genotyping. Another problem that VAF imbalance causes is the mis-
classification of shared variants as sample-specific variants, which 
happens by missing calls in one sample (Fig. 3i). We found that HC-p20, 
HC-p200, MH and DM lost up to twice the number of called true posi-
tives by misclassification, posing an opportunity to improve sensitivity 
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Fig. 3 | Evaluation of paired-sample-based mosaic variant calling.  
a, A schematic overview of detection of shared or sample-specific variants in a 
paired sample. b, Single and joint genotyping described to detect shared and 
sample-specific variants. Whereas single genotyping detects variants for each 
sample and take intersections or differences of the call set, joint genotyping takes 
both samples simultaneously. c,d, Sensitivity and false positive distribution of 
the 11 approaches in 1,100× for shared SNV (c) and eight approaches for INDEL 
detection (d). Distribution is shown across log10 scaled VAFs on each axis. Gray 
box denotes for joint genotyping and dashed cross lines depict VAF 10% for both 
axes. e, F1 scores of detecting sample-specific SNVs and INDELs are shown with 
two dashed lines point to 5 and 10% VAFs. Performance is shown in seven VAF bins 
(<1, 1–2, 2–3, 3–4, 4–10, 10–15, 15–25 and ≥25%). Dashed line with dots depicts the 

theoretical upper limit for F1 scores. f,g, Partitioned F1 scores of shared mosaic 
SNVs were calculated in 16 areas with the combinations of the four VAF range 
groups (very low ≤5%, low >5 and ≤10%, medium >10 and ≤25%, and high >25%). 
NA, not evaluated (could not assign positive controls). Combinations of the best-
performing approaches within each combinational VAF area are shown for shared 
SNVs (f) and INDELs (g) in 1,100× data with 39 truth sets. h, Sensitivity comparison 
with 1,100× data between the balanced and unbalanced VAF combinations in 
shared mosaic variant detection. The unbalanced category includes variants 
whose differences in VAF of two samples was greater than twofold. i, Proportion of 
misclassified shared variants to sample-specific variants in 1,100× data (39 truth 
sets) are shown with the proportion of true positives. Source data for this figure 
are provided.
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without core-level modifications. Overall, regardless of the current 
performance, joint genotyping, expansion of VAF ranges and modeling 
for diverse sequencing depths (Supplementary Fig. 7b) can be the most 
feasible ways for the best detection of shared mosaic variants.

Evaluation of features and filters
Variant calling uses multiple features inferred from sequencing data, 
such as simple field values in raw data (for example, base-call quality) 
or specifically formulated measures (for example, the proportion of 
clipped alt-reads with more than or equal to 10 bp). Because variant 
calling is a decision process that selects, calculates and organizes such 
features, feature-level evaluation provides fundamental resources for 
developers for accurate detection.

Using positive and negative calls, we evaluated 48 features used 
in four mosaic detection algorithms (MF, MT2-to, DM and HC; see 
Supplementary Table 4 for the full list of features) for their classifica-
tion powers on current false calls. The area under the curve (AUC) 
of the 48 features widely ranged from 0.5 to 1, 11 of which marked 
AUC > 0.9 (Fig. 4a). In particular, ‘refhom-likelihood’ (AUC = 0.99) 
and ‘mosaic-likelihood’ (AUC = 0.98), the likelihoods for wide-type 
and mosaic genotypes from MF and ‘QUAL’ (AUC = 0.99), a key confi-
dence feature for genotyping in HC, were able to further discriminate 
nonvariant errors. Likewise, ‘score 2’ (potential mosaic possibility, 
AUC = 0.99) of DM and quality by depth (AUC = 0.98) of HC could 

be used for filtering germline false positives. For INDELs, ‘GERMQ’ 
(Phred-scaled quality that alternative alleles are not germline vari-
ants, AUC = 0.99) of MT2-to and quality by depth (AUC = 0.98) were 
features that can distinguish germline false positives (Fig. 4a, right). 
There was no prominent potential feature for identifying true INDELs 
from nonvariant artifacts.

We inspected the properties of the informative features  
(Fig. 4b). The 48 features could be grouped into three categories by 
their source of origin: (1) sequencing (n = 20), (2) alignment (n = 15) 
and (3) genotype (n = 13). Sequencing-level features are the raw values 
and their derivatives regarding sequencing reads, base-call and qual-
ity. Alignment-level features are values that annotate the patterns and 
noises in sequencing read mapping, and genotype-level features are the 
intermediate scores generated during genotyping, such as likelihoods 
and confidence values for a position to be a true variant. We found that 
most of the informative features (12 of 13, 92%) fell into the genotype 
level. Additionally, the overall AUC of genotype-level features was 
significantly higher than those of sequencing- and alignment-level 
features (Wilcoxon rank sum test P = 3 × 10−5 and 2 × 10−5, respectively, 
two-sided) (Fig. 4b), suggesting that a better and more active use of 
genotype-level features would benefit developers when constructing 
a new model for mosaic variant detection.

Next, we evaluated another usage of such information: a postfilter 
with which the call sets are postprocessed and refined by using a single 
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threshold value. A good filter is expected to remove the false calls, while 
leaving the true calls, leading to an improvement in overall accuracy 
(for example, F1 score). We tested the efficiency of the 16 indepen-
dently adjustable filters used by MT2-to and HC-p200 by disabling 
them and comparing the differences in the call sets (Fig. 4c, upper). We 
found that most filters removed a substantial number of false positives  
(0 to 233,874); however, it was also accompanied by the corresponding 
number of lost true positives (0 to 160,967). Overall, the contribution 
of the filters to the overall performance (F1 score) was strictly lim-
ited (−0.002 to 0.038, mean 0.003) (Fig. 4c lower), demanding more 
advanced strategies (for example, machine-learning-based scoring) 
for future improvement.

Potential strategies for improving accuracy
The complexity of algorithms and numerous variables therein require 
sophisticated usages of data and optimization of strategies for improv-
ing mosaic variant calling. Here, we formulate three strategies that 
can be used for future development and demonstrate their feasibility.

First, we tested the feature-level recombination of multiple algo-
rithms, as an extension of the call set-level integration that brought an 
instant improvement in the paired-sample-based detection (Fig. 3f,g). 
Here, informative features from one algorithm are imported into other 
algorithms, in pursuit of a synergistic or complementary effect. For 
example, the low precision of MT2-to at the low VAF (lower than 10%) 
in the single-sample detection can be reinforced by foreign features 
that discriminate nonvariants. A simple implementation proved that 
augmenting ‘alt softclip’ (of MF) to MT2-to could remove 27.3% (228 
of 834) of the false calls while only losing 0.009% (27 of 289,124) of the 
true answers (Extended Data Fig. 4a top). Likewise, applying ‘MFRL alt’ 
(of MT2-to) (a median fragment length of reads with alternative alleles) 
or ‘Het Likelihood’ (of MF) (genotype likelihood of the variant being 
germline heterozygous) to the HC-p200 call set removed 40.54% (30 of 
74) and 93.08% (50,304 of 54,043) of the false calls from the nonvariant 
and germline sites, respectively, losing 0.03% (26 of 86,415) and 3.3% 
(2,732 of 82,026) of the true calls, respectively (Extended Data Fig. 4a 
middle and bottom).

Second, we tested the broader usage of the ‘rescue’ procedure 
(of M2S2MH), re-evaluation of positions that were only called from 
the matched sample but not in the other (Extended Data Fig. 4b and 
Methods). We confirmed that the procedure increased the F1 score by 
2.5-fold (0.26 to 0.64) from the original MH calls in the M2S2MH algo-
rithm (Extended Data Fig. 4c). Applying it to the two different callers 
MF and DM also achieved an increase in the F1 score by 0.1 and 0.26, 
respectively (Extended Data Fig. 4c). This result indicates that the res-
cue strategy can be used as an efficient post process for high-precision 
algorithms to reinforce the sensitivity of their models.

Finally, we formulated an approach that uses developmental hier-
archy within many (more than or equal to three) samples for enhanced 
precision in mosaic variant calling in which no such algorithms have 
been developed yet. We assume two samples that are originated from 
more recently differentiated tissues as more proximal in a develop-
mental lineage tree, such as brain and spinal cord. Then, variants that 
are not shared between these two tissues are not likely to be present 
in a more developmentally distal third tissue (for example, heart) 
(Extended Data Fig. 4d and Supplementary Notes). This relationship 
can be used to filter out false mosaic variants. A pilot application of this 
approach was conducted on the 1,944 possible combinations of three 
different mosaic samples (out of 39 mixtures), by selecting one from 
three different mosaic types (nine in M1, 12 in M2 and 18 in M3) from 
the truth set. We found that 67.3 and 55.5% of the shared false positives 
of SNVs and INDELs could be removed while losing only a small frac-
tion (1.6 and 3.9%) of true positives, thereby increasing the F1 scores 
from 0.94 to 0.95 and from 0.18 to 0.29 for SNVs and INDELs, respec-
tively (Extended Data Fig. 4e). Therefore, we anticipate that a general-
ized algorithm that takes advantage of joint genotyping and multiple 

tissues would increase the sensitivity and precision of shared mosaic  
variant calling.

Discussion
In this study, we presented a systematic benchmark of mosaic variant 
calling strategies. Our analysis revealed the sequencing depth-, VAF-, 
variant-sharing pattern- and error type-specific strengths and diversity 
of the current algorithms, feasible strategies for ensemble approaches 
and directions for future development. After all the detailed analyses, 
we summarized the conclusions from the benchmark results in Fig. 5  
and practical recommendations for users and developers in Table 1. 
The applicability and reproducibility of these recommendations were 
confirmed in three independent biological datasets9,10,21 (Supplemen-
tary Notes).

The technologies used for detecting germline and somatic muta-
tions have been greatly improved in recent decades. The F1 score of 
germline variant calling has exceeded 0.99 (ref. 18). Clonal somatic 
mutation calling (for example, cancer) has gained substantial credence 
on a clinical level, by lowering the limit of detection down to around 1% 
(ref. 25). Nevertheless, the accuracy for mosaic variant detection was 
shown to be much lower in our analysis, especially for low VAF (less 
than 5%) SNVs (F1 < 0.74) and INDELs (F1 < 0.3) even with ultra-deep 
sequencing (1,100×) data. As this field is still in its infancy, efforts 
to increase its detection accuracy to the level of somatic mutations 
should be made. Again, proper evaluation of detection performance 
will expedite the development of this field and suggest its direction, 
as several benchmarks and competitions have led to the best practices 
for germline and somatic mutations14,26.

The construction of robust and comprehensive reference stand-
ards is the critical prerequisite for benchmarking, as it was for germline 
(for example, Genome in a Bottle15) and somatic variants17. Addition-
ally, genome editing technologies (for example, CRISPR–Cas9) have 
been applied to spike-in somatic variants of designated allele fractions 
to produce commercial products27. Generating in silico simulated 
datasets is also a simple but powerful method, such as the BAM-file 
mixing17. However, we noted that mixing BAM files greatly limits the 
variety of noises (for example, sequencing errors) to the source data, 
and generates much simpler error profiles (Supplementary Fig. 11 and 
Supplementary Notes). We believe that our approach to constructing a 
mixture-derived standard reference is an appropriate way for securing 
both the scale and robustness for mosaic variant analysis.

In this benchmark, we focused on the conventional bulk sequenc-
ing used by most researchers. However, further sequencing technolo-
gies for detecting low-VAF (less than 5%) variants are being developed, 
and existing ones have proven to be effective, such as linked-read 
sequencing28,29 and unique molecular identifiers (UMI)30. Continuing 
efforts should be made on the proper evaluation of these methods and 
their applications to detect mosaic variants.

Despite all efforts, this benchmark has potential pitfalls, par-
ticularly in the interpretation of the analysis results, limitations in 
the search space and data dependency. First, the performance of the 
mosaic calling ‘strategies’ should not be confused with their baseline 
algorithms, especially when they were used in an unintended way. 
For example, the performance of MT2-m does not directly indicate 
the somatic mutation calling performance of MT2 with the modified 
use of normal filters. Likewise, MHP-m originally reported variants 
with inconsistent genotypes in two samples (for example, germline in 
one and mosaic in the other) and has been modified to call the shared 
variants by referring to the internal genotype probability matrix. The 
compositions of all the single-genotyping approaches for shared vari-
ant detection (MH, MF, DM, MT2-to and HC-p20/p200) are generally 
acceptable; however, the usages were not explicitly declared in the 
original algorithms. Again, these modifications were conducted to 
test the potentially applicable strategies in the absence of specifically 
developed algorithms. We also would like to note that the complexity of 
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the use of parameters limits the benchmark. At least 4–110 parameters 
can be used and adjusted, and the number of combinations reaches up 
to tens of millions. Because of the intractability, evaluations have been 
conducted using default parameters, assuming that the empirical sug-
gestions from developers (default parameters) are close to the optimal.

Second, our benchmark focuses on capture-based deep exome 
sequencing that have distinct characteristics from other technologies 
(for example, WGS and panel-seq). Capture-based exome sequencing 
accompanies read-depth variability within and across the exon region, 
especially for INDELs. Even though securing high sequencing depths 
with exome data can greatly advantage the detection accuracy, the 
low-VAF (less than 10%) variant detection accuracy remains challenging 
due to the coverage unevenness (Supplementary Notes). Thereby, we 
expect similar or slightly higher performance with whole genome- or 
panel-sequencing data of the same target sequencing depths (Sup-
plementary Notes). Furthermore, genomic regions of low complexity 

(for example, repeats and segmental duplications) were excluded in 
this benchmark (Methods). We are aware of that these low complexity 
regions are also of interest for researchers and developers. However, 
we focused on the high-confidence regions to evaluate the core per-
formance of the tools, as empirical or arbitrary filtration strategies are 
more actively used in the low complexity regions.

Finally, the composition of the standard reference can affect the 
results, such as the distribution of VAFs in the datasets, number of 
positive controls, sequencing platform, read length and error pro-
files. First, the cumulative cell line mixing (Fig. 1) produced a large 
set of robust mosaic variants, but it could also alter the composition 
of germline variant sites. We resolved the issue of loss of pure ger-
mline sites by preparing a separate set of reference standards that 
recovered germline sites19. Second, we noted that germline variants 
from multiple cell lines may be presented as somatic-like variants of 
low to medium VAF after mixing. This increases the number of extra 
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variants in a single read (Supplementary Notes) and may negatively 
affect the performance of tools that consider genotypes of flank-
ing sites including MT2, although we confirmed the effect is none 
or small. Third, the use of germline variants as origin may affect the 
single-nucleotide polymorphism (SNP)-based postfiltration processes 
(filtration of SNP sites after or during the calling process) that MH, 
DM and MT2 exploit. We removed the true variant positions from 
external population frequency databases such as dbSNP, gnomAD 
and panel of normal that are fed into the tools, and confirmed the 
issue has been successfully resolved (Supplementary Notes). However, 
the modification of the population frequency databases may also 
enhance sensitivity by invalidating the filtration that may act negatively 
for mosaic variants that hit SNP sites by chance. We also confirmed 
that the actual effect is minor (Supplementary Notes) but should be 
noticed. Last, due to the large number of control positives, we not only 
recalibrated the precision and F1 score, but also provided an absolute 
measure, false positive rate (FP per 1 Mbp). All benchmark results 
should be carefully explained because those measures involve relativity  
in interpretation.

In summary, we anticipate that our study will guide researchers 
to the best use of current algorithms. We expect that accurate analysis 
of mosaic variants will broaden our understanding of fundamental 
human development, as well as other model organisms5,31. Also, for 
method developers, our study will be a good starting point for techni-
cal advances in mosaic variant calling to the germline and somatic 
variant levels.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 

and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41592-023-02043-2.

References
1.	 Bae, T. et al. Different mutational rates and mechanisms in human 

cells at pregastrulation and neurogenesis. Science 359, 550–555 
(2018).

2.	 Ju, Y. S. et al. Somatic mutations reveal asymmetric cellular 
dynamics in the early human embryo. Nature 543, 714–718  
(2017).

3.	 Martincorena, I. et al. Somatic mutant clones colonize the human 
esophagus with age. Science 362, 911–917 (2018).

4.	 Vijg, J. & Dong, X. Pathogenic mechanisms of somatic mutation 
and genome mosaicism in aging. Cell 182, 12–23 (2020).

5.	 Uchimura, A. et al. Early embryonic mutations reveal dynamics of 
somatic and germ cell lineages in mice. Genome Res 32, 945–955 
(2022).

6.	 Lim, E. T. et al. Rates, distribution and implications of postzygotic 
mosaic mutations in autism spectrum disorder. Nat. Neurosci. 20, 
1217–1224 (2017).

7.	 Martincorena, I. et al. Tumor evolution. High burden and pervasive 
positive selection of somatic mutations in normal human skin. 
Science 348, 880–886 (2015).

8.	 Freed, D. & Pevsner, J. The contribution of mosaic variants to 
autism spectrum disorder. PLoS Genet. 12, e1006245 (2016).

9.	 Wang, Y. et al. Comprehensive identification of somatic 
nucleotide variants in human brain tissue. Genome Biol. 22, 92 
(2021).

10.	 Kim, J. H. et al. Analysis of low-level somatic mosaicism 
reveals stage and tissue-specific mutational features in human 
development. PLoS Genet. 18, e1010404 (2022).

Table 1 | Recommendations for mosaic variant detection

Recommendation

Fundamental concept 1 Mosaic variant calling is not a task of a single kind, but a set of diverse problems, whose characteristics and difficulties vary 
largely. The number of samples, presence of matched controls, VAFs and variant-sharing patterns are major factors that affect 
the algorithmic performance and should be carefully considered before analysis.

Single-sample detection

2 MF and MT2 are generally recommended for calling mosaic SNVs in a single sample. These tools are particularly strong in 
calling low-VAF mutations (less than 10%).

3 MH showed low sensitivity but extremely high precision. Together with other callers, these calls can be used for strict filtering 
or prioritization.

4 MF is considered the current best algorithm for mosaic INDEL calling, whereas no algorithms are successful in calling low-VAF 
(less than 4%) INDELs.

5 Call set concordance between callers and read depths is very low. Therefore, finding overlaps from different callers to 
achieve high confidence is not recommended. The use of multiple callers should be composed in a way of assigning one to 
the best-performing VAF area.

Paired-sample detection

6 For sample-specific calling, current somatic callers (MT2 and STK2) outperform in overall VAFs including low VAF (less than 
5%).

7 For shared variant detection, although MF and MT2 showed good overall accuracy, we want to highlight that the 
best-performing tool for each VAF range varied. We recommend also trying out the best tools for the expected VAF-pair area 
if one exists (Fig. 3f).

8 In the present situation, we recommend using somatic callers (MT2 or STK2) for sample-specific and MF with the rescue 
strategy for shared mosaic variant detection with paired samples.

9 Although no specific algorithms explicitly handle more than two samples, using sample proximity in terms of developmental 
lineage can be an efficient filtration strategy.

For method developers

10 Specify the target problem first. What types of mosaic variant are considered? Is matched control sample required? Are 
the variants shared in multiple samples? The final performance can be completely different when applied to problems of 
unintended forms.

11 We recommend considering various sequencing platforms or read depths in algorithm development. Algorithms that exploit 
machine-learning techniques (for example, deep learning) can be further improved by varying the training sets especially in 
terms of VAF and sequencing depth.

12 Provided with numerous features, scores and filters from multiple algorithms, a complementary ensemble approach can be 
an efficient start to improve performance without developing a new algorithm from scratch.

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41592-023-02043-2


Nature Methods | Volume 20 | December 2023 | 2058–2067 2067

Analysis https://doi.org/10.1038/s41592-023-02043-2

11.	 Dou, Y. et al. Accurate detection of mosaic variants in sequencing 
data without matched controls. Nat. Biotechnol. 38, 314–319 
(2020).

12.	 Yang, X. et al. Control-independent mosaic single nucleotide 
variant detection with DeepMosaic. Nat. Biotechnol. https://doi.
org/10.1038/s41587-022-01559-w (2023).

13.	 Krusche, P. et al. Best practices for benchmarking germline 
small-variant calls in human genomes. Nat. Biotechnol. 37, 
555–560 (2019).

14.	 Chen, Z. et al. Systematic comparison of somatic variant calling 
performance among different sequencing depth and mutation 
frequency. Sci. Rep. 10, 3501 (2020).

15.	 Zook, J. M. et al. Integrating human sequence data sets provides 
a resource of benchmark SNP and indel genotype calls. Nat. 
Biotechnol. 32, 246–251 (2014).

16.	 Zook, J. M. et al. A robust benchmark for detection of germline 
large deletions and insertions. Nat. Biotechnol. 38, 1347–1355 
(2020).

17.	 Ewing, A. D. et al. Combining tumor genome simulation with 
crowdsourcing to benchmark somatic single-nucleotide-variant 
detection. Nat. Methods 12, 623–630 (2015).

18.	 Zhao, S., Agafonov, O., Azab, A., Stokowy, T. & Hovig, E. Accuracy 
and efficiency of germline variant calling pipelines for human 
genome data. Sci. Rep. 10, 20222 (2020).

19.	 Ha, Y. J. et al. Establishment of reference standards for 
multifaceted mosaic variant analysis. Sci. Data 9, 35  
(2022).

20.	 Huang, A. Y. et al. MosaicHunter: accurate detection 
of postzygotic single-nucleotide mosaicism through 
next-generation sequencing of unpaired, trio, and paired 
samples. Nucleic Acids Res. 45, e76 (2017).

21.	 Breuss, M. W. et al. Autism risk in offspring can be assessed 
through quantification of male sperm mosaicism. Nat. Med. 26, 
143–150 (2020).

22.	 Cibulskis, K. et al. Sensitive detection of somatic point mutations 
in impure and heterogeneous cancer samples. Nat. Biotechnol. 
31, 213–219 (2013).

23.	 Kim, S. et al. Strelka2: fast and accurate calling of germline and 
somatic variants. Nat. Methods 15, 591–594 (2018).

24.	 McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce 
framework for analyzing next-generation DNA sequencing data. 
Genome Res. 20, 1297–1303 (2010).

25.	 Shin, H. T. et al. Prevalence and detection of low-allele-fraction 
variants in clinical cancer samples. Nat. Commun. 8, 1377 (2017).

26.	 Koboldt, D. C. Best practices for variant calling in clinical 
sequencing. Genome Med. 12, 91 (2020).

27.	 Suzuki, T., Tsukumo, Y., Furihata, C., Naito, M. & Kohara, A. 
Preparation of the standard cell lines for reference mutations in 
cancer gene-panels by genome editing in HEK 293 T/17 cells. 
Genes Environ. 42, 8 (2020).

28.	 Dou, Y., Gold, H. D., Luquette, L. J. & Park, P. J. Detecting somatic 
mutations in normal cells. Trends Genet. 34, 545–557 (2018).

29.	 Bohrson, C. L. et al. Linked-read analysis identifies mutations in 
single-cell DNA-sequencing data. Nat. Genet. 51, 749–754 (2019).

30.	 Kennedy, S. R. et al. Detecting ultralow-frequency mutations by 
duplex sequencing. Nat. Protoc. 9, 2586–2606 (2014).

31.	 Pontes-Quero, S. et al. Dual ifgMosaic: a versatile method for 
multispectral and combinatorial mosaic gene-function analysis. 
Cell 170, 800–814 e818 (2017).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2023

http://www.nature.com/naturemethods
https://doi.org/10.1038/s41587-022-01559-w
https://doi.org/10.1038/s41587-022-01559-w
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Methods

Analysis https://doi.org/10.1038/s41592-023-02043-2

Methods
Datasets
We obtained a set of mosaic reference standards (BAM) based on 
the accumulative mixing of pregenotyped normal cell lines from the 
Sequence Read Archive (PRJNA758606). The integrity of the used cell 
lines was confirmed with short tandem repeats comparison and verified 
to have no mycoplasma contamination (Supplementary Notes). Diverse 
combinations and ratios of the mixtures generated 39 reference materi-
als, harboring both abundant mosaic variants of VAF (Supplementary 
Table 1) and two types of negative control: nonvariant sites (Set A) and 
germline variants (Set B)19. The 39 reference materials were included 
in one of the three mixture categories (nine M1, 12 M2 and 18 M3) that 
represent the genotypes of distinct lineages. Among the full sets of 
controls in every reference material, we only considered high-confident 
regions by excluding the simple repeats and segmental duplications 
supplied by UCSC (University of California Santa Cruz). Thus, 345,552 
positive SNVs (92%) and 8,706 INDELs (72%) were adjustable, and 
each of the 39 reference materials contained two types of negative 
control: 33,093,574 nonvariant (94%) and 18,151 germline sites (91%) 
per sample. Information on the positive and negative controls used 
here is shown in Supplementary Table 1. We also performed multistep 
down-samplings (125×, 250× and 500×) of original reference materials 
(1,100× on average) to comprehensively assess the performance under 
different sequencing depths.

Variant calling
Eleven detection approaches were applied to the truth sets. For the 
single-sample and single-genotyping analyses, MH (v.1.0, single mode); 
MF (v.0.0.1, 250× trained models for SNVs); DM (v.0.0, efficientnet-b4_
epoch_6.pt); MT2-to (v.4.1.9.0, tumor-only mode and applied FilterMu-
tectCalls); GATK HC (v.4.1.8.0) with a ploidy option of 20 and 200 (see 
Supplementary Notes for the ploidy settings), with the quality filters, 
were adjusted according to the criteria based on GATK Variant Quality 
Score Recalibration (a quality by depth greater than or equal to 2, FS 
(FisherStrand) ≤ 60, DP (Depth) ≥ 20, map quality equal to or greater 
than 40, ReadPosRankSum ≥ −8 and −2.5 ≤ MQRankSum ≤ 2.5). Raw 
variant calls from MT2-to were used as input for MF and DM11,12. We also 
tried to evaluate MF with the raw calls of HC with ploidy 200, suggested 
by another study9, but the MT2-to call set was observed to be more 
appropriate for evaluation (Supplementary Notes). Variants tagged as 
‘mosaic’ (MH and MF) or ‘PASS’ (DM, HC and MT2-to) were only kept for 
downstream analysis. The population frequency data was needed for 
default settings, dbSNP(b154) for Mosaic Hunter and panel of normal 
(1000g_pon.hg38.vcf.gz) from GATK resource bundle (https://console.
cloud.google.com/storage/browser/genomics-public-data/resources/
broad/hg38/v0) for MT2, were applied after the removal of positive 
controls; this was done because the positive controls were attained 
from mutually exclusive germline variants19. Segmental duplication and 
simple repeats from UCSC were used to remove both the low-confident 
regions in the control sets and in the tools (MH, MF and DM) if used as a 
part of the algorithm11,12,20. For paired-sample analysis, STK2 and MT2 
were applied with default parameters, and only PASS calls were used 
for downstream analyses. MT2-m and MHP-m were applied with simple 
modifications to detect the shared mosaic variants. Variants of MT2 
paired mode tagged as ‘normal artifacts’ by FilterMutectCalls were 
selected for MT2-m to be exploited as an alternative filtering strategy 
for shared variant detection10. In MHP-m, paired naïve mode, if (1) the 
joint probability of two samples with ‘mosaic’ variants was greater than 
0.05 and (2) if it was larger than that of any other genotype combina-
tion, the variants were considered as shared, whereas the remaining 
variants remained as sample-specific. For the M2S2MH approach, only 
concurrent calls of MT2 (paired mode) and STK2 (v.2.9.10, somatic) 
were exploited. Repeats and germline INDELs (with Manta23 v.1.6.0) 
within five base pairs were removed for detecting sample-specific 
variants21. For shared variant detection, MH (single mode) was applied 

to each sample, followed by a comprehensive filtering process using 
the read counts, depths and VAFs of both samples, as previously men-
tioned21. The detailed pipelines of the approaches used for all nine 
variant callings are shown in Extended Data Fig. 5.

Performance evaluation of single-sample analysis
For each approach, the precision, sensitivity and F1 score were calcu-
lated based on the call set. To investigate the detection performance, 
the variants were divided into eight categories based on their VAF (less 
than 1, 1–2, 2–3, 3–4, 4–7.5, 7.5–9.6, 9.6–25 and equal to or more than 
25%) for the SNVs and into seven categories (less than 1, 1–2, 2–4, 4–5, 
5–9.6, 9.6–16 and equal to or more than 16%) for the INDELs so that 
almost equal numbers of variants were contained in each VAF category. 
Precision was recalibrated based on the density of positive controls 
(the number of positive controls per megabase), as a high positive 
control density overemphasizes the true positives over the false posi-
tives. The recalibration was done as follows with w, the weight of the 
overrepresented density of the positive controls:

w = No.of expectedpositive controls
No.of positive controls in thedata

(1)

precision = TP ×w
(TP ×w) + FP (2)

The number of expected positive controls was estimated based on 
the known previous densities of SNVs (1 per 1 Mb) and INDELs (0.1 per 
1 Mb) (refs. 3,7), yielding w values of 1/252.75 and 1/81.63, respectively. 
AUPRC was calculated with mosaic probability (MH and MF), score3 
(DM), TLOD (MT2-to, MT2 and MT2-m), Somatic EVS (STK2) and quality 
by depth (HC-p20 and HC-p200).

Variant call set similarity between callers was calculated with 
Jaccard index in three different types: true positives, nonvariant false 
positives, and germline false positives. Call set consistency of four dif-
ferent sequencing depths (125×, 250×, 500× and 1,100×) was conducted 
with the R package nVennR32 (v.0.2.3) by obtaining intersections and 
differences between call sets.

Performance evaluation of paired-sample analysis
We selected a theoretical ‘case’ sample from one of 18 M3 mosaic types 
and one control out of 21 from the other mosaic types (nine from M1 and 
12 from M2). Therefore, we tested 378 combinations of paired-sample 
analyses conducted with 1,481,274 shared variants (2,697 variants 
between M3 and M1 and 4,835 between M3 and M2). For single genotyp-
ing (MH, MF, DM, MT2-to, HC-p20 and HC-p200), case and control sam-
ples were applied independently, and their intersection and differences 
of the call sets were exploited for shared and sample-specific calls, 
respectively. MT2, STK2, MHP-m, MT2-m and M2S2MH were applied 
with their joint genotyping. For sensitivity comparisons between bal-
anced and unbalanced VAF pairs, we referred to balanced shared vari-
ant if the difference in variant allele frequencies was less than twofold. 
Misclassified calls were collected if the shared variants (V1 for M3-M1 
pair and V1 and V3 for M3-M2 pair) were only detected in either of each 
sample pair. Then, the proportions of true positives and misclassified 
calls were compared. For the F1 score comparison in VAF range com-
binations, we first divided the VAFs into four ranges of very low ≤5%, 
low >5 and ≤10%, medium >10 and ≤25%, and high >25%, to generate 
16 shared VAF combinations to quantify the detection performances 
according to the VAFs. Among the 16 possible combinations, we could 
assign the shared variants of the reference standards to 15 groups, and 
by gathering the best F1 score for each combination, we could suggest 
an instant enhancement of shared variant detection using an ensemble 
of different detection approaches. The overall F1 score was calculated 
after normalization of the positive control counts in each VAF bin to 
ensure that the computed F1 score is not limited to this study.
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Evaluation of features and filters
To calculate the potential power of the features used in detection 
strategies, the AUCs of 48 features of MF, MT2-to, DM, HC-p20 
and HC-p200 were obtained to see how well they further classify 
the true and false positives. True and false positives within the 
approaches were applied to pROC (v.1.17.01) and the AUC of each 
feature was determined. They were divided into three levels based 
on their intended use: 20 features into the sequencing level, 15 into 
the alignment-level and 13 into the genotype level. The full sets 
of evaluated features with the definitions, AUCs and categoriza-
tions are listed in Supplementary Table 4. Wilcoxon’s rank sum test 
was used to compare AUCs of each group. To investigate filter effi-
ciency, 16 postfilters from MT2 and HC were tested. We disabled 
each filter and compared the new F1 score to the original F1 score 
by collecting additional true and false positives. The difference 
in F1 score for each filter was calculated by subtracting the newly 
calculated F1 scores from the original F1 score. The postfilters of 
MH were excluded, as they were used in series; in other words, 
calculating their efficacy was highly dependent on the order of  
their application.

Feature-level recombination
We tested whether a foreign feature of a distinct approach could be 
used in an independent variant call set from other approaches. We 
confirmed this hypothesis in three cases. Variants in the original call 
set could be tested when found in another approach accompanying 
the foreign features. Adjustable MT2-to calls (99% of true and 92% 
of false positives in nonvariant sites were adjustable) using the ‘alt 
softclip’ of MF (which was removed if the value was greater than 0.05) 
could filter out 27.3% of false positives with a 0.009% loss of true calls. 
Likewise, HC-p200 variant calls could be filtered using the ‘MFRL 
alt’ of MT2-to (less than 150, to 0.99% of true and 0.11% of adjust-
able false positives from nonvariant sites) and the ‘Het likelihood’ 
of MF (greater than 0.25, 95% of adjustable true and 8% of germline  
false positives).

Lineage distance-based filtering
To demonstrate the advantage of using multi-samples (three, in 
this instance), we applied the shared variant call sets of MT2-to, 
of 1,944 combinations generated from nine M1, 12 M2 and 18 
M3. We first collected the shared SNVs and INDELs between M1 
and M2, which were more distal in lineage than M2 and M3. The 
variants were filtered out if they were not present in M3, and 
the resultant shared variants were compared to the original  
variant sets.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The data used for benchmark are available from the Sequence 
Read Archive under the accession code PRJNA758606 and the 
high-confidence ground truth sets used in this study are avail-
able in the GitHub repository (https://github.com/hiyoothere/
Benchmarking-mosaic-variant-detection). Source data are provided 
with this paper.

Code availability
The script used for evaluation is available in a public GitHub 
repository33(https://github.com/hiyoothere/Benchmarking- 
mosaic-variant-detection).
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Extended Data Fig. 1 | Landscape of truth set and mosaic detection methods 
in four categories. Landscape of the true and false positives in the reference 
standards (center) and the applied detection approaches are shown (outer). 
Density of the variants along the VAFs in single and paired-sample analysis is 
shown in log10 scale in red and blue box respectively. The dashed line denotes VAF 

10% and the data on the plane and axis refer to the shared (blue dashed rectangle) 
or sample-specific variants, respectively. Possible false positives from two types 
of negative controls (non-variant and germline variants) are shown after 1/1000 
down sampling. Four categories of detection approaches based on their baseline 
algorithms, mosaic, somatic, germline, and ensemble categories.
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Extended Data Fig. 2 | Compositions of the false positives from the evaluated 
detection approaches. Intersections of the call sets and VAF distribution within 
each are shown with the left- and right-y axis respectively. Red dashed line refers 

to 10% of VAF and the median and quantiles are shown by the boxes with minima 
and maxima as whiskers. 39 truth sets in 1,100× depth were utilized for the 
analysis.
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Extended Data Fig. 3 | Evaluation on shared variant detection within VAF 
combinations. (a, b) F1-scores of shared variant detection in sixteen VAF bin 
combinations are shown. 356 combinations of sample pairs were tested by taking 
eighteen M3 truth sets as the case sample and twenty-one M1 and M2  

(9 M1 and 12 M2) sets as controls. Four VAF ranges (very low: ≤ 5%, low: > 5% and 
≤ 10%, medium: > 10% and ≤ 25%, and high: ≥ 25%) were selected for analysis. VAF 
combination-specific F1 score of shared (a) SNV and (b) INDEL detection. VL very 
low, L low, M medium, H high.
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Extended Data Fig. 4 | Additional strategies for mosaic variant calling.  
(a) Accuracy enhancement by the call set- and feature-level recombination of 
multiple approaches. Three examples with the ‘alt softclip’ in MF, ‘MFRL alt’ in 
MT2-to, and ‘HetLH’ in MF, applied to the call sets of MT2-to with false positives 
from non-variant sites, HC-p200 with false positives from non-variant sites, and 
HC-p200 with germline false positives, respectively. Removed percentage of true 
or false positives with the applications are shown in red. (b) A schematic overview 
of the ‘rescue’ procedure of M2S2MH approach. A shared variant that detected by 
only in the either of two samples could be rescued with read-level information.  
(c) The improvement in F1 scores of before and after applying the ‘rescue’ 

procedure to MH, MF, and DM, F1-scores shown in the identically partitioned 
variant allele frequency (VAF) areas as in Fig. 3f. (d) Strategy for precision 
enhancement of shared variant detection by utilizing multiple samples (≥3) 
is shown. The distance in the developmental lineage of each sample and their 
proximity in lineages are displayed. (e) Proportion of the removed true and false 
positives when the new strategy (shown in d) was applied to shared SNVs and 
INDELs. In total of 1,944 combinations generated by 39 reference standards in 
three categories (9 M1, 12 M2, 18 M3) were tested with MT2-to call sets. All results 
were generated with 1,100× data.
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Extended Data Fig. 5 | Schematic pipelines of the evaluated detection approaches. Pipelines of eleven mosaic variant detection strategies utilized for benchmark 
are shown.
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