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Cellpose 2.0: how to train your own model

Marius Pachitariu       & Carsen Stringer     

Pretrained neural network models for biological segmentation can provide 
good out-of-the-box results for many image types. However, such models do 
not allow users to adapt the segmentation style to their specific needs and 
can perform suboptimally for test images that are very different from the 
training images. Here we introduce Cellpose 2.0, a new package that includes 
an ensemble of diverse pretrained models as well as a human-in-the-loop 
pipeline for rapid prototyping of new custom models. We show that models 
pretrained on the Cellpose dataset can be fine-tuned with only 500–1,000 
user-annotated regions of interest (ROI) to perform nearly as well as models 
trained on entire datasets with up to 200,000 ROI. A human-in-the-loop 
approach further reduced the required user annotation to 100–200 ROI, 
while maintaining high-quality segmentations. We provide software 
tools such as an annotation graphical user interface, a model zoo and a 
human-in-the-loop pipeline to facilitate the adoption of Cellpose 2.0.

Biological images of cells are highly diverse due to the combinatorial 
options provided by various microscopy techniques, tissue types, 
cell lines, fluorescence labeling and so on1–4. The available options for 
image acquisition continue to diversify as advances in biology and 
microscopy allow for monitoring a larger diversity of cells and sig-
nals. This diversity of methods poses a grand challenge to automated 
segmentation approaches, which have traditionally been developed 
for specific applications, and fail when applied to new types of data.

High-performance segmentation methods now exist for sev-
eral applications5–9. These algorithms typically rely on large training 
datasets of human-labeled images and neural network-based models 
trained to reproduce these annotations. Such models draw heavy inspi-
ration from the machine vision literature of the last 10 years, which is 
dominated by neural networks. However, neural networks struggle to 
generalize to out-of-distribution data, that is new images that look fun-
damentally different from anything seen during training. To mitigate 
this problem, machine vision researchers assemble diverse training 
datasets, for example by scraping images from the internet or adding 
perturbations10,11. Computational biologists have tried to replicate this 
approach by constructing training datasets that were either diverse 
(Cellpose) or large (TissueNet, LiveCell). Yet even models trained on 
these datasets can fail on new categories of images (for example, the 
Cellpose model on TissueNet or LiveCell data: Fig. 3a,c).

Thus, a challenge arises: how can we ensure accurate and adaptable 
segmentation methods for new biological image types? Recent studies 
have suggested new architectures, new training protocols and image 

simulation methods for attaining high-performance segmentation 
with limited training data12–15. An alternative approach is provided by 
interactive machine learning methods. For example, methods such as 
Ilastik allow users to both annotate their data and train models on their 
own annotations16. Another class of interactive approaches known as 
‘human-in-the-loop’ start with a small amount of user-segmented data 
to train an initial, imperfect model. The imperfect model is applied 
to other images, and the results are corrected by the user. This is the 
strategy used to annotate the TissueNet dataset, which in total took 
two human years of crowdsourced work for 14 image categories6,17. The 
annotation/retraining process can also be repeated in a loop until the 
entire dataset has been segmented. This approach has been demon-
strated for simple ROI such as nuclei and round cells, which allow for 
weak annotations such as clicks and squiggles18,19, but not for cells with 
complex morphologies that require full cytoplasmic segmentation. 
For example, using an iterative approach19, a 3D dataset of nuclei was 
segmented in approximately one month. It is not clear whether the 
human-in-the-loop approach can be accelerated further, and whether 
it can in fact achieve human levels of accuracy on cellular images.

Here we developed algorithmic and software tools for adapting 
neural network segmentation models to new image categories with 
very little new training data. We demonstrate that this approach is: (1) 
necessary, because annotation styles can vary dramatically between 
different annotators; (2) efficient, because it only requires a user to seg-
ment 500–1,000 ROI offline or 100–200 ROI with a human-in-the-loop 
approach and (3) effective, because models created this way have 
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the LiveCell dataset (Fig. 1c(iv)). The outlines in the Cellpose dataset 
were drawn to include the entire cytoplasm of each cell, often biased 
toward the exterior of the cell (Fig. 1a(iii)). Some TissueNet categories 
also included the entire cytoplasm (Fig. 1b(i)), but others excluded 
portions of the cytoplasm (Fig. 1b(ii),(iii)) or even focused exclusively 
on the nucleus (Fig. 1b(iv)). Finally, areas of high density and low confi-
dence were nonetheless given annotations in the Cellpose dataset and 
in some LiveCell categories (Fig. 1a(iv),c(i)), while they were often not 
segmented in other LiveCell categories (Fig. 1c(ii)–(iv)).

Creating a model zoo for Cellpose
These examples of conflicting segmentations were representative of 
large classes of images from across all three datasets. Given this vari-
ation in segmentation styles, we reasoned that a single global model 
may not perform best on all images. Thus, we decided to create an 
ensemble of models that a user can select between and evaluate on 
their own data. This would be similar to the concept of a ‘model zoo’ 
available for other machine learning tasks20–22, and similar to a recent 
model zoo for biological segmentation23.

To synthesize a small ensemble of models, we developed a cluster-
ing procedure that groups images together based on their segmenta-
tion style (also ref. 12). As a marker of the segmentation style, we used 

similar accuracy to human experts. We performed these analyses on 
two large-scale datasets released recently6,7 and we used Cellpose, a 
generalist model for cellular segmentation5. We took advantage of 
these new datasets to develop a model zoo of pretrained models, which 
can be used as starting points for the human-in-the-loop approach. 
We also developed a user-friendly pipeline for human-in-the-loop 
annotation and model retraining. An annotator using our graphical 
user interface (GUI) was able to generate state-of-the-art models in 
1–2 hours per category.

Results
Human annotators use diverse segmentation styles
The original Cellpose is a generalist model that can segment a wide 
variety of cellular images5. We gradually added more data to this model 
based on user contributions, and we wanted to also add data from the 
TissueNet and LiveCell datasets6,7. However, we noticed that many of the 
annotation styles in the new datasets were conflicting with the original 
Cellpose segmentation style. For example, nuclei were not segmented 
in the Cellpose dataset if they were missing a cytoplasm or membrane 
label (Fig. 1a(i)), but they were always labeled in the TissueNet dataset 
(Fig. 1b(i),(iii)). Processes that were diffuse were not segmented in 
the Cellpose dataset (Fig. 1a(ii)) but they were always segmented in 

Cellpose annotation examples
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TissueNet annotation examples

LiveCell annotation examples

(i) (ii) (iii) (iv)

(iv)(iii)(ii)(i)

(i) (ii) (iii) (iv)

Fig. 1 | Diverse annotation styles across ground-truth datasets. These are 
examples of images that the human annotators chose to segment a certain way, 
where another equally valid segmentation style exists. All these examples were 
chosen to be representative of large categories of images in their respective 
datasets. a, Annotation examples from the Cellpose dataset. From left to right, 
these show: (i) nuclei without cytoplasm are not labeled, (ii) diffuse processes are 
not labeled, (iii) outlines biased toward the outside of cells and (iv) dense areas 
with unclear boundaries are nonetheless segmented. b, Annotation examples 

from the TissueNet dataset. These illustrate: (i) outlines follow membrane/
cytoplasm for some image types, and include nuclei without a green channel 
label, (ii) outlines do not follow cytoplasm for other image types, (iii) slightly 
out of focus cells are not segmented and (iv) outlines drawn just around nucleus 
for some image types. c, Annotation examples from the LiveCell dataset. These 
illustrate: (i) dense labeling for some image types, (ii) no labeling in dense areas 
for other image types, (iii) same as (ii) and (iv) no labeling in some image areas for 
unknown reasons.
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the style vectors from the Cellpose model5,24. This representation 
summarizes the style of an image with a ‘style vector’ computed at 
the most downsampled level of the neural network. The style vector 
is then broadcast broadly to all further computations, directly affect-
ing the segmentation style of the network. Conventionally, this style 
vector would be referred to as an ‘image style’; however, in this case the 
segmentation is strongly correlated with the image type, so the style 
computed here also contains information about the segmentation.

We took the style vectors for all images and clustered them into 
nine different classes using the Leiden algorithm, illustrated on a t-SNE 
(t-distributed stochastic neighbor embedding) plot in Fig. 2a (refs. 25,26). 
For each class, we assigned it a name based on the most common image 
type included in that class. There were four image classes composed 
mainly of fluorescent cell images (CP, TN1, TN2, TN3), four classes com-
posed mainly of phase-contrast images (LC1, LC2, LC3, LC4) and a ninth 
class including a wide variety of images (CPx) (Fig. 2b). For each cluster, 
we trained a separate Cellpose model. At test time, new images were 
co-clustered with the predetermined segmentation styles and auto-
matically assigned to one of the nine clusters. Then the specific model 
trained on that class was used to segment the image. The ensemble 
of models significantly outperformed a single global model (Fig. 2c).  
All image classes had improvements in the range of 0.01–0.06 for the 
average precision score, with the largest improvements observed at 
higher intersection-over-union (IoU) thresholds, and for the most 
diverse image class (CPx). This suggests that the original Cellpose 
model may generalize across varying image types, but cannot general-
ize across different segmentation styles.

Having obtained nine distinct models, we investigated differences 
in segmentation style by applying multiple models to the same images 
(Fig. 2d). We saw a variety of effects: the TN1 model drew smaller regions 
around each nucleus than the TN2 model, which extended the ROI until 

they touched each other (Fig. 2d(i)); the CP model carefully tracked 
the precise edges of cells while the TN3 model ignored processes  
(Fig. 2d(ii)); the CPx model segmented everything that looked like an 
object, while the TN1 model selectively identified only bright objects, 
assigning dim objects to the background (Fig. 2d(iii)); the LC1 model 
overall identified more cells than the LC4 model, which specifically 
ignored larger ROI (Fig. 2d(iv)); the LC2 model ignored ROI in very 
dense regions, unlike the LC1 model that segmented everything  
(Fig. 2d(v)) and the LC4 model tracked and segmented processes over 
longer distances than the LC3 model (Fig. 2d(vi)) and so on. None of 
these differences are mistakes. Instead, they are different styles of 
segmenting the same images, each of which may be preferred by a user 
depending on circumstances. By making these different models avail-
able in Cellpose 2.0, we empower users to select the model that works 
best for them. Further, we added a ‘suggestion mode’ to automatically 
select the model that best matches the style of the user image.

We also find that the specific neural network architecture used 
in Cellpose may aid in identifying segmentation styles: a network that 
does not broadcast the style vector to subsequent layers does not show 
any improvement for the ensemble model over the generalist model 
(Extended Data Fig. 1). We repeated the style clustering procedure to 
generate ensembles of models for nuclear segmentation. However, we did 
not see an improvement for the ensemble of models compared to the gen-
eralist model (Extended Data Fig. 2), consistent with the results of ref. 27.

Cellular segmentation without big data
We have seen so far that segmentation styles can vary significantly 
between different datasets, and that an ensemble of models with dif-
ferent segmentation styles can in fact outperform a single generalist 
model. However, some users may prefer segmentation styles not avail-
able in our training set. In addition, the ensemble method does not 
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Fig. 2 | An ensemble of models with different segmentation styles. a, t-SNE 
display of the segmentation styles of images from the Cellpose, LiveCell and 
TissueNet datasets. The style vector computed by the neural network was 
embedded in two-dimensions using t-SNE and clustered into nine groups using 
the Leiden algorithm. Each color indicated one cluster, with the name chosen 

based on the most popular image category in the cluster. b, Example images  
from each of the nine clusters corresponding to different segmentation styles.  
c, Improvement of the generalist ensemble model compared to a single 
generalist model. d, Examples of six different images from the test set segmented 
with two different styles each. Error bars represent the s.e.m. across test images.
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address the out-of-distribution problem, that is, the lack of generaliza-
tion to completely new image types. Therefore, we next investigated 
whether a user could train a completely custom model with relatively 
little annotation effort.

For this analysis, we treated the TissueNet and LiveCell datasets 
as new image categories, and asked how many images from each cat-
egory are necessary to achieve high performance. We used as baselines 
the models shared by the TissueNet and LiveCell teams (‘Mesmer’ 
and ‘LiveCell model’), which were trained on their entire respective 
datasets. We trained new models based on the Cellpose architecture 
that were either initialized with random weights (‘from scratch’), or 
initialized with the pretrained Cellpose weights and trained further 
from there (also ref. 14). The diversity of the Cellpose training set allows 
the pretrained Cellpose model to generalize well to new images, and 
provides a good starting set of parameters for further fine-tuning on 
new image categories. The pretraining approach has been successful 
for various machine vision problems28–30.

The TissueNet dataset contained 13 image categories with at least 
ten training images each, and the LiveCell dataset contained eight. 
We trained models on image subsets containing different numbers 
of training images. To better explore model performance with very 
limited data, we split the 512 × 512 training images from the TissueNet 
dataset into quarters. We furthermore trained models on a quarter of 
a quarter image, and a half of a quarter image. For testing, we used the 
images originally assigned as test images in each of these datasets.

Figure 3a shows segmentations of four models on the same image 
from the test set of the ‘breast vectra’ category of TissueNet. The first 
model was not trained at all, and illustrates the performance of the 
pretrained Cellpose model. The second model was initialized with the 
pretrained Cellpose model, and further trained using four 256 × 256 
images from the TissueNet dataset. The third model was trained with 
16 images, and the fourth model used all 524 available images. The aver-
age precision score for the test image improved dramatically from 0.36 
to 0.68 from the first to the second model. Much smaller incremental 
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Fig. 3 | State-of-the-art cellular segmentation does not require big data. 
a, Segmentation of the same test image by models trained with incrementally 
more images and initialized from the pretrained Cellpose 1.0 model. The image 
category is breast, vectra from the TissueNet dataset. b, Average precision of the 
models as a function of the number of training masks. Shown is the performance 
of models initialized from the Cellpose parameters or initialized from scratch. 
We also show the performance of the Mesmer model, which was trained on the 

entire TissueNet dataset. c,d, Same as a,b for image category A172 from the 
LiveCell dataset. The LiveCell model is shown as a baseline, with the caveat that 
this model was trained to report overlapping ROI (Methods). e, Left shows the 
average precision curves for all image categories in the TissueNet dataset. Right 
shows a zoom-in for less than 3,000 training masks. f, Same as e for the LiveCell 
image categories.
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improvements were achieved for the third and fourth models (0.76 
and 0.76). The rapid initial improvement is also seen on average for 
multiple models trained with different subsets of the data and on all Tis-
sueNet categories (Fig. 3b). Furthermore, pretrained Cellpose models 
improved faster than the models trained from scratch: the pretrained 
model reaches an average precision of 0.73 at 426 training ROI versus 
0.68 average precision for the model trained from scratch. We also 
noticed that the pretrained Cellpose models outperform the strong 
Mesmer model starting at 1,000 training ROI, which corresponds to two 
full training images (512 × 512). This increase in performance happens 
despite the Mesmer model being trained with up to 200,000 training 
ROI from each image category, and is likely explained by differences 
between the architecture of the segmentation models.

We see a similar performance scaling for images from the ‘A172’ 
category of the LiveCell dataset (Fig. 3c,d). Performance improves 
dramatically with 504 training ROI (equivalent to two training 
images), and then improves much more slowly until it reaches the 
maximum at 81,832 ROI. The Cellpose models also outperform the 
LiveCell model released with the LiveCell dataset31. Finally, we see 
similar performance scaling across all image categories from both 
datasets (Fig. 3e,f), and using different quality metrics (Extended Data 
Fig. 3). We conclude that 500–1,000 training ROI from each image 
category are sufficient for near-maximal segmentation accuracy in 
the TissueNet and LiveCell datasets.

We next tested whether it matters which dataset Cellpose was 
pretrained on. We find that pretraining on the Cellpose dataset pro-
vided an advantage over pretraining on the TissueNet and LiveCell 
datasets (Extended Data Fig. 4). The Cellpose dataset is smaller but 
more diverse than the TissueNet and LiveCell datasets. These results 

thus indicate that diversity matters more than size for pretraining 
segmentation models.

Fast modeling with a human-in-the-loop approach
We have shown in the previous section that good models can be 
obtained with relatively few training images when starting from the 
Cellpose pretrained model. We reasoned that annotation times can 
be reduced further if we used a ‘human-in-the-loop’ approach6,19,32. 
We therefore designed an easy-to-use, interactive platform for image 
annotation and iterative model retraining. The user begins by run-
ning one of the pretrained Cellpose models (for example, Cellpose 1.0: 
Fig. 4a). Using the GUI, the user can correct the mistakes of the model 
on a single image and draw any ROI that were missed or segmented 
incorrectly. Using this image with ground-truth annotation, a new 
Cellpose model can be trained and applied to a second image from the 
user’s dataset. The user then proceeds to correct the segmentations 
for the new image, and then again retrains the Cellpose model with 
both annotated images and so on. The user stops the iterative pro-
cess when they are satisfied with the accuracy of the segmentation. In 
practice, we found that 3–5 images were generally sufficient for good 
performance. Further, we found that large learning rates performed 
well when retraining Cellpose on a small set of images (Extended Data 
Fig. 5). Therefore, we used a default of 100 training epochs for model 
retraining, which results in run times that are very short (<1 minute on 
a graphical processing unit (GPU)).

To assess the performance of this platform, we trained multiple 
models with various human-in-the-loop and offline annotation strate-
gies. Critically, we used the same human to train all models, to ensure 
that the same segmentation style is used for all models. We illustrate 
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Fig. 4 | A human-in-the-loop approach for training specialized Cellpose 
models. a, Schematic of human-in-the-loop procedure. This workflow is 
available in the Cellpose 2.0 GUI. b, A new TissueNet model on the breast, vectra 
category was built by sequentially annotating the five training images shown. 
After each image, the Cellpose model was retrained using all images annotated 
so far and initialized with the Cellpose parameters. On each new image, the 

latest model was applied and the human curator only added the ROI that were 
missed or incorrectly segmented by the automated method. The yellow outlines 
correspond to cells correctly identified by the model, and the purple outlines 
correspond to the new cells added by the human annotator. c, Same as b for 
training a LiveCell model on the A172 category.
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two example timelines of the human annotation process (Fig. 4bc). For 
the TissueNet category, the human annotator observed that many cells 
were correctly segmented by the pretrained Cellpose model, but nuclei 

without cytoplasm were always ignored, which is likely due to the seg-
mentation style used in the original Cellpose dataset (Fig. 1a(i)). Hence, 
82 new ROI were added and the model was retrained. On the next image, 
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Fig. 5 | Human-in-the-loop models require minimal human annotation. a, Test 
image segmentations of four models trained on the five TissueNet images from 
Fig. 4b with different annotation strategies. Annotations were either produced 
with a human-in-the-loop approach (online), or by independently annotating 
each image without automated help (offline). The models were either pretrained 
(cellpose_init) or initialized from scratch. Purple outlines correspond to the 
ground-truth provided by the same annotator. Yellow outlines correspond 
to model predictions. b, Within-human agreement was measured by having 

the human annotator segment the same test images twice. For the second 
annotation, the images were mirrored horizontally and vertically to reduce 
memory effects. c, Total number of manually segmented ROI for each annotation 
strategy. d, Average precision at an IoU of 0.5 as a function of the number of 
training images. e, Average precision curves as a function of the number of 
manually annotated ROI. f–j, Same as a–e for the image category A172 from the 
LiveCell dataset. All models were trained on the images from Fig. 4b, with the 
same annotation strategies.
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only 32 new ROI had to be manually added, which continued to decrease 
on the third, fourth and fifth images. Qualitatively, the human annota-
tor observed that the model’s mistakes were becoming more subjective, 
and were often due to uncertain cues in the image. Nonetheless, the 
annotator continued to impose their own annotation style, to ensure 
that the final model captured a unique, consistent style at test time. 
A similar process was observed for images from the LiveCell dataset 
(Fig. 4c), where 52 out of 127 ROI had to be drawn manually on the first 
image, but only 18 out of 293 ROI had to be drawn on the fifth image.

To evaluate the human-in-the-loop models, we further annotated 
three test images for each of the two image categories (TissueNet 
and LiveCell). For comparisons, we also performed complete, offline 
annotations of the same five training images (from Fig. 4b,c), and we ran 
the human-in-the-loop procedure with models either initialized from 
scratch or from the pretrained Cellpose model. Thus, we could compare 
four different models corresponding to all possible combinations of 
online/offline training and pretrained/scratch initialization (Fig. 5a). As 
an upper bound on performance, we annotated the test images twice, 
with the second annotation performed on images that were mirrored 
vertically and horizontally (Fig. 5b). The average precision between 
these two annotations can be used as a measure of ‘within-human’ 
upper bound. Note that the within-human upper bound is by construc-
tion higher than any ‘across-human’ upper bound6, because it excludes 
inconsistencies in segmentation styles between different annotators.

The online models in general required fewer manual segmentations 
than the offline models (Fig. 5c). Furthermore, the online model initial-
ized from Cellpose required many fewer manual ROI than the online 
model initialized from scratch. Overall, we only needed to annotate 167 
total ROI for the online/pretrained model, compared to 663 ROI for a 
standard offline approach. Performance-wise, models pretrained with 
the standard Cellpose dataset did much better than models initialized 
from scratch (Fig. 5c). Of the four models, the online/pretrained model 
was unique in achieving near-maximal precision with very few manual 
ROI (Fig. 5e). All of these results were confirmed with a different set of 
experiments on a LiveCell image category (Fig. 5f–j). In both cases, 100–
200 manually segmented ROI were sufficient to achieve near-maximal 
accuracy and the process only required 1–2 hours of the user’s time.

Discussion
Here we have shown that state-of-the-art biological segmentation can 
be achieved with relatively little training data. To show this, we used 
two existing large-scale datasets of fluorescence tissue images and 
phase-contrast images, as well as a new human-in-the-loop approach 
we developed. We are releasing the software tools necessary to run 
this human-in-the-loop approach as a part of the Cellpose 2.0 package. 
Finally, we showed that multiple large datasets can be used to generate 
a zoo of models with different segmentation strategies, which are also 
immediately available for Cellpose users.

Our conclusions may seem at odds with the general intuition 
from the computer vision literature, where large amounts of data are 
necessary to train powerful models33,34. The discrepancy may be due to 
differences of scope between cell segmentation and general computer 
vision tasks. Deep learning models for general computer vision tasks 
need to perform well on a large diversity of test images, and therefore 
require a large diversity of training images. This is not the case for 
a typical cell segmentation application, where a model only has to 
work well on a narrow class of images from the same combination of 
tissue, microscope and/or dye. Thus, a specialized Cellpose 2 model 
can perform as well as a state-of-the-art model even with relatively 
little training data.

Our conclusions may also seem at odds with the conclusions of the 
original papers introducing the large-scale annotated datasets. The 
TissueNet authors concluded that performance saturates at 104–105  
training ROI. The LiveCell authors concluded that segmentation  
performance continues to increase when adding more training data. 

The discrepancy with our results may be due to several factors. First, 
we found that models initialized with Cellpose saturated their perfor-
mance much more quickly than models trained from scratch. Second, 
Cellpose as a segmentation model appeared to perform better than 
both the Mesmer (TissueNet) and LiveCell models, and this in turn may 
lead to higher efficiency in terms of required training data. Third, we 
focused on the initial portion of the performance curves where models 
were trained on only tens to hundreds of ROI, which was below the 
first few datapoints considered in the TissueNet and LiveCell studies. 
We even split images into quarters to explore very limited training 
data scenarios. Fourth, we used a large set of image augmentations to 
further increase the diversity of the training set images and improve 
generalizability5. Finally, we point out that the LiveCell study used a dif-
ferent average precision score from ours, which additionally requires 
a confidence score per ROI, while we used the average precision for-
mulation from the Data Science Bowl challenge and other studies12,27,35.

Our analysis also showed that there can be large differences in 
segmentation style between different annotators, even when their 
instructions are the same. This variability hints at a fundamental aspect 
of biological segmentation: there are often multiple correct solutions, 
and a biologist may prefer one segmentation style over another depend-
ing on the purpose of their study. Therefore, the variety of biological 
segmentation styles cannot be captured by a single, universal model.

Future efforts to release large annotated datasets should focus 
on assembling highly varied images, potentially using algorithms to 
identify out-of-distribution cell types36,37, and should limit the number 
of training exemplars per image category. We renew our calls for the 
community to contribute more varied training data, which is now easy 
to generate with the human-in-the-loop approach from Cellpose 2.0.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41592-022-01663-4.
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Methods
The Cellpose code library is implemented in Python v.3 (ref. 38), using 
pytorch, numpy, scipy, numba and opencv20,39–42. The GUI additionally 
uses PyQt and pyqtgraph43,44. The figures were made using matplotlib 
and jupyter-notebook45,46.

Models and training
Cellpose model. The Cellpose model is described in detail in ref. 5. 
Briefly, Cellpose is a deep neural network with a U-net style architecture 
and residual blocks47,48. Cellpose predicts three outputs: the probability 
of a pixel being inside a cell (1), the flows of pixels toward the center 
of a cell in X (2) and Y (3). The flows are then used to construct the cell 
ROI. The Cellpose default model (‘cyto’) was trained on 540 images of 
cells and objects with one or two channels (if the image had a nuclear 
channel). This is the pretrained model used, which we refer to as the 
‘Cellpose 1.0’ model.

Training. All training was performed with stochastic gradient descent. 
In offline mode, the models, either from pretrained or from scratch, 
were trained for 300 epochs with a batch size of eight, a weight decay 
of 0.0001 and a learning rate of 0.1. The learning rate increased linearly 
from 0 to 0.1 over the first ten epochs, then decreased by factors of 
two every five epochs after the 250th epoch. There were a minimum 
of eight images per epoch, so if fewer than eight images were in the 
training set then they were randomly sampled with replacement to 
create a batch of eight images. In online mode, training occurred for 
only 100 epochs, otherwise the parameters were the same. The learn-
ing rate was again increased linearly from 0 to 0.1 over the first ten 
epochs, but no annealing of the learning rate occurred toward the end 
of training. We observed slight performance improvements for the 
models trained from scratch but not from pretrained for 300 epochs 
of training compared to 100 epochs.

In Fig. 3, we trained on subsets of images in the training set, from 
0.25 (a quarter image), 0.5 (a half image), 1, 2 and 4, in powers of 2 up to 
2,048 depending on the number of images in the cell class. We trained at 
each of these subset sizes five times with five different random subsets 
of images and averaged the performance and the number of ROI used 
for training across these five networks.

In Extended Data Fig. 4, we trained models from scratch on all of 
the TissueNet training set or all of LiveCell training set using the same 
training parameters as above. These models are included in the model 
zoo as ‘tissuenet’ and ‘livecell’. We then replicated the protocol in Fig. 3 
to determine the retrained performance of these models as a function 
of the number of training ROI.

The generalist and ensemble models in Fig. 2 and Extended Data 
Figs. 1 and 2 were trained from scratch for 500 epochs with a batch 
size of eight, a weight decay of 0.00001 and a learning rate of 0.2. The 
learning rate increased linearly from 0 to 0.2 over the first ten epochs, 
then decreased by factors of two every ten epochs after the 400th 
epoch. The model used to compute style vectors in Fig. 2a was trained 
with images sampled from the Cellpose ‘cyto’ dataset, the TissueNet 
dataset and the LiveCell dataset, with probabilities 60, 20 and 20%, 
respectively. The generalist model that was compared to the ensembles 
(Fig. 2c and Extended Data Fig. 1) was trained with images sampled from 
the style vector clusters with equal probabilities. The ensemble models 
were trained using all the training images classified in the cluster with 
equal probability.

For all training, images with fewer than five ROI were excluded.

Style clustering and classification. In Cellpose, we perform global 
average pooling on the smallest convolutional maps to obtain a rep-
resentation of the style of the image, a 256-dimensional vector12,24,49. 
For the clustering of style vectors in Fig. 2a and Extended Data Fig. 1a 
we used all of the Cellpose cyto training data (540 images), 20% of the 
TissueNet training data (521 images) and 20% of the LiveCell training 

data (638 images). We then ran the Leiden algorithm on these style 
vectors with 100 neighbors and resolution 0.45 for Fig. 2 and 0.8 for 
Extended Data Fig. 1 to create nine clusters of images25. For the images 
in the training set not used for clustering and in the test set, we used a 
K-nearest neighbor classifier with a Euclidean distance metric and five 
neighbors to get their cluster labels.

For the clustering in Extended Data Fig. 2a we used all of the train-
ing images in the Cellpose ‘nuclei’ dataset. We then ran the Leiden 
algorithm on these style vectors with 50 neighbors and resolution 0.25 
to create six clusters of images. For the images in the test set, we used a 
K-nearest neighbor classifier with a Euclidean distance metric and five 
neighbors to get their cluster labels.

Evaluation. For all evaluations, the flow error threshold (quality control 
step) was set to 0.4. When evaluating models on test images from the 
same image class (Fig. 3), the diameter was set to the average diameter 
across images in the training set. For the online/offline comparisons 
in Figs. 4 and 5 the diameter was set to 18 for all the breast vectra Tis-
sueNet images and 34 for all the A172 LiveCell images, which was their 
approximate average diameter in the training set. When evaluating the 
ensemble versus generalist model performance (Fig. 2 and Extended 
Data Fig. 1), the diameter was set to the diameter of the given test image 
for all models, so that we can rule out error variability due to imperfect 
estimation of object sizes.

Model comparisons
We compared the performance of the Cellpose models to the Mesmer 
model trained on TissueNet6 and the anchor-free model trained on 
LiveCell7,31.

Mesmer model. We used the Mesmer-Application.ipynb notebook 
provided in the DeepCell-tf github repository to run the model on 
the provided test images with image_mpp=0.5 and compartment
="whole-cell"6,50.

LiveCell model. We used the pretrained LiveCell anchor-free model 
provided by the authors to run the model on the provided test 
images31,51. The ROI returned by the algorithm could have overlaps, 
and therefore we removed the overlaps as described in the LiveCell 
Dataset section.

The LiveCell model returned a confidence score for each ROI. We 
postprocessed the ROI returned by the model by removing ROI with a 
confidence score below 0.45 (Fig. 3d). We then removed any overlap-
ping ROI as described in the LiveCell Dataset section.

Quantification of segmentation quality. We quantified the pre-
dictions of the algorithms by matching each predicted mask to the 
ground-truth mask that is most similar, as defined by the IoU metric. 
Then we evaluated the predictions at various levels of IoU; at a lower 
IoU, fewer pixels in a predicted mask have to match a correspond-
ing ground-truth mask for a match to be considered valid. The valid 
matches define the true positives, TP, the ROI with no valid matches 
are false positives, FP, and the ground-truth ROI, which have no valid 
match are false negatives, FN. Using these values, we computed the 
standard average precision metric (AP) for each image:

AP = TP
TP+FP+FN

.

The average precision reported is averaged over the average precision 
for each image in the test set.

Human-in-the-loop method. We used an entry-level GPU (Nvidia 
RTX 2070) for the human-in-the-loop experiments. Run times were 
relatively short (<1 min) compared to the time it takes to do the manual 
correction of the ROI. We expect similar run time performance for 
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other GPUs and we expect that retraining times will vary relatively lit-
tle with the type of GPU used because our batch sizes are small (eight). 
It is possible, although not desirable, to run the human-in-the-loop 
process on the CPU, where retraining times of at least several minutes 
should be expected.

Datasets
TissueNet. The TissueNet dataset consists of 2,601 training and 1,249 
test images of six different tissue types collected using fluorescent 
microscopy on six different platforms, and each image has manual seg-
mentations of the cells and the nuclei (https://datasets.deepcell.org/)6. 
We only used the cellular segmentations in this study. We excluded 
the ‘lung mibi’ type from Fig. 3 because it only contained one training 
image and four test images. We thus used the other 13 types: pancreas 
codex, immune cycif, gi mibi, lung cycif, gi codex, breast vectra, gi mxif, 
skin mibi, breast mibi, immune vectra, breast imc, immune mibi and 
pancreas vectra. The training images are 512 × 512 pixels. To enable 
subsets consisting of fewer ROI in Fig. 3, we divided each training image 
into four parts and used those in the training protocol.

LiveCell. The LiveCell dataset consists of 3,188 training and 1,516 test 
images of eight different cell lines collected using phase-contrast 
microscopy, and each image has manual segmentations of the cells 
(https://sartorius-research.github.io/LIVECell/)7. The eight cell lines 
were MCF7, SkBr3, SHSY5Y, BT474, A172, BV2, Huh7 and SKOV3. The 
images were segmented with overlaps allowed across ROI. The Cell-
pose model cannot predict overlapping ROI, therefore the overlap-
ping pixels were reassigned to the mask with the closest centroid. ROI 
with more than 75% of their pixels overlapping with another ROI were 
removed. These nonoverlapping ROI were used to train Cellpose and 
benchmark the results.

For visualization of the LiveCell images in Figs. 3–5, we increased 
the contrast of the edges in the images by subtracting and dividing by 
a smoothed version of the image (Gaussian kernel of width 30 pixels).

Cellpose cyto dataset. This dataset was described in detail in  
ref. 5. Briefly, this dataset consisted of 100 fluorescent images of 
cultured neurons with cytoplasmic and nuclear stains obtained from 
the CellImageLibrary52; 216 images with fluorescent cytoplasmic 
markers from BBBC020 (ref. 53), BBBC007v1 (ref. 54), mouse corti-
cal and hippocampal cells expressing GCaMP6 using a two-photon 
microscope and ten images from confocal imaging of mouse cortical 
neurons with cytoplasmic and nuclear markers, and Google image 
searches; 50 images taken with standard brightfield microscopy 
from OMERO55 and Google image searches; 58 images where the cell 
membrane was fluorescently labeled from ref. 56 and Google image 
searches; 86 images from microscopy samples that were either not 
cells or cells with atypical appearance from Google image searches 
and 98 nonmicroscopy images of repeating objects from Google 
image searches.

Cellpose nucleus dataset. This dataset was described in detail in ref. 5.  
Briefly this dataset consisted of images from BBBC038v1 (refs. 27,57), 
BBBC039v1 (ref. 27), MoNuSeg (ref. 58) and ISBI 2009 (ref. 59).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
No new data were generated in this study because we used pub-
licly available datasets: TissueNet https://datasets.deepcell.
org/, LiveCell https://sartorius-research.github.io/LIVECell/ and 
Cellpose https://www.cellpose.org/dataset. We share a small 
set of TissueNet images annotated during human-in-the-loop 

experiments here: https://figshare.com/articles/dataset/
Human-in-the-loop_labelled_TissueNet_data_Cellpose_2_0_/20510016.

Code availability
Cellpose 2.0 was used to perform all analyses in the paper, the code 
and GUI are available at https://www.github.com/mouseland/cell-
pose. Scripts for recreating the analyses in Figs. 2 and 3 are available 
at https://github.com/MouseLand/cellpose/tree/main/paper/2.0. All 
online analyses were performed using the Cellpose 2.0 GUI. Please see 
instructions for human-in-the-loop here: https://cellpose.readthedocs.
io/en/latest/gui.html#training-your-own-cellpose-model. The Cellpose 
GUI saves _seg.npy files that contain the ROI found by the algorithm, 
or the user can save the masks as a tiff in the file menu. An example 
notebook for training Cellpose 2.0 in the cloud is available at https://
colab.research.google.com/github/MouseLand/cellpose/blob/main/
notebooks/run_cellpose_2.ipynb.
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Extended Data Fig. 1 | Specialization of Cellpose model without trained style. a, t-SNE embedding of segmentation styles for each image, colored according to 
cluster identity. b, Representative example images from each class. c, AP improvement of the model ensemble over a single generalist model. Error bars represent the 
standard error of the mean across test images.
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Extended Data Fig. 2 | Specialization of the pretrained model for images of nuclei. a, t-SNE embedding of segmentation styles for each image, colored according to 
cluster identity. b, Representative example images from each class. c, AP improvement of the model ensemble over a single generalist model. Error bars represent the 
standard error of the mean across test images.
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Extended Data Fig. 3 | Segmentation performance for different metrics. 
a, Average precision of segmentation on the TissueNet test set for additional 
IoU thresholds (IoU threshold = 0.5 also shown in Fig. 3b). Performance shown 
as a function of the number of training ROIs for models initialized from the 
pretrained Cellpose model. (left) Average precision as a function of training 
ROIs at three IoU thresholds; (right) average precision as a function of IoU 

threshold for different numbers of training ROIs. b, False negative rates on the 
TissueNet test set. (left) False negative rates as a function of training ROIs at three 
IoU thresholds; (right) false negative rates as a function of IoU thresholds for 
different numbers of training ROIs. c, Same as (b) for the false positives rates.  
d-f Same as (a-c) for the LiveCell dataset.
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Extended Data Fig. 4 | Models pretrained on Cellpose dataset outperform 
models pretrained on other datasets. a, Average precision at IoU threshold 
0.5 on the TissueNet test set for the Cellpose model pretrained on the LiveCell 
dataset versus pretrained on the Cellpose dataset. b, Average precision on the 
TissueNet test set as a function of the number of training ROIs, for models 1) 
trained from scratch, 2) pretrained with the Cellpose dataset (same as Fig. 3b),  

or 3) pretrained with the LiveCell dataset. c, Average precision on the LiveCell test 
set for the Cellpose model pretrained on the TissueNet dataset versus pretrained 
on the Cellpose dataset. d, Average precision at IoU threshold on the LiveCell 
test set as a function of the number of training ROIs from the LiveCell dataset, for 
models 1) trained from scratch, 2) pretrained with the Cellpose dataset (same as 
Fig. 3d), or 3) pretrained with the TissueNet dataset.
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Extended Data Fig. 5 | Test set performance as a function of learning rate and training epochs. a, Average precision for models trained on the Tissuenet dataset, 
using 5 training images. b, Same as (a) for the Livecell dataset.
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